

OntoWeaver-S: Integrating Web Services into Data-Intensive Web Sites

Yuangui Lei, Enrico Motta, John Domingue
Knowledge Media Institute

the Open University
Milton Keynes, MK7 6AA

{y.lei, e.motta, j.b.domingue}@open.ac.uk

ABSTRACT
Designing web sites is a complex task. Ad-hoc rapid
prototyping easily leads to unsatisfactory results, e.g.
poor maintainability and extensibility. However, existing
web design frameworks focus exclusively on data
presentation: the development of specific functionalities is
still achieved through low-level programming. In this
paper we address this issue by describing our work on the
integration of (semantic) web services into a web design
framework, OntoWeaver. The resulting architecture,
OntoWeaver-S, supports rapid prototyping of service-
centred data-intensive web sites, which allow access to
remote web services. In particular, OntoWeaver-S is
integrated with a comprehensive web service platform,
IRS-II, for the specification, discovery, and execution of
web services. Moreover, it employs a set of
comprehensive site ontologies to model and represent all
aspects of service-centred data-intensive web sites, and
thus is able to offer high level support for the design and
development process.

1. Introduction

Designing web sites is a complex task. Ad-hoc rapid
prototyping approaches easily lead to unsatisfactory
results, e.g. poor maintainability and extensibility. As a
consequence, a number of structured methodologies have
been proposed to facilitate and guide the design and
development processes [20, 8, 4, 9]. In particular, a
number of methodologies and tools have been developed
to support the design of data-driven web sites at a high
level of abstraction. Examples include RMM [11],
OOHDM [21], ARANEUS [2], WebML [5], OntoWebber
[13], and HERA [7]. The key feature of these approaches
is that they provide high level support for web site design,
from conceptualisation and specification down to
maintenance, by properly distinguishing between the
different dimensions of web design and by organizing the
development activities into well-structured processes.
However, these approaches focus exclusively on data
presentation: the development of specific functionalities is
still achieved through low-level programming.

Web service technology [24, 23, 22, 10, 12] enables
access to remote content and application functionalities,
independently of specific implementations, or data
formats. Standardised registry mechanisms (e.g., in UDDI
[23]) specify the location of a service. WSDL [24]

descriptions specify how to invoke a service and
SOAP/XML [22] provides a uniform and standardised
communication mechanisms, thus enabling easy
interoperability. However, if a developer wants to bring
web services into web sites, essentially he or she needs to
do it entirely through low-level programming. With the
partial exception of WebML [3], none of the design
frameworks mentioned above provides hooks to augment
web sites with functionalities, based on web service
technology. Indeed, while WebML provides mechanisms
to communicate with web services, the overall data-driven
design framework has not been modified. For example,
the user interface constructs have not been extended for
enabling the access of remote web services. In other
words, as far as WebML is concerned, web services are
not part of the design framework; they are simply
functionalities, which can be invoked, much like any
other web application.

A number of web service platforms have been
developed to support the design, the publication, and the
invocation of web services. Examples include the Java
Web Services Developer Pack (JWSDP) [12] and the
IBM Web Services Toolkit (WSTK) [10]. However these
platforms are very different from the web site design
frameworks mentioned above. Their role is to provide
powerful programming environment to build applications
based on web services, rather than providing high level
web site design support. Thus, we believe there is a need
of integrating web service technology into high level web
site design frameworks to facilitate the specification of
data-intensive web sites, which allow the access to remote
web services and the presentation of the results of web
services. So, our goal is to define mechanisms, which
allow easy integration of web services into a structured,
high level support for web site design. In order to achieve
this goal we make use of semantic web services [1, 6, 17],
which rely on semantic descriptions describing the
functionalities of web services in a much more powerful
way than what available in WSDL/UDDI. Hence, by
making use of semantic web services we can then provide
high level support for bringing functionalities into a web
site, by focusing the interaction with the user (i.e., the
web site developer) on the semantic aspects, rather than
on the technical and implementation details. In particular,
we will take OntoWeaver [14, 15, 16], a sophisticated
data-driven web design framework, as our starting point,
and we will augment it to support the high level

integration of semantic web services into web sites. We
will call the resulting, extended architecture,
OntoWeaver-S.

