
Interactive Authoring Tool for Extensible MPEG-4

Textual Format (XMT)
Kyungae Cha1 and Sangwook Kim2

Abstract. MPEG-4 is an ISO/IEC standard which defines a
multimedia system for communicating interactive scenes
containing various types of media objects. The Extensible
MPEG-4 Textual format (XMT) framework provides
interoperability between existing practices such as the
Extensible 3D (X3D) and MPEG-4. This paper introduces an
XMT authoring tool that supports a visual environment for
building a spatio-temporal scenario of media objects comprising
a multimedia scene. The authoring tool provides a
comprehensive set of facilitative editing tools for composing
multimedia scene, as well as tools for automatic generation of
XMT documents and MPEG-4 contents. This paper also
describes the functionality of the developed system and shows
an example of its use.

1 INTRODUCTION
MPEG-4, one of the leading streaming media formats, is an
ISO/IEC standard which defines a multimedia system for
communicating interactive scenes with various types of media
objects. In MPEG-4, a scene is accompanied with the
description specifying how the objects should be combined in
time and space in order to form the scene intended by the author.

The scene description is coded in a binary format called
Binary Format for Scenes or BIFS[1,4,7,8,10,11], which is built
on several concepts from the Virtual Reality Modeling
Language(VRML)[5]. 12 This binary form is suitable for low-
overhead transmission so that BIFS basically provides an
efficient application for the sender and the receiver[1,7].

On the other hand, the Extensible MPEG-4 Textual format
(XMT) is a framework for representing MPEG-4 scene
description using a textual syntax.

This paper presents an XMT document authoring tool that
enables visual composition of an MPEG-4 scene and generates
the corresponding XMT document and MEPG-4 contents. XMT
is designed to provide a high-level abstraction for MPEG-4
functionalities and an easy interoperability between existing

1 Department of Computer Science, Kyungpook National University,
Daegu, Korea, email : chaka@woorisol.knu.ac.kr

2 Department of Computer Science, Kyungpook National University,
Daegu, Korea, email : swkim@cs.knu.ac.kr

practices of content authors, such as the Extensible 3D (X3D)
being developed by the Web3D Consortium and the
Synchronized Multimedia Integration Language (SMIL) from
the W3C consortium[7,11]. Thus authors can get multimedia
contents, which are exchangeable and interoperable with X3D
and SMIL, using the XMT authoring tool.

In the authoring system, authors can visually make a spatial
arrangement of media objects and compose a temporal behavior
of objects with timeline approach. Authors can also modify the
material characteristics of each object using interactive and
visual tools. Moreover, the visual scene is automatically
transformed into an XMT-α and XMT-Ω format document.

In section 2, XMT formats are briefly discussed. In section 3,
the various functions of the XMT authoring tool are described.
The implementation of the proposed system is then presented in
section 4. Finally section 5 gives conclusion and presents our
future plans.

2 XMT-Α AND XMT-Ω FORMATS
The XMT framework consists of two levels of textual syntax
and semantics: XMT-α and XMT-Ω formats[7,10].

XMT-α is an XML-based version of MPEG-4 content which
provides a straightforward, one-to-one mapping between the
textual and the binary formats of an MPEG-4 scene description.
XMT-α also provides interoperability with X3D[5], which
improves upon VRML with new features such as flexible XML
encoding and a modularization approach[6]. It contains a subset
of the X3D as well as the X3D-like representations of MPEG-4
features such as Object Descriptors(OD), BIFS update
commands and 2D composition[7].

XMT-Ω is a high-level abstraction of MPEG-4 features based
on the SMIL[9]. It specifies objects and their relationships in
terms of the author’s intention rather than coded nodes and route
mechanism in BIFS. In the respect of reusing SMIL, XMT-Ω
defines a subset of modules used in SMIL whose semantics are
compatible. Moreover XMT-Ω format can be parsed and played
directly by a W3C SMIL player, preprocessed to the
corresponding X3D nodes and played by a VRML player. It
may also be compiled to an MPEG-4 representation such as
mp4 which can then be played by an MPEG-4 player. Figure 1
shows the interoperability of XMT between SMIL player,
VRML player and MPEG-4 player.

