
Consolidation of Interacting BPEL Process Models with
Fault Handlers

Sebastian Wagner, Oliver Kopp, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
{wagnerse,kopp,leymann}@iaas.uni-stuttgart.de

Abstract The interaction behavior between processes of organizations and their
suppliers can be modeled by using choreographies. When an organization decides
to gain more control about their suppliers and to minimize transaction costs they
may decide to insource these companies. This also requires the integration of
the partner processes into the organization. In previous work we proposed an
approach to merge (consolidate) interacting BPEL process models of different
partners into a single process model by deriving control flow links between the
process models from their interaction specification. In this work we are detailing
this consolidation approach. Thereby, special attention is turned on extending the
consolidation operations in a way that process models with fault handlers can be
merged.

1 Introduction

To reduce transaction costs or to gain more control companies often decide to integrate
suppliers into their organization (in-sourcing, mergers, and acquisitions). This requires
the integration of the processes and the organizational structure of the two companies. In
this work we focus on the integration on the process-level. More precisely, we want to
merge (or consolidate) complementing process models whose interaction behavior is
described by a choreography.

Process modeling languages such as BPEL [10] or BPMN [11] offer different
language constructs to raise and handle faults that work similar to throw-catch constructs
in traditional programming languages such as Java. As fault handling constructs can also
cause message exchanges between interacting processes they are also affected by the
consolidation. In this paper we want to describe a technique to merge BPEL process
models that communicate via fault handlers. Moreover, we describe an extension of the
merge operations proposed in [13] and [14].

We use BPEL4Chor [2] to model BPEL choreographies as this language provides a
means to define message links between the communication activities of the interacting
BPEL processes.

We assume that the reader is familiar with BPEL. Nevertheless, we give a brief
overview about BPEL’s fault handling concepts in Sect. 2. In Sect. 3 an overview on
the merge operations is provided and extensions to them are discussed. Then, Sect. 4
presents a technique to merge processes that communicate via BPEL fault handlers.
After discussing related work in Sect. 5, Sect. 6 concludes this paper and provides an
outlook on future work.

2 BPEL Fault Handling Basics

BPEL offers three language constructs to repair faulty situations during process execution,
namely fault handlers, compensation handlers and termination handlers. If a fault occurs
within a scope all running activities within this scope are terminated and its fault handlers
are called. A fault handler is represented by a catch or catchAll block. Thereby, multiple
catch blocks can be defined for a scope. Each catch block catches a particular fault that
may be thrown during execution of the scope and contains BPEL activities to handle
this fault. A catchAll block contains logic to catch all other faults that do not match
to a particular catch block. If no explicit fault handlers are defined for a scope it has
an implicit default fault handler attached to it. If any kind of fault occurs during the
execution of the scope the default fault handler triggers compensation handling for its
child scopes (see below) and finally rethrows the fault to its parent scope. If this scope
does not provide a fault handler for this fault either, it is propagated up to its parent
scope and so on until the process scope is reached. If the process scope cannot catch
the fault the process fails and is terminated.

Compensation handlers contain activities to undo work that was successfully per-
formed by a scope they are attached to, e. g., canceling a flight that was booked by
the activities of the scope. Hence, they are only executed if their associated scope has
completed successfully.

To control the termination of a scope that is still running a termination handler can be
attached to it. Within the termination handler activities can be defined that are performed
before the actual termination of the scope. If no explicit termination handler was defined
for a scope its default termination handler compensates its child scopes. A more detailed
discussion about fault and compensation handling concepts in BPEL was provided by
Khalaf et al. [4].