The paper is organized as follows: section 2 describes
the criteria we used to progress from OntoWeaver to
OntoWeaver-S; section 3 presents the OntoWeaver-S
approach to modelling the typical user interfaces of
service-centred data-intensive web sites; section 4
discusses the implementation of the OntoWeaver-S
mechanisms, which support the integration of web
services into data-intensive web sites; and finally section
5 and section 6 describe related work and reiterate the
main conclusions from this work.

2. From OntoWeaver to OntoWeaver-S

2.1. OntoWeaver

OntoWeaver approaches data-intensive web sites with
special focuses on dynamic data content manipulation (i.e.
data content publishing, querying, and updating), user
interface composition, and customization design. In
particular, it provides a site view ontology and a
presentation ontology to enable the declarative
representation of data-intensive web sites. Moreover,
OntoWeaver proposes a generic customization framework
for offering high level support for the specification of
customization requirements and for offering
comprehensive customization support for web
applications at run time.

The specification of a web site in OntoWeaver consists
of four perspectives:
− The Domain Model abstracts the back-end data sources.

It contains a set of abstract concepts and relations,
representing data structures of the problem domain.

− The Site View Model describes navigational structures
for web applications and compositional user interfaces
for web pages in terms of the site view ontology. In
particular, the site view ontology provides a set of
atomic user interface constructs as well as a set of
composite user interface constructs to enable the fine-
grained level support for the composition of complex
user interfaces. Moreover, it provides a set of dynamic
user interface to facilitate the specification of dynamic
features for data-intensive web sites, including
querying and manipulating the underlying domain
databases.

− The Presentation Model specifies the visual appearance
and layout for each component in the site view model
in terms of the presentation ontology.

− The Customization Model specifies customization
requirements for personalizing web pages towards
individual users. It relies on the OntoWeaver
customization framework, which employs a user
model, a customization rule model, and a declarative
site model to enable the high level support for the

specification of customization requirements.
OntoWeaver makes use of a customization engine to
apply the specified rules to reason upon the site
specifications according to the valuable user profiles
(i.e. instantiations of the user models) to provide
customization support.

OntoWeaver employs RDFS [19] and RDF [18] to

represent ontologies and specifications. Moreover, it
offers a tool infrastructure to support the entire life-cycle
of a customized data-intensive web site at a high level,
including modelling, design, and maintenance. More
information about OntoWeaver can be found in [14, 15,
16]. Like other web modelling approaches mentioned
earlier, OntoWeaver focuses on data presentation and
does not offer high level support for bringing web
services into web sites.

2.2. Evolution

The main goal of OntoWeaver-S is to provide high
level support for the design of web sites that can access
remote web services. Obviously, like OntoWeaver,
OntoWeaver-S is also a web design framework, which
provides explicit models to provide high level support for
the design of web sites. Hence, the design principles of
OntoWeaver-S are very much the same as OntoWeaver.
For example, the modular design architecture, which
distinguishes different models to approach web site
design, remains the same. The presentation ontology and
the customization framework do not need to be adapted
either, as they abstract the common features of the
presentation design and the customization design of web
sites.

On the other hand, the focus of OntoWeaver-S is on
the integration of web services into data-intensive web
sites. Hence, in moving from OntoWeaver to
OntoWeaver-S we have to introduce a number of
changes:
• The site view ontology, which describes navigational

structures and user interfaces, should be adapted to
support the design of the site view model for service
centred web sites. In particular, it should allow the
high level specification of web services within the
user interface elements of target web sites.

• The tool infrastructure should be adapted towards the
goal of design and development of service centred
web sites. In particular, the Site Designer should be
modified to offer support for the design and
development of this new kind of web sites. At the
same time, a new run-time tool is needed to integrate
web services into web sites.