X M T
P arse

C om p ile

S M IL
P la ye r

V R M L
B row s er

M P E G -4
R ep res en ta tion
(e.g m p 4 file)

M P E G -4
P la ye r

Figure 1. The interoperability of XMT

3 XMT AUTHORING SYSTEM
This section shows the XMT document authoring environment
of our system and the authoring process in creating an MPEG-4
scene and an XMT document. The main functionalities of the
system are also described.

3.1 System Structure

The following figure shows the system structure and every
component of the XMT authoring tool.

Graphical User Interface

Scene composition tree

Media
data

XMT_Ω
Generator

XMT_α
Generator

Scene composition tree Manager

XMT_Ω
document

XMT_α
document

XMT documents

Media
Decoders

Parser

Figure 2. System Structure

Authors compose an MPEG-4 scene with various editing
tools provided in the graphical user interface. Following the
authoring process, the scene composition tree, which represents
the visual scene as internal data structure, is built and modified.

Using the scene composition tree, the XMT-α or XMT-Ω
generator makes a corresponding XMT format document. At
this time the author can choose the output format that he/she
wants. The XMT format files can be parsed and then displayed
in the user interface as a visual scene. The author can also
modify the visual scene and recreate the XMT file.

3.2 Graphical User Interface
The graphical user interface provides a set of drawing tools and
editing tools for various media types such as JPEG image,
MPEG-1 video, G.723 audio and graphical objects (Rectangle,

Circle, and others). These tools enable authors to compose
audio-visual scenes with direct manipulation technique and see
them immediately. Figure 3 presents an overview of the
graphical user interface and a simple example of a scene.

Authors first select from the toolbar one of the tools they
want to add in the scene and then draw the selected object. For
image objects, the object is drawn in the interface window. For
video objects, the first frame of the video is drawn in the
interface window.

Whenever a new media object is added in the scene, the
system automatically assigns the object ID, start time and end
time of the object with default value. The bottom portion of
figure 3 shows the timeline window where the timelines of
objects are arranged. The layer of timeline represents the
drawing order of corresponding objects, which is determined
following the object addition sequence. Here the timeline
window shows the initial state, i.e. no modification is occurred.

Figure 3. Graphical user interface

3.2.1 Spatial composition
In the user interface, each object participated in a scene is
contained in a rectangular tracker so that they are treated as
individual objects. Thus the author can move, resize or remove
the objects directly for composing a spatial arrangement of the
scene.

The spatial attributes of an object can be specified in terms of
the spatial position of the object’s bounding rectangle, which is
represented as a rectangular tracker containing the object in the
user interface. The spatial position of bounding rectangle of an
object (i.e. the spatial attribute of the object) is specified as the
form of (x,y,h,w), where w denotes the width of the bounding
rectangle; h denotes the height, while x and y denote the
coordinates of the center of the rectangle with referring to the
center of whole rectangle of the presentation as origin of
coordinate system.

The author can also apply material characteristics such as
color, transparency, and border type using editing tools. These
material properties of an object are specified as object property

node in the internal form of our authoring system. The spatial
and material attributes of each object are automatically specified
by the system from the visual scene.

3.2.2 Interactive scenario composition
In the presentation of an MPEG-4 scene, user interaction is
possible within the set in the scene description. Assume that the
author designs the following scenario for the scene in figure 3.

Example 1. If an end user clicks the circle object, the fill color
of the rectangle object will be changed through the gradient
from red to green.

Here, the circle object and the rectangle object refer to the
source object and the destination object respectively. To make
an interactive scenario, the event type(e.g. user’s click), the
source and destination object and the responding action type(e.g.
change fill color), etc., should be specified. We denote the
interactive information as event object which is represented as a
quadruple (destination object ID, event type, action type, key
values). The key values mean an array of values to be used to
change the parameters of the action type field. The event object
for the above example is specified as (3000, click, fill color,
((1.00 0.00 0.00),(0.00 0.50 0.00)), if the rectangle object as the
destination has the number 3000 for its object ID.

We provide a dialog based interface in order to facilitate the
interactive scenario authoring process. The event object
specification is done by selecting an event type and attributes of
the destination object that the author wants the event type to
change, without the need for an extra description.