3 Asynchronous and Synchronous Consolidation

© Sebastian Wagner 4

Root

Flow

SA

SB

Process A

Asynchronous Merge

• S
Opaque

SYNS
Assign

S •
Opaque

• RC
Opaque

RC•

Opaque

and m

• S
Opaque

S
Invoke

S •
Opaque

• RC
Opaque

RC
Receive

RC•
Opaque

Process B Process Pmerged

SYNRC
Empty

SCOPE SCOPE

def: vin def: vrc

def: vin

def: vrc

Choreography CAB Merged Process Model

vin → m m → vrc

vin→ vrc

Figure 1. Asynchronous Merging Operation

We introduced the consolidation op-
erations to merge asynchronous and syn-
chronous communicating process models
in [13]. The aim of the consolidation is
that the atomic activities of the different
participants in the merged process model
have the same control flow relations as
in the original choreography. The basic
idea behind the consolidation algorithm is
that the message links imply control flow
relations between the activities of the com-
municating process models. The message
link m in Fig. 1 implies for instance that
the successor RC• of the receive activity is always performed after the predecessor
activity •S of the invoke activity S in process model A as RC• cannot be performed
before S completed. However, no statement can be made about the execution sequence

between S• and RC•, e. g., if they have to be performed simultaneously or if S• is per-
formed before RC• and so on. This is different from the synchronous scenario depicted
in Fig. 2. There RC• is always performed before S•. As activity S does not complete
until it received a response message from RP that is performed after RC•. Given these
implicit control flow dependencies, the sending and receiving activities can act as merge
points. Therefore the consolidation operation materializes the implicit control flow to
explicit control flow relations between the activities.

The consolidation algorithm to merge an arbitrary number of process models is
described in the following. As a prerequisite we assume that the choreography is modeled
correctly [3] and deadlock free [8]. Moreover, we assume there exists just one instance of
each participant per choreography instance, i. e., interaction patterns involving multiple
instances of one participant such as one-to-many send/receive [1] are not supported
yet by the consolidation algorithm. Another restriction we make is that a repeatable
constructs such as a BPEL ForEach loop do not contain any communication activities
that are replaced by control flow links between the process models to be merged. As this
would violate the BPEL restriction that repeatable constructs must not be crossed by
control flow links [SA00070] 1.

In a first step a new process model Pmerged is created that contains a flow as root
activity. For each of the process models P1 to Pn to be merged a separate scope is created
in the flow activity of Pmerged. This ensures that the scope activities are performed
simultaneously. Each scope contains the root activity (along with its child activities)
of one of the process models P1 to Pn. The purpose of the scope is to isolate the
activities of the process models from each other as they were also isolated in the original
choreography. To avoid that an uncaught fault thrown in one scope causes the other scope
to crash (as uncaught faults are propagated up to the process scope) a catchAll fault
handler is added to the scopes as shown in Fig. 2. The catchAll contains a compensate

activity to emulate the default compensation that would have been triggered in an original
process without an explicit fault handler. In case an explicit fault handler was defined in
a catchAll block on the original process scope nothing is changed. If a process scope of
a process to be merged has already a a catch block defined simply the catchAll block
is added to this fault handler.

Then the message links are materialized to control flow links. In the asynchronous
case the invoke activity S is replaced by an assign activity SY NS and the receive

activity RC by an empty activity SY NRC. SY NS emulates the message transfer between
between the former invoke and receive activity, i. e., it copies the message from the
input variable vs of the invoke to the variable vrc of the receive activity where the
message was copied to before. To perform the assignment the declaration of variable
vrc is lifted to the parent scope that encloses the two scopes that contain the participant
activities. Otherwise, SY NS could not access vrc. The empty activity SY NRC replaces
the former receive RC. To avoid name clashes between variables it might be necessary
to adapt the variable names accordingly during the consolidation. The incoming and
outgoing links of S and RC are mapped to SY NS and SY NRC, respectively. An additional
link from SY NS to SY NRC is created. This link ensures that SY NRC is not started before
SY NS was executed.