As already mentioned, to enable the high level

specification of web services in target web sites,
OntoWeaver-S needs the support of semantic descriptions
describing web services. As a result, the service layer

upon which site view models are built should be semantic.
Moreover, in order to integrate web services into the
target web site, OntoWeaver-S needs frameworks and
tools supporting the discovery and invocation of
appropriate web services by reasoning about their
semantic descriptions. The IRS-II framework [17], which
will be introduced in the next section, comes right in to fit
the OntoWeaver-S framework.

2.3. Integrating Web Services into Data-Intensive
Web Sites

IRS-II [17] is an implemented infrastructure, which

has been developed in our lab, the Knowledge Media
Institute (http://kmi.open.ac.uk). It supports the
publication, discovery, and execution of semantic web
services. The following informal specification shows the
task description of a semantic web service, which answers
requests for flights in accordance with the given user
requirements.

Task Ontology: flight-service
Task Name: find-flights
Input Roles: from-place (type: city)
 to-place (type: city)
 depart-time (type: time-point)
 arrival-time (type: time-point)
 budget (type: amount-of-money)
Output Roles: flights (type: Flight)

To invoke this semantic web service, a user simply
asks for the task to be achieved in terms of the task name
find-flights and the task ontology name flight-service, the
IRS-II broker then selects an appropriate problem solving
method (PSM) and then uses grounding information to
locate and invoke the corresponding web service – see
[17] for a detailed description of IRS-II. In particular, the
input roles carry parameters for executing the
corresponding web service; the output roles store the
service results. Please note that IRS-II only supports one
output role at the moment. The data type of the output
role can be primitive e.g. String, Integer, or non-primitive,
i.e. being domain classes. When the data type of the
output role is not primitive, IRS-II uses XML to represent
service results. For example, IRS-II uses XML to
represent the results of the web service find-flights, which
are instances of the class Flight. This class has been
defined in the domain ontology of the semantic web
service.

OntoWeaver-S employs IRS-II as a platform to
integrate web services into data-intensive web sites. On
the one hand, OntoWeaver-S relies on IRS-II to enable
the access of remote web services, as IRS-II is able to
locate and invoke remote web services and pass results
back. On the other hand, OntoWeaver-S uses IRS-II as a
platform to allow the provision of web services for data-
intensive web sites.

Figure 1 shows the process of accessing remote web
services in an OntoWeaver-S generated data-intensive
web site. In particular, OntoWeaver-S provides a run-time

tool, called Service Integrator, to integrate IRS-II with
data-intensive web sites. Specifically, the Service
Integrator collects information from a web site, then calls
the IRS-II server (by means of IRS-II APIs) to invoke the
specified web service and gets results from IRS-II, and
finally it passes the service results back to the web site.

OntoWeaver-S relies on a set of constructs, such as

DataComponent and KAComponent, to describe the user
interfaces for accessing web services and publishing
results. These user interface constructs will be described
in the next section.

3. Modelling Typical User Interfaces for
Accessing Web Services

Like OntoWeaver, OntoWeaver-S offers a site view

ontology and a presentation ontology to allow the
declarative representation of all aspects of service-centred
data-intensive web sites. As shown in figure 2, the site
view ontology consists of a set of navigational constructs,
which facilitate the composition of navigational
structures, and a set of user interface constructs, which
support the composition of user interfaces. In particular,
the site view ontology has been extended to model
service-centred data-intensive web sites. Specifically, a
set of user interface constructs have been extended to

IRS-II
Server

OntoWeaver-S

Service
Integrator

Figure 1 The process of accessing web services in
OntoWeaver-S generated data-intensive web sites

Finding
Flights

An
OntoWeaver-S

Generated Data-
Intensive Web Site

Figure 2 An overview of the OntoWeaver-S site
view ontology

Site

SubResource

hasSubResource

SiteResource

ResourceComponent

hasIndexResource

hasComponent

MetaData

hasMetaData

hasResource

hasOutput

Output Input Command

hasInput

hasCommand

LinkItem Task

hasLinkItem

Task

hasTask

hasTask

hasSubComponent

hasTask
hasTask

allow the modelling of the typical user interfaces of
service-centred data-intensive web sites, including
information visualization, which allows the visualization
of dynamic data content coming from the underlying
databases or remote web services, and information
provision, which allows the provision of information for
updating or querying the back-end domain data sources or
for invoking remote web services.