3.2.3 Temporal scenario composition
For composing temporal scenario of objects, the author can
modify the timeline of each object, i.e., the author directly
modifies the length and position of timelines in the timeline
window. Moreover the author can declare the temporal
relationships among objects, which are maintained through the
authoring process. Consider the following scenario for the scene
in figure 3.

Example 2. The text object is rendered at end of the image
object.

The scenario can be specified if the author modifies the
timelines of the two objects like figure 4 and he/she declares the
two objects as a sequence group which maintains the objects
play sequentially.

text
image

Sequence group

time

Figure 4. An example of timeline modification and temporal
relationship declaration

The timeline of the image object is automatically updated to

maintain the relationship each time the duration of the text
object is modified.

 3.3 Scene Composition Tree
The resulting graphical user interface is represented as a scene
composition tree designed to organize the composed scene into

a hierarchical structural form. Whenever a new object is created
in the user interface, the corresponding object node is also
created.

The object node has its corresponding object type, object ID
and values specifying spatio-temporal attributes. The scene
composition tree is modified through the attachment of the new
object node. At the same time, the property node of the object is
attached as a child node of the new object node. The property
node as well as the tree structure can be changed throughout the
authoring process. The tree structure can be changed while
objects are added, replaced, or removed. If the author creates
event information, an event object which contains destination
object ID, event type and values of transition status is created
and attached to the source object node as its child node. Thus an
event object does not specify its source object ID.

3.4 Generation of XMT Document
The resulting graphical user interface is represented as the scene
composition tree. From the scene composition tree, both of the
XMT-α and XMT-Ω document corresponding to the visual
scene are directly generated.

3.4.1 XMT-α generation
In XMT-α format, each object is represented as an element
similar to the object node described in BIFS. Thus, the XMT-α
format document can be generated following the BIFS
generation rules.

The XMT-α generator searches the scene composition tree
until it meets the audio and visual object node. It then creates
the corresponding object element of the XMT-α document using
spatio-temporal attributes of the object node. With the value
specified in the object’s property node in the scene composition
tree, the XMT-α generator can describe geometric attributes
such as position, size and shape of the object or material
attributes such as fill color and border style.

Figure 5 and Figure 6 show a portion of XMT-α and BIFS
text for the scene of example 1 respectively. In this case, when
the XMT-α generator finds the circle object node in the scene
composition tree, it also meets the circle object’s property node
as well as its event node at the object node’s child. Using the
information written in the event node, the route and sensor
nodes can be described.

3.4.2 XMT-Ω generation
XMT-Ω syntax and semantics have been designed using
extensible media (xMedia) objects as basic building blocks[7].

The elements within XMT-Ω abstract the geometry and the
behavior of the corresponding object in the visual scene. Thus,
if an object is associated with an event object node, its behavior
should be defined by a set of animation and timing element.

Figure 7 shows the XMT-Ω format document corresponding
the XMT-α format in figure 5. The rectangle object is defined
with the elements describing the object’s spatial and material
attributes as well as the animate elements describing a change of
fill color which responds to a click on the circle object.

Likewise figure 8 shows a portion of XMT-Ω document

specifying the scenario of example 2. It represents a temporal
relationship and synchronization module expression using SMIL
timing constraints. A ‘seq’ container defines a sequence of
elements in which elements play one after the other. The text
object starts one second after the presentation begins and 19
seconds later disappears. When the text object disappears, the
image object whose temporal duration is 23 seconds starts.
Figure 9 represents the BIFS text corresponding XMT-Ω in
figure 8.

<Transform2D DEF="Transform2D3000"
translation="-163.00 17.00" scale="1.00 1.00"
rotationAngle="0.00" >

