
Semantic Annotation Using NKRL (Narrative Knowledge
Representation Language)

Gian Piero Zarri1

Abstract. We suggest that it could be possible to come closer to
the Semantic Web goals by using ‘semantic annotations’ that
enhance the traditional ontology paradigm by supplementing the
ontologies of concepts with ‘ontologies of events’. We present then
some of the properties of NKRL (Narrative Knowledge
Representation Language), a conceptual modeling formalism that
makes use of ontologies of events to annotate in great detail those
‘narratives’ that represent a very large percentage of the global
Web information.

1 INTRODUCTION
As well known, the current state of Web technology — the ‘first
generation’, or ‘syntactic’ Web — gives rise to serious problems
when trying to accomplish in a non-trivial way essential tasks like
indexing, searching, extracting, maintaining and generating
information. These tasks would, in fact, require some sort of ‘deep
understanding’ of the information dealt with: in a ‘syntactic’ Web
context, on the contrary, computers are only used as tools for
posting and rendering information by brute force. Faced with this
situation, Tim Berners-Lee first proposed a sort of ‘semantic Web’
where the access to information is based mainly on the processing
of the semantic properties of such information, and its extraction
and rendering on the use of heuristics (inference rules) that make
use of these properties. To realize the semantic Web vision, it
becomes then necessary to find a way of describing such semantic
properties in a computer-understandable way.

A natural way of ‘saying something’ about a multimedia
document consists into ‘annotating’ it by including additional,
descriptive information (metadata): annotation, in fact, is intended
in general as the adding of meta-information to a document as to
provide its generic ‘enrichment’. A well-known example of this
technique is given by the Annotea Project [1], where annotations
are conceived as means of associating general remarks to an
existing document, in the style of “The text in this document does
not make much sense”. Without questioning at all the concrete
utility of such tools, we must remark that such a sort of generic
annotation does not correspond exactly to the requirements for the
semantic Web as proposed by Berners-Lee. Given, in fact, the
‘deep understanding’ requirements expounded before, ‘annotation’
must now be strongly understood as ‘semantic annotation’,
intended therefore to convey, in some way, the actual ‘meaning’ of
the document.

 When we examine the ‘standard’ existing proposals in the
‘semantic’ annotation and metadata domains, it is evident that, very
often, they can be hardly defined as ‘semantic’. A well known

roject in this context is represented by the Dublin Core Initiative p
1 Centre National de la Recherche Scientifique (CNRS), 44 rue de l’Amiral
Mouchez, 75014 Paris, France, email: zarri@ivry.cnrs.fr

[2], based mainly on the use of a set of 15 metadata elements (title,
subject, description, source, language, creator, publisher, date,
type, format etc.). Starting from July 2000, these elements can be
associated with ‘qualifiers’ [3] — like ‘Is Part Of’ and ‘Has Part’
(but, strangely, not ‘Is Member of’ or ‘Has Member’) — to allow
additional levels of detail. Apart from the evident impossibility of
describing the semantics of the Web making use of only 15
categories, we can note that a majority of these last deal mainly
with the ‘external identification framework’ (title, creator,
publisher…) and the ‘physical structure’ (format…) of the digital
documents stored on the Web more than with a description of their
true ‘semantic meaning’ [4].

Note that RDF (Resource Description Framework), see [5, 6]
— a proposal for defining and processing WWW metadata that has
developed by a specific W3C Working Group (WRC = World
Wide Web Consortium) — is often associated to the Dublin Core
thanks to the fact that the RDF description of this Core has been
for long the only concrete, existing application of the RDF
techniques. RDF is, however, only a tool that is independent from
any particular metadata system it can implement — Dublin Core
apart it is used, e.g., in two very different approaches to
‘annotating’ like Annotea and NKRL (see below). The RDF model,
implemented in XML (eXtensible Markup Language), makes use
of Directed Labeled Graphs (DLGs) where the nodes, that
represent any possible Web resource (documents, parts of
documents, collections of documents etc.) are described basically
by using attributes that give the named properties of the resources:
the values of the attributes may be text strings, numbers, or other
resources. Initially, the model bore a striking resemblance to some
early KR work on semantic networks; the (provisional) RDF
specification, see [5], includes now more advanced KR constructs
like the ‘containers’, i.e., tools for describing ‘collections’ of
resources.