The navigational constructs are made up of Site, which
models a site view as a collection of site resources i.e.
web pages and a collection of task instances i.e.
descriptions of semantic web services, SiteResource,
which abstracts web pages as nodes in the navigational
network and as units of user interface composition, and
LinkItem and DynamicLinkItem, which model the static or
dynamic link relationship between web pages. In addition,
the constructs Parameter and ParameterClause are
proposed to allow the specification of contextual links
between pages. More information about the site structure
modelling can be found in [17].

The user interface constructs can be classified into
atomic constructs, which abstract basic user interface
elements that can not be further decomposed into other
elements, and composite constructs, which model
composite user interface elements. On one hand, these
user interface constructs can provide a fine grained level
support for user interface composition. On the other hand,
these constructs support the high level specification of
access to semantic web services. Specifically, within the
user interface constructs, remote web services are
described in terms of tasks, input roles, and output roles,
which comply with the semantic representation approach
employed in IRS-II [17]. Please note that the concept of
output role in OntoWeaver-S is slightly different from
IRS-II, when the data type of the output role of a web
service is not a primitive data type but a class entity,
which has a number of slots. In this case, the output roles
in OntoWeaver-S refer to the slots of the result instances
of the corresponding web service.

3.1. Information Visualization

Information visualization in service-centred data-

intensive web sites presents dynamic information, which
comes from the underlying databases, web resources or
remote web services. OntoWeaver-S relies on the
following constructs to enable the composition of the user
interfaces for information visualization:
• DynamicOutput models the basic user interface

elements that present the dynamic value of the
specified slot of a given class entity or the dynamic
value of the specified output role of a given web
service. It has a number of attributes: the attributes
hasTask and hasOutputRole are used in the case of
publishing dynamic values of web services; the
attributes hasClassEntity and hasSlotEntity are used
to specify values from the specified slot of a class

entity. The following RDF [18] code defines one
dynamic output element for publishing dynamic
content of airline, which is one result field of the task
find-flights (the namespace prefix 'svo' in this paper
refers to the namespace of the OntoWeaver site view
ontology:
xmlns:svo=”http://kmi.open.ac.uk/people/yuangui/sit
eviewontology#”).

<rdf:Description about=”datacomponet/dynamicoutput/airline” >
 <rdf:type rdf:resource=”&svo;DynamicOutput” />
 <svo:outputType>text</so:outputType>
 <svo:task rdf:resource=“find-flights” />
 <svo:outputRole rdf:resource=”find-flights/airline” />
</rdf:Descripltion>

• Output describes the basic user interface elements

that present static information. Output elements are
used to present explanations for dynamic values in
data components.

• OutputComponent describes the composite user
interface element for publishing the value of the
specified slot of the given class entity or the value of
the specified output role of the given web service. An
output component typically comprises an output
element, which presents explanations about the
dynamic content, and a dynamic element, which
displays the dynamic content.

• DataComponent abstracts the composite user
interface elements that visualize instances of a
specified class entity or results of a specified web
service.

Figure 3 shows an example user interface for

visualizing the results of the web service find-flights.
This user interface contains a number of dynamic output
elements for visualizing the values of the web service
find-flights. The following code illustrates the
composition of this data component. Please note that at
this stage, the layout of user interface elements is not
considered.