<children>
<Shape>
<Appearance>

<Material2D DEF="Material2D3000"
emissiveColor="0.75 0.75 0.75" …>

<LineProperties DEF="LineProperties3000"
…

</Material2D>
</Appearance>

 <Rectangle DEF="Rectangle3000" USE="Group0"
size="162.00 110.00">

</Rectangle>
</Shape>
<TimeSensor DEF="TimeSI3000I0" cycleInterval="3.00"

enabled="FALSE" loop="TRUE"
startTime="0.00" stopTime="-1.00" >

</TimeSensor>
<ColorInterpolator DEF="ColorInter3000I0"

key="0.00 1.00"
keyValue="0.00 0.50 0.00 1.00 0.00 0.00 " >

</ColorInterpolator>
…
<Circle DEF="Circle3001" USE="Group0"

radius="57.00">
…

<TouchSensor DEF="TouchS3001" enabled="TRUE" >
</TouchSensor>

 …
<Route fromNode="TouchS3001" fromField="isActive"

toNode="TimeSI3000I0" toField="enabled" />
<Route fromNode="TimeSI3000I0"

fromField="fraction_changed"
toNode="ColorInter3000I0" toField="set_fraction" />

<Route fromNode="ColorInter3000I0"
fromField="value_changed"
toNode="Material2D3000"
toField="emissiveColor" />

DEF Transform2D3000 Transform2D {
translation -163.00 17.00
scale 1.00 1.00
rotationAngle 0.00
children [

Shape {
 appearance Appearance {
 material DEF Material2D3000 Material2D {
 emissiveColor 0.75 0.75 0.75
 filled TRUE

 transparency -1.00
 . . .
 geometry Rectangle {
 size 162.00 110.00 }
 DEF TimeSI3000I0 TimeSensor {
 cycleInterval 3.00
 enabled FALSE
 loop TRUE
 startTime 0.00
 stopTime -1.00 }
 DEF ColorInter3000I0 ColorInterpolator {
 key [

0.00
 1.00]
 keyValue [
 0.00 0.50 0.00
 1.00 0.00 0.00]

. . .
 geometry Circle { radius 57.00 }
 DEF TouchS3001 TouchSensor {
 enabled TRUE }

. . .
ROUTE TouchS3001.isActive TO TimeSI3000I0.enabled
ROUTE TimeSI3000I0.fraction_changed TO

ColorInter3000I0.set_fraction
ROUTE ColorInter3000I0.value_changed TO

Material2D3000.emissiveColor

Figure 5. A portion of XMT-α for the example 1

Figure 6. A portion of BIFS text corresponding the XMT-α in figure 5

<rectangle ID="rectangle_3000" parent="group_0"
size="162.00 110.00">

<transformation ID="transformation_3000" translation="-163
17" scale="1.00 1.00"></transformation>

<material ID="material_3000" color="#c0c0c0"
transparency="-1.00" filled="true" >

<animateColor attributeName="color"
dur="1s" begin="circle_3001.click"

values="#000000; #010000" keyTimes="0.00; 1.0" />
</material>
</rectangle>
<circle ID="circle_3001" parent="group_0" radius="57.00">
<transformation ID="transformation_3001"

…
<material ID="material_3001" color="#ffd700"

Figure 7. A portion of XMT-Ω corresponding XMT-α in figure 5

<seq begin="1s" >

<string ID="string_3002" parent="group_0"
textLines="MPEG-4" dur="19s">

<fontStyle ID="fontStyle_3002" family="Arial"
horizontal="true" justify="BEGIN"
language="(null)" leftToRight="true"

size="-21.00" spacing="34.00" style="PLAIN"
topToBottom="true">

</fontStyle>
<transformation ID="transformation_3002"

 translation="100 91" scale="1.00 1.00">
</transformation>
<material ID="material_3002" color="#ffff00"

 transparency="-1.00" filled="true" >
</material>

</string>

<image ID="image_1000" parent="group_0"
src="D:\sample_image.gif" dur="23s">

<transformation ID="transformation_1000"
translation="113 -25" scale="1.00 1.00">…

</seq>

Figure 8. A portion of XMT-Ω for the example 2

DEF Switch3002 Switch {

whichChoice 1
 choice [

 DEF Transform2D3002 Transform2D {
. . .