Metadata — at least in their Dublin Core connotation — means
in practice keywords, which can be assimilated to low-level
‘concepts’ taken in isolation. A natural (and very popular today)
extension of the metadata approach consists, therefore, in the use
of concepts structured according to an ‘ontology’ to (try to)
describe the ‘semantics’ of the Web.

Several knowledge representation languages based on the use
of ontologies have been proposed and tested in a Semantic Web
context, see, e.g., DAML+OIL [7, 8], SHOE [9], etc. All of these
are able to offer inferential services based on the use of hierarchies
of concepts, i.e., (basically) frame-like hierarchical structures
where the nodes are represented by the formal definitions,
thorough properties and axioms, of the important notions of the
domain (concepts).

Making use of ontologies constitutes, undoubtedly, an
important step towards true semantic-grounded utilization of the

Web; ontologies may not be sufficient, however, to fully render the
 semantic content of all of the Web resources. For example, a large
part of the Web information that is of an industrial and economic
interest consist often of ‘narratives’ about ‘actions’, ‘facts’,
‘events’, ‘states’ etc. that relate the real or intended behavior of
some ‘actors’ (characters, personages, etc.), like news stories,
corporate documents (memos, policy statements, reports and
minutes), normative and legal texts, intelligence messages, medical
records, etc. In this case, the simple description of concepts is not
enough, and must be integrated by the description of the mutual
relationships between concepts — or, in other terms, the
description of the ‘role’ the different concepts and their instances
have in the framework of the global actions, facts, events etc.
Ontologies normally supply, on the contrary, only a quite static,
rigid vision of the world, a taxonomy of pinned up, ‘dead’
concepts.

This paper would like then to suggest that it could be possible
to come closer to the Semantic Web goals by making use of
‘semantic annotations’ that enhance the ontology paradigm by
supplementing, in particular, the traditional ontologies of concepts
with ‘ontologies of events’, i.e., new hierarchical structures where
the nodes are now ‘templates’ that represent formally generic
classes of elementary events like “move a physical object”, “be
present in a place”, “produce a service”, “send/receive a message”,
 “introduce a change”, etc. Templates represent then dynamic
relationships between the basic concepts: they are fundamental for
the correct rendering of narratives, especially when they are
associated with the use of second order tools able to take into
account the ‘connectivity phenomena’ (logico-semantic links, like
CAUSE and GOAL) that, in a narrative situation, can exist
between single narrative fragments.

In the following, we will present quickly, in Section 2. and the
following, some of the main properties of NKRL (‘Narrative
Knowledge Representation Language’), see [10, 11], a language
expressly designed for representing, in a standardized way, the
‘meaning’ of complex multimedia information like that typically
found on the Web. NKRL has been used as ‘the’ modeling
knowledge representation language for annotating narratives in
European projects like Nomos (Esprit P5330), Cobalt (LRE
P61011), Concerto (Esprit P29159), Parmenides (IST P39023),
etc. It is used, e.g., in the current European Euforbia project (IAP
P26505) to annotating and filtering ‘questionable’ Web sites
according to a semantic-rich approach, see the next Section for
some details. NKRL constitutes then for sure one of the most
achieved and powerful solutions to the annotation problem.

Because of the space limitations, we will deal here only with
the knowledge representation aspects of the formalism. For
information on the natural language (NL) features — i.e., how to
pass, automatically or semi-automatically, from the NL formulation
of an ‘event’ to its corresponding NKRL representation — see,
e.g., [12] and, for the work accomplished in the framework of the
Concerto project, [13]. A recent paper on the NKRL high-level
inference procedures is [14].