1 Static Analysis (SA) Fault Codes defined in the BPEL specification [10]

© Sebastian Wagner 5

Root

Flow

Synchronous Merge

Process A Process B

m

 S
Opaque

S
Invoke

S

Opaque

RC
Opaque

RC
Receive

RC
Opaque

RP
Reply

RP
Opaque

Process Pmerged

SA SB

 S
Opaque

S

Opaque

RC
Opaque

RC
Opaque

SYNRP
Assign

RP
Opaque

SYNS
Assign

and

and

SYNRC
Empty

SYNSR
Empty

SCOPESCOPE

def: vin def: vrc

def: vrc

def: vout

def: vout

def: vin

def: vrp

def: vrp
FHA

<catch
faultName=“F1”/>

<catchAll>
<compensate/>

</catchAll>

FHB

<catchAll>
<compensate/>

</catchAll>

FHA
<catch

faultName=“F1”/>

vin → m
m'→vout

m →vrc

vrp → m'

vin → vrc

vrp → vout

Figure 2. Synchronous Merging Operation

The synchronous merge is sketched in Fig. 2. There additionally the reply activity
RP is replaced by the reply activity SY NRP to emulate the transfer of the response
message sent via message link m′. SY NRP copies the value of the former reply variable
vrp to the output variable of the former invoke activity vout. The declaration of vout
has to be lifted to the parent scope as well to make this variable accessible for SY NRP.
The empty activity SY NSR is added for the same reason SY NRC was added. The control
links of RC are mapped to SY NRP and the outbound links of S are mapped to SY NRC.
Moreover, a new link is created to connect SY NS and SY NSR and another one between
SY NRP and SY NSR to ensure that the successors of the former invoke activity are not
started before.

4 Consolidation in the Context of Fault Handlers

In this section we discuss the challenges that arise when materializing the control flow
from message links between communication activities that reside within BPEL fault
handlers. Thereby, we focus on the cross boundary link constraint imposed by the BPEL
specification [SA00071]. This constraint specifies that no control link must point to a
target activity within a fault handler from outside the fault handler, i. e., no link must
point into a catch or catchAll block.

In the following we distinguish between three different scenarios (i) fault handlers
without communicating activities (ii) fault handlers with only outgoing message links
and (iii) fault handlers with at least one incoming message link.

The first scenario is trivial as there is no communication between the fault handlers
of the two process models that have to be merged. Consequently, they can be simply
merged with the consolidation operations introduced in 3.

The second is scenario is depicted in Fig. 3. In process model A the fault handler
FHA is attached to the scope SA. FHA contains an asynchronous invoke activity A4
that is related to the corresponding receive activity B2 in process model B via message

link m. Note, that for simplicity reasons the flow activity containing SA and SB is not
explicitly depicted in Fig. 3 and in the following figures.

© Sebastian Wagner 7

Scenario 2: FHs with Outbound Links

SA

Process A

A1
Opaque

A2
Opaque

m

…

FHA

Process B
SB

B2
Receive

B3
Opaque

…

… …

…

SA

Process Pmerged

A2
Opaque

A3
Opaque

…

SB

B2
Empty

… …

…
B3

Opaque

Choreography CAB

A3

Flow

A4
Invoke

A5
Opaque

…

FHA

A3

Flow

A5
Opaque

…
A4

Assign

Figure 3. Scenario 2: Message Link pointing from a Fault Handler

To merge the process models in a first step the merge operations introduced in
Sect. 3 are applied. This results in process model Pmerged. As the new control flow links
materialized from the message links leave the fault handler boundaries outbound only,
the cross boundary link constraint is not violated.

The scenario in Fig. 4 is very similar to the previous one except that invoke activity
A4 is synchronous, hence, a second message link from the reply activity points back
to A4. The synchronous consolidation operation creates from the message link m2 the
control flow link l2. This link crosses the fault handler boundary of FHA inbound in
order to realize that A5 is performed after B2 or B3 respectively. This violates the cross
boundary link constraint.