Shape {
 appearance Appearance {

 material DEF Material2D3002 Material2D
{
 emissiveColor 1.00 1.00 0.00
 filled TRUE
 transparency -1.00

. . .
 geometry Text { string ["MPEG-4"]
 fontStyle DEF FontStyle3002

FontStyle {
 family "Arial "

 horizontal TRUE
 justify "BEGIN"
 language "(null)"
 leftToRight TRUE
 size -21.00
 spacing 34.00
 style "PLAIN"
 topToBottom TRUE . . .
DEF Switch1000 Switch {

whichChoice 1
 choice [
 DEF Transform2D1000 Transform2D {

. . .
appearance Appearance {

 texture ImageTexture {
 url 1
 repeatS TRUE
 repeatT TRUE
 } geometry Bitmap {
 . . .
AT 1000 { REPLACE Switch3002.whichChoice BY 0 }
AT 20000 { REPLACE Switch3002.whichChoice BY 1 }
AT 20000 { REPLACE Switch1000.whichChoice BY 0 }
AT 43000 { REPLACE Switch1000.whichChoice BY 1 }

Figure 9. A portion of BIFS text corresponding XMT-Ω in figure 8

All the XMT and BIFS text which are shown the above, are

generated automatically from the visual scene.

3.5 XMT Parsing
The XMT framework is based on XML, thus valid XMT
element nesting can be defined in the Document Type
Declaration (DTD) and parsed using XML parser. XML4C[3] is
used as a validating XML parser written in a portable subset of
C++ for parsing XMT documents.

A valid XMT document can be transformed as a form of
scene composition tree using DOM API [2]. DOM API provides
a tree-based API to compile an XML document into an internal
tree structure and navigate the tree.

Media elements described within the parsed XMT document
are represented as object nodes with their corresponding
property nodes. Thus the scene described in the XMT document
can be visualized by rendering the corresponding media object
nodes using the scene composition tree. The visualized scene
can also be modified and rewritten as XMT document.

4 IMPLEMENTATION
The proposed XMT authoring tool is developed using C++
under the Windows 95/98/NT platform. The system supports the
Complete2D profile for MPEG-4 contents.

5 CONCLUSION
The XMT document authoring tool provides visual and direct
manipulating authoring technique. In the system, common users
can create an MPEG-4 scene and its XMT format document
although they are not familiar with XMT syntax and semantics.

Moreover, the visual scene is automatically transformed into
XMT-α or XMT-Ω document without syntax error. Likewise, a
sophisticated scene, which may be very difficult to create using
text description, can be generated. In the future, it is necessary
to support more types of media data and scene nodes such as 3D
objects and a more facilitative authoring interface.

REFERENCES
[1] A. Puri and A. Eleftheriadis, “MPEG-4: An Object-Based

Multimedia Coding Standard Supporting Mobile Applications,”
Mobile Networks and Applications, vol. 3, pp. 5–32, 1998.

[2] Document Object Model (DOM) Level 1 Specification, W3C
Recommendation, October, 1998. http://www.w3.org/TR/REC-
DOM-Level-1/

[3] http://www.alphaworks.ibm.com/tech/xml4c/
[4] ISO/IEC 14496-1:1999 Information technology - Coding of audio-

visual objects - Part 1: Systems ISO/IEC JTC1/SC29/WG11 N2501,
1999.

[5] ISO/ICE FDIS 14772:200x, Information Technology-Computer
graphics and image processing--The Virtual Reality Modeling
Language (VRML)

[6] ISO/IEC xxxxx:200x, X3D, Information technology -- Computer
graphics and image processing -- X3D.

[7] M. Kim, S. Wood, L.T. Cheok, “Extensible MPEG-4 textual format
(XMT),” in Proc. on ACM multimedia 2000 workshops, Los
Angeles, California, United States, 2000, pp. 71–74.

[8] S. Battista, F. Casalino and C. Lande, “MPEG-4: A Multimedia
Standard for the Third Millennium, Part 1,” IEEE Multimedia, vol. 6,
no. 4, pp.74–83, 1999.

[9] Synchronized Multimedia Integration Language (SMIL) 1.0
Specification, W3C Recommendation, June, 1998.
http://www.w3.org/TR/1998/REC-smil-19980615

[10]WG11(MPEG), MPEG-4 Overview (V.16 La Baule Version)
document, ISO/IEC JTC1/SC29/WG11 N3747, October 2000.

[11]WG11(MPEG), MPEG-4 Overview (V.18 Singapore Version)
document, ISO/IEC JTC1/SC29/WG11 N4030, March 2001.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.alphaworks.ibm.com/tech/xml4c/
http://www.w3.org/TR/1998/REC-smil-19980615