2 THE MAIN KNOWLEDGE
REPRESENTATION TOOLS OF NKRL

In Euforbia, NKRL is used to associate with a Web site — when it
is first inserted on the Web or at the moment of a major
restructuring — an ‘Euforbia label’ that represents the semantic
content of the whole site (i.e., the home page plus the associated

pages). An Euforbia label includes three sections, where only the
first is mandatory:
�� the ‘aim’ section, i.e., a description of the main objectives of

the site;
�� the ‘properties’ section, i.e., a description of some characteris-

tics of the site that could be interesting to register (like the fact
that the site is a free or a paying one, the increment or decre-
ment in the number of hints, the way of managing the site etc.);

�� the ‘sub-sites’ section, i.e., a list of the associated sites with a
short NKRL description of the main functions of each of them.
Table 1 reproduces an (extremely simplified) image of the aim

section of the Euforbia label associated with the site “London
Escort Agency, http://www.london-escort-agency.co.uk/”; the
(intuitive) meaning of this symbolism is: “the London Escort
Agency provides an escort service”. We will then make use of the
code of Table 1 to introduce the main properties of the NKRL
language, see [10, 11] for additional details.

Table 1. A (very simple) example of NKRL code

c1) PRODUCE

 SUBJ (SPECIF london_escort_agency

 (SPECIF escort_agency uk_)):(london_uk)
 OBJ escort_service_1

The NKRL knowledge representation tools are organized into
four connected ‘components’, the definitional, enumerative,
descriptive and factual component.

The ‘definitional component’ supplies the tools for represent-
ing the ‘concepts’, intended here as a formal representation of the
‘important notions’ of a given application domain. A concept is
rendered as a frame-like data structure associated with a symbolic
label like human_being, taxi_ (the general class referring to
all the possible taxis, not a specific cab), city_, chair_,
gold_, or escort_agency in Table 1. These concepts are
inserted into a generalization/specialization hierarchy that, for
historical reasons, is called H_CLASS(es), and which corresponds
well to the usual ontologies of concepts evoked in Section 1.

The ‘enumerative component’ concerns the formal representa-
tion, as (at least partially) instantiated frames, of the concrete
realizations (lucy_, taxi_53, paris_, lon-
don_escort_agency) of the concepts. In NKRL, the formal
representations of these instances take the name of individuals.
Individuals are countable and, like the concepts, possess unique
symbolic labels (lucy_ etc.). Throughout this paper, we will use
the italic type style to represent a concept_, the roman style to
represent an individual_.

The ‘descriptive component’ concerns the tools used to
produce the formal representations (called ‘templates’ in the
NKRL's parlance) of general classes of narrative events, like
“moving a generic object”, “formulate a need”, “having a negative
attitude towards someone”, “be present somewhere”, etc., see also
Section 1 above. In contrast to the traditional ternary (name-
attribute-value) frame-like structures used for concepts and
individuals, templates are characterized by a quaternary format
connecting together, essentially, the symbolic name of the
template, a predicate (like BEHAVE, EXIST, PRODUCE…) and
several arguments of the predicate. These last are, in turn,
differentiated through the use of a set of named relations, the roles
(like SUBJ(ect), OBJ(ect), SOURCE…). If we denote with

Li the generic symbolic label identifying a given template, with Pj
the predicate, with Rk the generic role and with ak the correspond-
ing argument, the template data structures have then the following
format:

(Li (Pj (R1 a1) (R2 a2) … (Rn an))) . (1)

Templates are structured into an inheritance hierarchy,
H_TEMP(lates), which corresponds to a new sort of ontology, an
‘ontology of events’.

The instances (called ‘predicative occurrences’) of the tem-
plates, i.e., the representation of specific elementary events like
“Tomorrow, I will move the wardrobe”, “Lucy was looking for a
taxi” or “The London Escort Agency provides an escort service”
are in the domain of the last component, the factual one.

