
1 Abstract

In this article an approach to the problem of associations
of documents with a knowledge base is demonstrated in a
real world application. It is based on combination of
annotating documents with concepts from a knowledge
base and grouping documents together into clusters. Our
knowledge base is an ontology provided by a dedicated
ontology server.

2 Introduction

WWW is slightly becoming the most important
communication medium in a last time. There are many
reasons for this, but the fact is that most people access
information on Internet using web services. Usually,
WWW provides one-way communication from publisher
to user. In this case we meet a problem of huge amount of
unstructured information when it is not easy to find
relevant document. This is well known problem for
which many techniques are being developing like
intelligent search engines or ambitious Semantic Web
initiative.

However, WWW can be also successfully used in two-
way communication between two sides. Such a
communication involves discussion, polling, chat,
predefined reports, questionnaires, query systems etc.,
and of course, the classical publishing. Here the problem
of too much information arises again, but new
requirement appears in addition. We don’t only want to
be lost in available information space but also want from
the system to control our communication, make advises,
select or notify the right agent (usually person) on the
other side, so that the communication was efficient. The
need of user friendly and intelligent communication
environment is very important point if we want people to
regularly visit our site or even to be able to use it.

Webocrat is a web based system supporting direct
participation of citizens in democratic processes, which is
being developed within Webocracy project. The project
partners are University of Technology in Košice, Slo-
vakia, University of Wolverhampton, UK, University of
Essen, Germany, JUVIER s.r.o, Slovakia, CITEC
Engineering Oy Ab, Finland, City Ward Tahanovce,
Slovakia, City Ward Furca, Slovakia, Wolverhampton
Metropolitan Borough Council, UK.

From the point of view of functionality of the system it is
possible to break down the system into several parts
and/or modules (Mach et al 2001). They can be
represented in a layered sandwich-like structure which is
depicted in Figure 1.

1 Technical University of Kosice, Dept of Cybernetics
and Artificial Intelligence

Figure 1 System structure from the point of the system’s
functionality

The central part of this structure is occupied by
a knowledge model (KM) module. This system
component contains one or more ontological domain
models providing a conceptual model of a domain. The
purpose of this component is to index all information
stored in the system in order to describe the context of
this information (in terms of domain specific concepts).
The central position symbolises that the knowledge
model is the core (heart) of the system – all parts of the
system use this module in order to deal with information
stored in the system (both for organising this information
and accessing it).

Information stored within the system has the form of
documents of different types. Since three main document
types are expected to be processed by the system,
a document space can be divided into three subspaces –
publishing space, discussion space, and opinion polling
space. These areas contain published documents expected
to be read by users, users’ contributions to discussions on
different topics of interest, and records of users’ opinions
about different issues, respectively.

Documents stored in these three document subspaces can
be inter-connected with hyper-textual links – they can
contain links to other documents – to documents stored in
the same subspace, to documents located in another
subspace, and to documents from outside of the system.
Thus, documents within the system are organised using
net-like structure. Moreover, documents located in these
subspaces should contain links to elements of a domain
model.

Since each document subspace expects different way of
manipulating with documents, three system’s modules
are dedicated to them. Web content management (WCM)
module offers means to manage the publishing space. It

An Ontology based document management
Jan Hreno1 and Robert Kende1

enables to prepare documents in order to be published
(e.g. to link them to elements of a domain model), to
publish them, and to access them after they are published.
Discussion space is managed by discussion forum (DF)
module. The module enables users to contribute to
discussions they are interested in and/or to read
contributions submitted by other users. Opinion polling
room (OPR) module represents a tool for performing
opinion polling on different topics. Users can express
their opinions in the form of polling – selecting those
alternatives they prefer.

In order to navigate among information stored in the
system in an easy and effective way, one more layer has
been added to the system. This layer is focused on
retrieving relevant information from the system in
various ways. It is represented by two modules, each
enabling easy access to the stored information in
a different way. Citizens’ information helpdesk (CIH)
module is dedicated to search. It represents a search
engine based on the indexing of stored documents. Its
purpose is to find all those documents which match user’s
requirements expressed in the form of a query.

The other module performing information retrieval is the
Reporter (REP) module. This module is dedicated to
providing information of two types. The first type
represents information in an aggregated form. It enables
to define and generate different reports concerning
information stored in the system. The other type is
focused on providing particular documents – but unlike
the CIH module it is oriented on off-line mode of
operation. It monitors content of the document space on
behalf of the user and if information the user may be
interested in appears in the system, it sends an alert to
him/her.

The upper layer of the presented functional structure of
the system is represented by a user interface. It integrates
functionality of all the modules accessible to a particular
user into one coherent portal to the system and provides
access to all functions of the system in a uniform way.