© Sebastian Wagner 8

SA

FHA

A3

Flow

Scenario 3: FHs with Inbound Links

Process A

A1
Opaque

A2
Opaque

m1

…

Process B

SB

B1
Receive

…

…
…

A5
Opaque

B2
Opaque

SA

Process Pmerged

A1
Opaque

A2
Opaque

…

FHA

SB

B1
Empty …

…

B2
Opaque

l1

l2

A3

Flow

A6
Empty

A5
Opaque

def: vin

def: vrc

def: vout

def: vrp

A4
Invoke
vin → m1
m2 →vout

B3
Assign

A4
Assign
vin → vrc

vrp → vout

def: vrc

def: vrp

B3
Reply
vrp → m2

def: vin

def: vout

def: va
def: va

Figure 4. Scenario 3: Message Link pointing into a Fault Handler

© Sebastian Wagner 9

Scenario 3: FHs with Inbound Links - Solution

SFH

SB

B1
Empty

B2
Opaque

…

…

Process Pmerged

l1

l2

A8

Flow

SA

A1
Opaque

A2
Opaque

…

FHA

… A7
Empty

A3

^

Flow

A6
Empty

A5
Opaque

def: vrc

def: vrp

def: vout

def: vin

def: va

A4
Assign

vin → vrc

B3
Assign
vrp → vout

Figure 5. Merged Process Model with outfac-
tored Fault Handler Logic

To develop a solution to overcome this
problem control flow links pointing into a
fault handler have to be avoided, hence, the
control flow has to be modified accordingly.
To resolve the incoming link issue we can
either remove the fault handler completely or
we move the activities with incoming links
out of fault handler. Removing the fault han-
dler completely is not an option as a fault
handler can be activated any time during run-
time of a scope if a fault is thrown. This
behavior cannot be emulated by using other
BPEL constructs. Hence, we suggest a solu-
tion where the fault handler is kept and the
fault handling activities are factored out of
it.

A scope S is given that has several fault
handlers FH1

S to FHn
S represented by catch or catchAll blocks. After asynchronous

and synchronous merges were performed for each fault handler FH i
S, it is checked if it

contains activities that are target of a link originating from outside of FH i
S. If this is the

case for at least one fault handler FH i
S, a new scope SFH is created that contains a flow

activity. SFH is required to ensure that the activities have still access to the data context of
the fault handler they were moved from (see below). The flow activity within SFH serves
as container for the scope S and its fault handlers. Then for each fault handler FH i

S with
an incoming link its root activity root i

FH is moved to the scope SFH and replaced by a
new empty activity ei

FH. Between ei
FH and root i

FH a control link is created where ei
FH

acts as source. This ensures that the fault handling logic contained in root i
FH is always

performed when FH i
S is activated. All fault handlers that have no incoming control flow

link remain unchanged. Figure 5 shows the merged process model Pmerged where the
root activity A3 of the fault handler was factored out. The new empty activity A7 acts as
source for the control link pointing to A3.

The activities and control flow links that were moved out of the fault handler cannot
access the local data context (local variable, partner link declarations etc.) that was either
defined in scope S or in the catch block anymore as they reside in the parent scope SFH.
To make the data context visible again, the defined data have to be moved to the parent
scope SFH of the fault handling activities. In Fig. 5 this affects the variables va and vin,
hence, they are lifted from scope S to SFH.

The solution described above keeps the control flow relations between the (non-
communicating) basic activities as defined in the choreography. If SA in Fig. 5 completes
successfully the fault handler FHA is uninstalled and all links originating from activity
A7 are marked as dead. Thus, activity A3, its child activities and also all activities within
SB are not activated either (dead path elimination). This is the same behavior as modeled
in the choreography. In case a fault is thrown and caught by FHA activity A7 is executed
and its outgoing links are activated. This causes the former root activity of FHA A3 and
its children to be executed. This in turn causes all activities in SB to be performed. When
SA completes successfully but SFH was not completed yet by the process engine (which

usually happens immediately after SA was completed) and SFH terminated due to an
error in its parent scope the default termination handler compensates all successfully
executed child scopes of SFH. In case a fault is thrown during the execution of the fault
handler FHA this fault is simply thrown to its parent scope. Also this behavior is kept
as SFH does not catch any fault, i. e., it simply rethrows the fault to its parent scope that
used to be the parent scope scope of SA. This also happens when SA throws a fault that
is not caught by fault handler FHA.

5 Related Work

Compared to many other techniques that merge processes that are semantically equivalent
such as different variants of the same process, we aim to merge collaborating processes.
Mendling and Simon [9] propose for instance an approach where semantically equivalent
events and functions of Event Driven Process Chains [12] are merged. Küster et al. [5]
describe how change logs can be employed to merge different process variants that were
created from the same original process.