Returning now to the code of Table 1, we can say that, to
represent a ‘narrative’ (in the most general meaning of this term)
like “the London Escort Agency provides an escort service” under
the form of a predicative occurrence (factual component), we must
select firstly the template (descriptive component) corresponding to
‘supply a service’, which is represented in Table 2. This template is
a specialization (see the ‘father’ code) of the particular PRODUCE
template of H_TEMP corresponding to the ‘production of
immaterial entities’. In a template, the arguments of the predicate
(the ak terms in (1)) are represented by variables with associated
constraints — which are expressed as concepts or combinations of
concepts, i.e., using the terms of the H_CLASS hierarchy. The
constituents (as SOURCE in Table 2) included in square brackets
are optional; the constituents marked as ‘�’ are forbidden, see the
BEN(e)F(iciary) role (a different template, of the MOVE
type, is used in NKRL to represent the explicit transfer of a service
to an individual or a social body).

When deriving a predicative occurrence, like c1 in Table 1,
from a template, the role fillers in this occurrence must conform to
the constraints of the father-template. For example, in occurrence
c1, london_escort_agency is an individual, instance
of the concept company_ that is, in turn, a specialization
of the concept human_being_or_social_body;
escort_service_1 is an individual instance of es-
cort_service, a specialization of service_ (a specific term
of social_activity), etc. Note that, in Table 1, the filler of
the SUBJ(ect) role is a ‘complex’ one (expansion): the
SPECIF(ication) operator is used here to introduce further
details (“The London Escort Agency is a sort of United Kingdom
escort agency”) about the main constituent of the filler, see next
Section. The ‘location variables’ like var2 and var5 in Table 2,
and their corresponding instances, see london_uk in Table 1, are
linked with the fillers (the arguments of the predicate) by using the
colon (‘:’) operator.

We can note a last, important point. The (about 200) templates
that make up actually the H_TEMP hierarchy — the ‘catalogue’ of
NKRL templates — are permanent and fully defined. We can say
that these templates are part and parcel of the definition of the
language. This approach is particularly advantageous for practical
applications because it implies that: i) a system-builder does not
have to create himself the structures needed to describe the events
proper to a large class of Web narratives; ii) it becomes easier to
secure the reproduction or the sharing of previous results.
Moreover, when needed, it is easy to derive new templates from
the existing ones. If they prove to be sufficiently general, they are

then added to the ‘catalogue’. H_TEMP is then a continuously
growing structure.

Table2. Deriving an occurrence from a template

name : Produce:Services
father : Produce:ImmaterialEntities
position : 6.111
NL description : ‘Production of Services’

PRODUCE SUBJ var1: [(var2)]
 OBJ var3

 [SOURCE var4: [(var5)]]
 �(BENF)
 [MODAL var6]
 [TOPIC var7]
 [CONTEXT var8]
 { [modulators], �abs }

var1 = <human_being_or_social_body>
var3 = <service_>
var4 = <human_being_or_social_body>
var6 = <action_name>
var7 = <sortal_concept>
var8 = <event_> | <action_name>
var2, var5 = <physical_location>

3 ADVANCED FEATURES OF THE NKRL
LANGUAGE

The basic NKRL tools are enhanced by the use of two additional
mechanisms:
� the AECS ‘sub-language’ [10] that allows the construction of

complex (structured) predicate arguments called ‘expansions’;
�� the second order tools (binding structures and completive

construction) [11] used to represent the ‘connectivity phenom-
ena’ (logico-semantic links) that, in a narrative situation, can
exist between single narrative fragments.
Table 3 translates this fragment of Web news story: “This

morning, the spokesman said in a newspaper interview that,
yesterday, his company has bought three factories abroad”.
today_ and yesterday_ are two fictitious individuals
introduced here, for simplicity’s sake, in place of the real dates
characterizing c2 and c3, see [11] on the NKRL coding of
temporal information.

The operator SPECIF(ication) is one of the four operators
that make up the AECS sub-language: the disjunctive (ALTERNa-
tive = A), distributive (ENUMeration = E), collective
(COORDination = C), and attributive operator (SPECIFica-
tion = S).