3 Using domain model in Webocrat
3.1 Annotation

To give a system some kind of intelligence, it must know
a meaning of the document - its semantics. Standard
HTML pages contain almost unstructured information
that is understandable only by humans, not by computer.
There is no way to tell the computer that this article is
about cars unless it contains word car explicitly or
semantic analysis is applied. The solution is to annotate
the document. This means that explicit information about
its meaning is attached to it whether manually or
automatically. Thus, the system can extract relevant
information from every annotated document and use it in
some intelligent task like searching. Semantic Web
initiative is based on this method. It gives proposals and
suggestions for annotating HTML pages, using special
meta-tags and XML. There is an implicit (tacit)
information about document in those tags, which is not
visible to end-user, it is only used by system. In
knowledge engineering this information is called meta-
knowledge. There are many ways how to store meta-
knowledge, it doesn’t need to be in meta-tags (it is not

technically possible with MS Word documents), but it
can be stored in special files or databases. Based on meta-
knowledge one can perform intelligent retrieval, which
gives more relevant results than pure full-text search.

Meta-knowledge can be of two types:

1. List of keywords or description in natural language.
Document is enriched with some kind of thesaurus
here. Full-text search is performed also with this part
giving more precise results.

2. Link to a concept in predefined vocabulary. This
method assumes that there exists some vocabulary
of terms or concepts used in the area of our interest.
More about this in the next section.

In our work, we concentrated our effort to annotate
electronic document (in our case any document published
in WCM system) by linking it together with other
relevant documents to relevant concepts from the
Knowledge base (in our case ontology). It is based on
grouping together relevant documents and concepts from
the ontology. Such a group of documents and concepts
we call Association. Every association has its name,
description, and some other attributes needed later for the
document retrieval. Basic idea can be seen on Figure 2.

3.2 Domain model

In the previous section there was mentioned the word
vocabulary. In the simplest case it is just a list of terms,
where each term has its own description – thesaurus.
Such a structure is not satisfactory for our purposes,
because it doesn’t reflect relations among the terms.
What we want is the model of the real world or its part.
The part of the world we are interested in is called
domain and its model is called domain model. Domain
model is based on conceptualisation. A conceptualisation
is an abstract, simplified view of the world that we wish
to represent for some purpose. It consists of concepts that
represent the objects of our interest in a real world and
relationships that hold them. To formally represent
domain model we use ontology. Ontology is an explicit
specification of a conceptualisation [1].

Domain model allows the system to perform reasoning
and thus to find relevance of a document not only on
lexical but also on semantic basis. An example of a part
of an ontology is shown in Figure 3

Knowledge
base

Document
space

Figure 2 Basic idea of the associations

Association

Figure 3 A part of sample ontology

4 Using domain model in Webocrat

The main idea behind whole Webocrat system is to treat
documents of various types that are associated with a part
of domain model – ontology. This way it is possible to
annotate discussions, chats, reports, polling or ordinary
WWW pages. By ordinary documents we mean all the
documents that are published by local authority, such as
news, announcements, reports and other documents that
could be interesting for public. When they are published,
they are annotated first, whether manually or semi-
automatically. After that they are prepared for intelligent
retrieval. When accessing information, user can make his
query consisting of words for full-text search and of
terms (concepts) used in ontology. By use of concepts in
the query it is ensured that also its hidden meaning will
be discovered. Formulation of such query also allows the
user to define his personal profile of interest in terms of
ontology. Personalised reports and newsletters can be
then automatically generated and sent to user.
Described scenario assumes that the ontology covers all
relevant parts of real life concerning to structure of public
institutions, communal matters, ecology etc. Figure 3
shows sample ontology about institutions. (This is only
testing example. Real life ontologies are being developed
in the time of writing this paper).
So we showed how classical web content can be
annotated for aforementioned one-way communication.
But knowledge about the semantics of document can play
also active role during communication. Discussions are
typical examples in Webocrat. We consider the
discussion as a thread of documents that are all annotated.
In order to enable to retrieve discussion contributions
according to their content, it is necessary to create links
to elements of a domain model when creating new
discussion. These elements will represent topics on which
the discussion will be focused. Each contribution which
will be added to this discussion later will be linked to the
same elements from the domain model in an automatic
way (contributions inherit links from their discussion).
In order to enable organising contributions within the
discussion not only according to the date and time of
submissions or authors of submissions, it is possible to
complete the contribution with a set of links. These links
can be of two types – links to elements of a domain
model and links to other contributions from within the
discussion. The former type of links enables to define the
content in more detail (not only in the sense that the
contribution is about exactly the same issues as the
discussion as a whole) – this includes not only adding