 <!-- the composition of the entire data component -->
<rdf:Description about=”flights-result-page/datacomponent” >
 <rdf:type rdf:resource="&svo;DataComponent”/>
 <svo:task rdf:resource=“find-flights”/>
 <svo:outputComponent>
 <rdf:Bag>
 <rdf:li resource=”flights-result-page/datacomponent/airline”/>
 <rdf:li resource=”flights-result-page/datacomponent/fromairport”/>
 <rdf:li resource=”flights-result-page/datacomponent/departuretime”/>

Figure 3 An user interface example for visualizing
the results of the web service find-flights

 ……
 </rdf:Bag>
 </svo:outputComponent>
</rdf:Description>

 <!-- the composition of an output component -->
<rdf:Description about=” flights-result-page/datacomponent/airline” >
 <rdf:type rdf:resource="&svo;OutputComponent”/>
 <!-- the output part displays explanations about the dynamic part -->
 <svo:output>
 …
 </svo:output>
 <svo:dynamicOutput
 rdf:resource=”datacomponet/dynamicoutput/airline” />
</rdf:Description>
…

3.2. Information Provision

The information provision is realized through

knowledge acquisition forms, which allow users to submit
information to web sites. The submitted information can
be records of the underling databases or information for
invoking the specified service. Please note that in this
context, the service can be a built-in service provided by
OntoWeaver-S or a remote web service, which has been
made available through IRS-II [17]. OntoWeaver-S
provides a set of built-in services for inserting data into
the underlying databases and making queries over the
underlying databases. Hence, a knowledge acquisition
component can be used for information provision,
information query and web services access. OntoWeaver-
S relies on a set of constructs to model the composition of
knowledge acquisition forms:
• Input, which abstracts the actual input fields for

allowing end users specifying information for
particular slots of the specified domain class entity or
for particular input roles of the specified web service.
The following example defines an input element,
which allows end users to enter information for the
input role of fromplace for the web service find-
flights.

 <rdf:Description about=”kacomponent/from-place/input” >
 <rdf:type rdf:resource=”&svo;Input” />
 <svo:task rdf:resource=“find-flights”/>
 <svo:inputRole rdf:resource="find-flights/param/from-place"/>
 </rdf:Description>

• Command, which describes the interface elements for

submitting information. In particular, the definition of
a command element indicates the associated service
and the result page node, which intends to publish
results of the associated service. As mentioned
earlier, the associated service can be a built-in service
for retrieving data content from the underlying
databases or inserting data into the databases, or a
remote web service, which has been made available
through IRS-II in terms of the semantic descriptions.
The following code defines a command element
example for accessing the web service find-flights.

 <!-- the definition of the command element -->
 <rdf:Description rdf:about="kacomponent/command">
 <rdf:type rdf:resource="&svo;Command”/>
 <svo:commandText>Submit</svo:commandText>

 <svo:task rdf:resource=“find-flights”/>
 <svo:resultPage rdf:resource=”flights-result-page” />
 </rdf:Description>

• InputComponent, which describes the composite user

interface elements for allowing the information
provision for the specified slot of the given domain
class entity or for the specified input role of the
associated service. An input component typically
contains an input element for presenting an input
field and an output element for presenting an
explanation about the input field.

• KAComponent, which models the composite user
interface elements that present forms for achieving
the functionality of information provision. A
knowledge acquisition component is typically made
up of a set of input components and a command
element.

Figure 4 shows an example user interface for accessing

the remote web service find-flights. The user interface is
made up of a number of input fields and a command
button for allow end users to invoke the web service. The
following code illustrates the composition of this user
interface.