The meaning of ALTERN is self-evident. The SPECIF lists,
with syntax (SPECIF ei p1 … pn), are used to represent some of
the properties pi that can be asserted about the first argument ei,
concept or individual, of the operator, e.g., human_being_1 and
spokesman_ in occurrence c2 of Table 3. In a COORD list, all
the elements of the expansions take part — necessarily together —
in the particular relationship with the predicate defined by the role
to be filled. As an example, we can imagine a situation where the
spokesman of Table 3 has transmitted his information to two
different newspapers, newspaper_1 and newspaper_2, the
BEN(e)F(iciaries). If the two newspapers have assisted

together to the interview, i.e., if they have received the information
together, then the BENF slot of c2 in Table 3 will be filled with:
(COORD newspaper_1 newspaper_2). On the contrary, if
the information were received separately — which corresponds, in
practice, to a situation where the two newspapers have taken part in
two different interviews — then the BENF filler would have been:
(ENUM newspaper_1 newspaper_2). The AECS operators
and their arguments cannot be mixed together freely, see the
‘priority rule’ in [10].

Table3. An example of completive construction

c2) MOVE SUBJ (SPECIF human_being_1 (SPECIF
 spokesman_ company_1))

 OBJ #c3
 BENF newspaper_1
 MODAL interview_
 date-1: today_
 date-2:

c3) PRODUCE
 SUBJ company_1

 OBJ (SPECIF purchase_1 (SPECIF factory_99
 (SPECIF cardinality_ 3))): (abroad_)

 date-1: yesterday_
 date-2:

[factory_99
 InstanceOf: factory_
 HasMember: 3]

The last element of Table 3 supplies an example of ‘enumera-
tive’ data structure, see Section 2, explicitly associated with the
individual factory_99 according to the rules for coding ‘plural
situations’ in NKRL [10]. The non-empty HasMember slot in this
structure makes it clear that the individual factory_99, as
mentioned in c3, is referring in reality to several instances of
factory_: in Table 3 we have supposed, in fact, that the three
factories were not sufficiently important in the context of the story
to justify their explicit representation as specific individuals.

In coding narrative information, one of the most difficult
problems consists in being able to deal with the ‘connectivity
phenomena’ like causality, goal, indirect speech, co-ordination and
subordination, etc. — in short, all those phenomena that, in a
sequence of statements, cause the global meaning to go beyond the
simple addition of the information conveyed by each single
statement. In NKRL, this is dealt with using second order
structures obtained through a sort of reification of the predicative
occurrences.

A very simple example of second order structure is given by
the so-called ‘completive construction’ that consists in accepting as
filler of a role in a predicative occurrence the symbolic label
(reification) of another predicative occurrence. For example, the
MOVE template at the origin of c2 in Table 3 is systematically used
to translate any sort of explicit or implicit transmission of an
information (“The spokesman said…”). In this example of
completive construction, the filler of the OBJ(ect) slot in the
occurrence (here, c2) which instantiates the ‘transmission’
template is a symbolic label (here, c3) that refers to the occurrence
bearing the informational content to be spread out (“ …the
company has bought three factories abroad”).

Table 4 corresponds now to a narrative information that can be
rendered in natural language as: “We notice today, 10 June 1998,
that British Telecom will offer its customers a pay-as-you-go
(payg) Internet service”.

To translate the general idea of ‘acting to obtain a given result’,
we then use:
• A predicative occurrence (c5 in Table 4), instance of a template

pertaining to the ‘focusing on a result’ sub-tree of the BEHAVE
branch of H_TEMP. This occurrence is used to express the
‘acting’ component, i.e., it allows us to identify the
SUBJ(ect) of the action, the temporal co-ordinates, possibly
the MODAL(ity) or the instigator (SOURCE), etc.

• A second predicative occurrence, c6 in Table 4, which is used
to express the ‘intended result’ component. This second
occurrence, which happens ‘in the future’ with respect to the
previous one (BEHAVE), is marked as hypothetical, i.e., it is
always characterized by the presence of an uncertainty validity
attribute, code ‘*’. Expressions like after-10-june-1998
are concretely rendered as date ranges, see [11].