Instead of directly generating a BPEL orchestration out of a BPEL4Chor choreogra-
phy, an intermediate format may be used. There is currently no approach keeping the
structure of the generated orchestration close to the structure of the original choreography.
For instance, Lohmann and Kleine [7] do not generate BPEL scopes out of Petri nets,
even if the formal model of Lohmann [6] generates a Petri net representation of BPEL
scopes.

6 Conclusion and Outlook

In this work we extended the process consolidation approach presented in [13] and [14].
We have shown, how to isolate the activities of the different partners from each other
by using BPEL scopss and we also extended the asynchronous and synchronous merge
operations to reduce the number of control flow links that may be created during the
consolidation operation. The main contribution of this work is a technique to merge
process models that interacted via fault handlers before they were merged. To satisfy the
constraint that no control links must point into a fault handler we have shown a technique
to factor the fault handling activities out of the handler.

In future works we also have to propose a way to merge process models that interact
via compensation handlers and event handlers. This is even more challenging as they
allow neither inbound nor outbound control flow links. Another issue we have to address
is that our current merge operations create process models that violate the peer-scope-
dependency rule. Basically, this rule states that two scopes enclosed within the same
parent scope must have no cyclic control-flow dependencies, otherwise the compensation
order of these scopes cannot be determined. However, in practice this rule is not enforced
by engines such as the Apache ODE2 or BPEL-g3.

2 http://ode.apache.org/
3 http://code.google.com/p/bpel-g/

http://ode.apache.org/
http://code.google.com/p/bpel-g/

In this paper, we informally argued that the consolidation approach is correct. A first
approach to provide a more formal validation has been presented in [14]. Our ongoing
work is to evaluate the Petri net formalizations with respect to formal foundations for
our merging approach.

Acknowledgments This work was partially funded by the BMWi project Migrate!
(01ME11055) and the BMWi project CloudCycle (01MD11023).

References

1. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: BPM. Springer
(2005)

2. Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: From specification to
execution. Data & Knowledge Engineering 68(10), 946–972 (Apr 2009)

3. Decker, G., et al.: Non-desynchronizable Service Choreographies. In: ISCOC 2008
4. Khalaf, R., Roller, D., Leymann, F.: Revisiting the Behavior of Fault and Compensation

Handlers in WS-BPEL. In: OTM 2009
5. Küster, J., Gerth, C., Förster, A., Engels, G.: A Tool for Process Merging in Business-Driven

Development. In: Proceedings of the Forum at the CAiSE (2008)
6. Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. In: WS-FM’07:

Web Services and Formal Methods, 4th International Workshop (2007)
7. Lohmann, N., Kleine, J.: Fully-automatic Translation of Open Workflow Net Models into

Simple Abstract BPEL Processes. In: Modellierung. Gesellschaft für Informatik e. V. (2008)
8. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verification and

Participant Synthesis. In: WS-FM’07: Web Services and Formal Methods, 4th International
Workshop (2007)

9. Mendling, J., Simon, C.: Business Process Design by View Integration. In: BPM Workshops.
Springer (2006)

10. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS Standard
(2007)

11. Object Management Group (OMG): Business Process Model and Notation (BPMN) Version
2.0 (2011), OMG Document Number: formal/2011-01-03

12. Scheer, A.W., Thomas, O., Adam, O.: Process Aware Information Systems: Bridging People
and Software Through Process Technology, chap. Process Modeling Using Event-Driven
Process Chains. Wiley-Interscience (2005)

13. Wagner, S., Kopp, O., Leymann, F.: Towards Choreography-based Process Distribution In
The Cloud. In: Proceedings of the 2011 IEEE International Conference on Cloud Computing
and Intelligence Systems (2011)

14. Wagner, S., Kopp, O., Leymann, F.: Towards Verification of Process Merge Patterns with
Allen’s Interval Algebra. In: ZEUS. CEUR, Bamberg (2012)