<rdf:Description about=”find-flights-page/kacomponent” >
 <rdf:type rdf:resource="&svo;KAComponent”/>
 <svo:task rdf:resource=“find-flights”/>
 <svo:inputComponent>
 <rdf:Bag>
 <rdf:li resource=”find-flights-page /kacomponent/from-place”/>
 <rdf:li resource=” find-flights-page /kacomponent/to-place”/>
 ……
 </rdf:Bag>
 </svo:inputComponent>
 <svo:command rdf:resource="kacomponent/command" />
</rdf:Description>

<! -- an input component example, which is composed of by a static output
element and an input element -->
<rdf:Description about=”find-flights-page/kacomponent/from-place” >
 <rdf:type rdf:resource="&svo;InputComponent”/>
 <svo:output resource=”kacomponet/from-place/output”/>
 <svo:input resource=”kacomponet/from-place/input”/>
</rdf:Description>
…

4. Web Service Integration

In this section, we build a simple web site for

accessing the example web service find-flights, which has

Figure 4 An user interface example for accessing
the web service find-flights

been discussed earlier. In particular, we create two web
pages according to the following steps (please note that
OntoWeaver-S offers a set of graphical tools supporting
the design of web pages):
• Creating an empty web page called find-flights-page

for holding components that allow end users to find
flights according to their requirements.

• Creating a knowledge acquisition component in the
web page find-flights-page, specifying the associated
web service as the web service find-flights and
choosing appropriate input roles.

• Creating an empty web page called flights-result-
page for publishing the service result.

• Creating a data component in the web page flights-
result-page, associating it with the web service find-
flights and choosing appropriate output roles for the
publication of service results.

• Specifying the web page flights-result-page as the
value of the attribute resultPage of the command
element contained in the knowledge acquisition
component.

4.1. Web Service Integration Process

In this section, we get a closer look at the process of

accessing web services in the OntoWeaver-S generated
data-intensive web sites. As illustrated in figure 5, the
process of accessing web services comprises the
following steps:
(1) An end user opens the web page find-flights-page,

enters his or her requirements for finding flights and
submits the input information to the web site.

(2) The OntoWeaver-S Service Integrator investigates
the input elements, which are contained in the web
page making a request for accessing the specified
web service, and gathers information from the input
elements for the corresponding input roles of the
specified web service.

(3) The OntoWeaver-S Service Integrator calls the IRS-II
Server [17] to achieve the specified task find-flights
augmented with the given constraints.

(4) The IRS-II Server invokes the corresponding web
service.

(5) The IRS-II Server returns the results of the execution
of web services to the OntoWeaver-S Service
Integrator.

(6) The OntoWeaver-S Service Integrator passes the
results back to the web page flights-result-page.

4.2. Implementation

In this section, we discuss the implementation issues of

the integration of semantic web services into web sites. It
should be noted that all code involves in this section are
generated automatically by the OntoWeaver-S Site
Builder during the process of compiling the declarative
site specifications into web implementations. Developers
neither need to cope with nor worry about the integration
implementation.

During the process of compiling the OntoWeaver-S
site specifications into web pages, each knowledge
acquisition component is mapped to an HTML form. The
command element contained within the component is
mapped to a submit button to enable the submission of
input information and the invocation of the specified
semantic web service. To enable readability, the following
HTML code represents a simplified JSP form, which is
mapped from the knowledge acquisition component
example discussed earlier. The action attribute of the
form is mapped from the command element to indicate
that the processing page for the form submission is
flights-result-page.jsp. The input fields are mapped from
the input elements.

<form action="flights-result-page.jsp" method="POST">
 <INPUT TYPE="text" name="kacomponent/from-place/input" >
 <INPUT TYPE="text" name="kacomponent/to-place/input" >
 ……
</form>

Each data component is mapped to an HTML table to
publish dynamic content coming from the associated
semantic web service. Moreover, additional server-side
code is generated at the same time to enable the access of
the specified web service and the publication of the
service results. The following code shows the simplified
JSP code generated from the definition of the data
component example, which publishes results of the
service find-flights. Please note that the sign of “<%” and
“%” indicates that the wrapped code is server-side code,
which is executed by web servers at run time.