• A ‘binding occurrence’, c4 in Table 4, linking together the
previous occurrences and labeled with GOAL, an operator
pertaining to the taxonomy of causality of NKRL [11].

Table 4. An example of binding occurrence

c4) (GOAL c5 c6)

c5) BEHAVE SUBJ british_telecom
 { obs }
 date1: 10-june-1998
 date2:

*c6) MOVE SUBJ british_telecom
 OBJ payg_internet_service_1
 BENF (SPECIF customer_
 british_telecom)
 date1: after-10-june-1998
 date2:

Binding structures — i.e., lists where the elements are symbolic
labels, c5 and c6 in Table 4 — are then another example of second-
order structures used to represent the connectivity phenomena. The
general schema for coding the ‘focusing on an intended result’
domain is now:

c�) (GOAL c� c�)
c�) BEHAVE SUBJ <human_being_or_social_body>
*c�) <predicative_occurrence, with any syntax>

In Table 4 ‘obs(erve)’ is, like ‘begin’ and ‘end’, a

temporal modulator, see [11]. ‘obs’ is used to assert that the event
related in the occurrence ‘holds’ at the date associated with date-
1 without, at this level, giving any detailed information about the
beginning or end of this event, which normally extends beyond the
given date. Note that the addition of a ‘ment(al)’ modulator in
the BEHAVE occurrence, c�, that introduces an ‘acting to obtain a
result’ construction should imply that no concrete initiative is
taken by the SUBJ of BEHAVE in order to fulfill the result. In this
case, the ‘result’, *c�, reflects only the wishes and desires of the
SUBJ(ect).

4 SOME REMARKS ON THE INFERENCE
PROCEDURES

 Search patterns are NKRL data structures that correspond to
partially instantiated templates and that supply the general
framework of information to be searched for, by filtering or
unification, within an NKRL knowledge base — e.g., a knowledge
base of Euforbia labels used for Web filtering.

The upper part of Table 5 is the representation of a very simple
narrative fragment: “On June 12, 1997, John and Peter were
admitted (together = COORD) to hospital”. The ‘temporal
modulator’ included in c6, begin, asserts that the date associated
with date-1 corresponds to the beginning of the state of being at
the hospital. Modulators — deontic, modal (like ment in the
previous Section), and temporal modulators like begin, obs
and end) are special codes that are added to the basic core of a
predicative occurrence to better specify its conceptual meaning, see
[10]. A simple example of search pattern, translating the query:
“Was John at the hospital in July/August 1997?” is then
represented in the lower part of Table 5. The two timestamps
associated with the pattern constitute now the ‘search interval’ that
is used to limit the search for unification to the slice of time that it
is considered appropriate to explore. In our example, this search
pattern can successfully unify occurrence c6 of Table 5: in the
absence of explicit, negative evidence, a given situation is assumed
to persist within the immediate temporal environment of the
originating event, see [11].

Table 5. An example of search pattern

c6) EXIST SUBJ (COORD john_ peter_):(hospital_1)
 { begin }
 date-1: 2-june-1997
 date-2:

(?w IS-PRED-OCCURRENCE
 :predicate EXIST
 :SUBJ john_
 :location of SUBJ hospital_
 (1-july-1997, 31-august-1997))

In the Java, XML/RDF-compatible version of NKRL [15], a

specific FUM (Filtering Unification) Module deals with search
patterns. Unification is executed taking into account, amongst
other things, the fact that a ‘generic concept’ included in the search
pattern can unify one of its ‘specific concepts’ — or the instances
(individuals) of a specific concept — included in a corresponding
position of the occurrence. ‘Generic’ and ‘specific’ refer,
obviously, to the structure of H_CLASS.

The inference level supplied by FUM is only a first step
towards the set up of complex NKRL reasoning strategies, like
‘transformations’ and ‘hypotheses’, which require the use of
inference engines having FUM as their inner core, see [14].