some more links to the set of links inherited from the
discussion definition but reducing this inherited set as
well. The latter type of links enable user to determine to
which existing contribution(s) he/she responds. In
addition, it is possible to enrich a contribution to some
discussion with links to documents from inside or outside
of the system, e.g. in case when the users (submitters)
refers in their contributions to those documents.
In order to read particular contributions it is necessary to
access them. User has several possibilities how to
complete this task. First of all, he/she can choose from
a list of all available discussions. Another alternative way
is to use linking of contributions to elements of a domain
model in order to create groups of contributions dealing
with the same set of issues [2].
Using links to ontology, system can suggest the
discussion on some topic when user reads document on
that topic. Or when user contributes to some discussion,
system can advise where to find more relevant
information. It would be impossible without links to
domain model. Even more, when user links his
contribution to some concepts, overriding linkage of
whole discussion, system can automatically find more
relevant discussion, if existing, and suggest it. Similarly,
if some contributions get more and more distant from
topic of original thread, administrator can be notified to
split discussion. The similarity of contributions is
measured using distances of corresponding concepts in
the ontology.
On this discussion example we showed how the domain
model can enhance communication and how classical
tools could be used more efficiently.

5 Domain model requirements

Using experiences from other projects and related work
with ontologies, we had specified some basic attributes,
which we expect our ontology will have. They was as
follows:

§ some constant types are defined e.g. integer, float,
string, date, currency

§ basic objects are classes, instances, relations

§ classes can be primitive (definition represents
necessary but not sufficient conditions) or non-
primitive (both sufficient and necessary)

§ a class can be associated with a collection of slots

§ slots with predefined semantics: documentation

§ a collection of facets can be associated with a slot

§ slot facets with predefined semantics (for classes
only): value-type, can be constant type, constant
expression (and, or, not), enumerated type, min-
cardinality, max-cardinality, range, can be constant
tuple or list of constant tuples, (not) same value as
other slot has, subset-of-values as other slot has,
documentation, default value, value

§ an instance can inherit a collection of slots

§ only one facet can be associated with a slot of an
instance:

§ value and default value of a slot can be constant or
set of constants

§ relations can be n-ary for n=1,2,3,...

§ relations are defined on basic objects

§ relations can have defined attributes: inverse-
relation - which relation is an inverse to the one,
disjoint, covered, equivalent, transitive, symmetric,
functional

§ predefined relations are: instance-of - between a
class and an instance, semantics: inheritance of slots
(values, facets), type-of - an inverse relation to
instance-of, subclass-of - between two classes,
semantics: inheritance of slots (values, facets),
superclass-of - an inverse relation to subclass-of

§ slot facet values are inherited but can be overwritten
(new value must be more constraining than the old
one)

§ multiple inheritance (from more parents) is allowed

§ special classes

o THING - represents the root of the class
hierarchy

§ every defined class is a subclass of
THING,

§ every instance is an instance of
THING

§ has slot "documentation" with value-
type STRING

o CLASS - class of all classes

o INSTANCES - class of all instances

In current state of the project we needed to offer for our
partners tool for creating and editing ontology. Because
Knowledge Module task starts in our project in future, we
had specified some other requirements for knowledge
editor:

§ it has to be flexible, to enable later
modifications in knowledge model

§ platform independence

§ it should enable importing ontologies from
other formats

Thus we dedicated to use some kind of Open Source
knowledge editor programmed in JAVA instead of
programming new one and to modify it for our purposes.
Tool, which best fitted into mostly all of our requirement
seemed to be Protégé 2000 from Stanford University.
Other knowledge editors we have tested was OntoEdit,
JOT, GEF, Apollo, SiLRI.

6 Using Protege 2000 for creating
ontologies

Protégé-2000 is the latest component-based and platform-
independent generation of the ontology editor. Two goals
have driven the design and development of Protégé-2000:

1. achieving interoperability with other knowledge-
representation systems, and

2. being an easy-to-use and configurable knowledge-
acquisition tool.

The first goal is achieved by compatibility of the
knowledge model of Protégé-2000 with OKBC (Open
Knowledge Base Connectivity). As a result, Protégé-2000
users can import ontologies from other OKBC-
compatible servers and export their ontologies to other
OKBC knowledge servers. Protégé-2000 uses the
freedom allowed by the OKBC specification to maintain
the model of structured knowledge acquisition tools and
to achieve the second design goal of being a usable and
extensible tool.
Protégé fitted almost all of our requirements for the
knowledge editor. The only one noticeable difference was
in form, how relations are represented in Protégé.
Because of freedom of the ontology specification in
Protége knowledge model, relations are not defined as
basic objects [3]. We discuss later in this article, how to
solve this lack. Other modifications we did to Protégé
were:

1. Localisation of Protégé into more languages (at this
time it is localised into Slovak version)

2. Adding ability to graphically view classes
structure (Figure 4). It will help the user easily
browse ontology in a graphical view. The graph
layout is computed automatically or can be changed
by user.