5 CONCLUSION
In this paper, we have introduced some properties of NKRL
(Narrative Knowledge Representation Language), a conceptual
modeling formalism used for high-level annotation purposes that
takes into account, in particular, the semantic characteristics of
those ‘narratives’ that represent a very large percentage of the

global Web information. NKRL is characterized by the use of
several representational principles (concepts under the form of
frames, templates, second order binding structures etc.) and it
implies the use of several high-level inference tools.

REFERENCES
[1] Kahan, J., Koivunen, M.-R., Prud’Hommeaux, E., and

Swick, R., Annotea: An Open RDEF Infrastructure for
Shared Web annotations. In: Proc. of WWW10. New York,
ACM Press, 2001.

[2] Hillmann, D., Using Dublin Core. Dublin Core Metadata
Initiative, 2001 (http://dublincore.org/documents/2001/04/
12/usageguide/).

[3] Dublin Core Qualifiers (DCMI Recommendation), 2000
(http://dublincore.org/documents/dcmes-qualifiers/).

[4] Zarri, G.P., Metadata, a ‘Semantic’ Approach. In: Database
and Expert Systems Applications – Proc. of DEXA’99.
Springer-Verlag, Berlin, 1999.

[5] Lassila, O., Swick, R.R., eds., Resource Description
Framework (RDF) Model and Syntax Specification. W3C,
1999 (http://www.w3.org/TR/REC-rdf-syntax/).

[6] Brickley, D., Guha, R.V., eds., Resource Description
Framework (RDF) Schema Specification. W3C, 1999
(http://www.w3.org/TR/WD-rdf-schema/).

[7] Hendler, J., and McGuinness, D.L., The DARPA Agent
Markup Language, IEEE Intelligent Systems 15(6) (2000)
72-73.

[8] Fensel, D., et al., OIL in a Nutshell. In: Knowledge
Acquisition, Modeling, and Management – Proc. of the
European Knowledge Acquisition Conference, EKAW’2000.
Springer-Verlag, Berlin, 2000.

[9] Heflin, J., Hendler, J., and Luke, S., Coping with Changing
Ontologies in a Distributed Environment. In: Proc. of the
AAAI-99 Workshop on Ontology Management. AAAI, Menlo
Park (CA), 1999.

[10] Zarri, G.P., NKRL, a Knowledge Representation Tool for
Encoding the ‘Meaning’ of Complex Narrative Texts, Natu-
ral Language Engineering 3 (1997) 231-253.

[11] Zarri, G.P., Representation of Temporal Knowledge in
Events: The Formalism, and Its Potential for Legal Narra-
tives, Information & Communications Technology Law 7
(1998) 213-241.

[12] Zarri, G.P., Knowledge Acquisition from Complex Narrative
Texts Using the NKRL Technology. In: Proc. of the 9th Banff
Knowledge Acquisition for Knowledge-Based Systems
Workshop. Dept. of CS of the University, Calgary, 1995.

[13] McNaught, J., et al., Integrated Document and Knowledge
Management for the Knowledge-Based Enterprise. In: Proc.
of PAKeM 2000: Practical Applications of Knowledge
Management Conference. The Practical Applications Com-
pany, Blackpool, 2000.

[14] Zarri, G.P., A Knowledge Engineering Approach to Deal
with ‘Narrative’ Multimedia Documents. In: Perspective of
System Informatics – Proc. of the Andrei Ershov 4th Interna-
tional Conference. Springer-Verlag, Berlin, 2001.

[15] Zarri, G.P., A Conceptual Model for Capturing and Reusing
Knowledge in Business-Oriented Domains. In: Industrial
Knowledge Management: A Micro-level Approach. Springer-
Verlag, London, 2000.

	1 INTRODUCTION
	Table 1. A (very simple) example of NKRL code
	Table2. Deriving an occurrence from a template
	Table3. An example of completive construction
	Table 5. An example of search pattern
	
	
	5 CONCLUSION

	REFERENCES