Figure 4 Graphview tab for Protégé 2000

7 Representing relations in Protégé

Because relations are not basic Protégé objects, we have
to model them. In the discussion within Protégé
community four possible solutions were proposed:

Option 1
We can use own slots. This is probably the easiest way to
go, but it is also the most restrictive one. Here the
relations are own slots on all subclasses of the class that
first specified those slots. The values of the slots are
classes that they are related to in one way or another.
Advantage:
§ Very easy to model
§ We already have all the interface and underlying

structures in Protégé for this.
Problems:

§ We can not add additional information, such as
orientation, in particular, when the value of a slot is
a list of classes and not a single class

§
Option 2 (extension of Option 1)
Use facets on own slots (own slots on own slots) to
specify orientation and other additional properties
Problem:
§ Too complicated: it is hard even to explain exactly

how things are going to work.
§
Option 3
Use template slots. Since slots are first-class objects in
Protégé (they are themselves frames) , it is easy to
express attributes of relations such as reflexivity,
transitivity, etc, as well as a hierarchy of relations (the
same is true for Option 1).
Advantage:
§ Can use advantages of inheritance more extensively.
§ Own slots on classes are harder to explain and

understand template slots are easier.
Problems:
§ It is harder to express additional constraints on

relations, such as orientation.
§
Option 4
Relations are themselves classes. We can go one step
further and reify relations as classes themselves.
Relations between particular classes are instances of
these Relation classes
Advantages:
§ Can easily encode meta-information on relations:

Reflexive, Transitive, Inverse. All of these
properties are own slots on a Relation class

§ Relations can have additional slots, such as
orientation, that get instantiated when we define
relations between classes.

The first advantage also carries over to most of the earlier
options with the exception that the additional information
(relation attributes, hierarchy) would be on slots and not
classes, which is often harder to understand and
manipulate.
Problem:
§ Specialized browsing that "jumps over" a level to

view hierarchies of entities based on each relation
will be needed (for example, view the part-of
hierarchy).

All of these four options can be combined. Price for this
is then loose of the uniform approach to describing
properties of relations such as transitivity, inverses and so
on.
Option 4 looks like the most suitable one, but it would be
uncomfortable for user to define special class for any
possible type of relation. Since real applications are not
developed yet, we cannot predicate the number of
relations needed.
We decided for option 3. The EXTENDED_SLOT class
has been defined with new facets TRANSITIVE and
DISJOINT. Other attributes can be easily added at any
time. This EXTENDED_SLOT class is set to be default,
so that every new slot that is created on any class is a
subclass of EXTENDED_SLOT and thus it automatically
contains required attributes TRANSITIVE and
DISJOINT. Relation between two objects is modelled as
a slot, where one class of relation contains that slot and
second class is a value of that slot.

Protégé 2000 does not treat DISJOINT or TRANSITIVE
facets in some special way. They are only used by
reasoning mechanism which will be developed later and
will not be a part of Protégé itself.

8 Acknowledgements

This work is done within the Webocracy project “Web
Technologies Supporting Direct Participation in
Democratic Processes”, which is supported by European
Commission DG INFSO under the IST program, contract
no. IST-1999-20364, and within the VEGA project
1/8131/01 ”Knowledge Technologies for Information
Acquisition and Retrieval” of Scientific Grant Agency of
Ministry of Education of the Slovak Republic.

The content of this publication is the sole responsibility
of the authors, and in no way represents the view of the
European Commission or its services.

9 References

[1] Gruber, T., R. (1993): A translation approach to
portable ontologies. Knowledge Acquisition, 5(2):199-
220.
[2] Mach, M.; Dridi, F.; Furdik, K. (2001): Webocrat
System Architecture and Functionality. Webocracy report
2.4.
[3] Noy, N., F.; Fergerson, R., W.; Musen, M., A. (2000):
The knowledge model of Protégé-2000: combining
interoperability and flexibility. International Conference
on Knowledge Engineering and Knowledge Management
(EKAW '2000), Juan-les-Pins, France.
[4] Sabol, T.; Jackson, M.; Dridi, F.; Palola, I.; Novacek,
E.; Cizmarik, T.; Thompson, P. (2001): Dissemination
and Use Plan. Webocracy report 15.2.1.