 <!— Part I: instantiating a Service Integrator -- >
<jsp:useBean id="function_find_flights"
 scope="session" class="ontoweaverbean.ServiceIntegrator"/>
<jsp:setProperty name="function_find_flights"
 property="taskName" value="find-flights" />
<jsp:setProperty name="web_site_query"
 property="taskOntologyName" value="flight-service"/>

<% //Part II: adding input roles for the specified task
function_find_flights.addInputRole("from-place",
 request.getParameter("kacomponent/from-place/input");
function_find_flights.addInputRole("to-place",
 request.getParameter("kacomponent/to-place/input");
……
 // Part III: achieving the specified task
function_find_flights.achieveTask(); %>

IRS-II
Server

OntoWeaver-S

Service
Integrator

Figure 5 The process of accessing web services
and publishing dynamic results coming from web
services

KA
Component

Data
Component

(1)

(2)
(3)

(5)
Service

find-flights

(4)

(6)

<!—part IV: presenting results of the web service -->
<%while (function_find_flights.hasNextResultOutput())
 { %>
 <table>
 <tr><td> <%=function_find_flights.get(“airline”) %> </td></tr>
 <tr><td><%=function_find_flights.get(“fromairport”) %> </td></tr>
 ……
 </table>
 <% }%>

The code comprises four parts: i) the first part
instantiates a service integrator using the specified task
name and the task ontology name according to the
specification of the associated semantic web service; ii)
the second part gathers input information from the
corresponding input elements and passes the information
to the corresponding input roles, according to the
specification of the corresponding knowledge acquisition
component; iii) the third part achieves the specified task
by calling the IRS-II Server; and iv) the fourth part
presents the service results in a table repeatedly.

As mentioned earlier, OntoWeaver-S provides a tool
called Service Integrator to integrate semantic web
services into web sites. The following Java code shows
how the Service Integrator achieves this goal. First, it
calls the function achieveTask() from the IRS-II Server,
augmenting the specified task name, task ontology name,
and the values for the input roles. The result of this
function is written in XML (this has been indicated by the
semantic description of this web service). The
OntoWeaver-S Service Integration then gets the result
from the IRS-II Server and processes the result, and
makes it ready for the presentation.

public void achieveTask()
{
 String serviceResult = this.irsServer.achieveTask(this.taskName,
 this.taskOntologyName,
 this.InputRoles);
 this.processingResultOutputs(serviceResult);
}

 //processing results and making it ready for publication
private void processResultOutputs(String serviceResult)
{
 ResultOutputReader reader=new ResultOutputReader(
 serviceResult);
 this.resultOutputList=reader.getResultOutputList();
 }

public boolean hasNextResult()
{
 boolean hasNext= this.resultOutputList.hasNext();
 if (hasNext)
 this.currentRowResult= this.resultOutputList.next();
 return hasNext;
}
 //getting the value of the specified result field of the current row
public String get(String outputName)
{
 return this.currentRowResult.get(outputName);
}

5. Related Work

Modelling approaches to web site design typically

approach the design of web applications at three levels:
domain modelling, navigation modelling, and

presentation modelling [11, 2, 21, 5, 13, 7]. However, as
already pointed out, these frameworks do not provide
means to support access to web services. As a
consequence, they limit the functionalities of the target
web applications to the management of back-end data
sources. WebML [5, 3] and OntoWebber [13] are the
closest approaches to OntoWeaver-S.

OntoWebber defines explicit site models to abstract
data-intensive web sites, and uses ontologies as the
foundation for web application design. It supports the
access to distributed heterogeneous data sources for the
target web applications by providing wrappers and
translators to process data sources in different formats.
However, OntoWebber does not support the integration of
(semantic) web services into web applications.

WebML [5] relies on explicit site models to enable the
design and development of data-intensive web
applications. However, in comparison with OntoWeaver,
the composition model, which provides means to enable
the composition of user interfaces for web pages, is not
expressive enough to enable the composition of complex
user interface as it does not provide constructs to model
atomic user interface elements. Brambillla et al. [3] have
recently extended WebML by means of a set of web
service hypertext primitives for communicating with web
services. However, as already emphasised, they fail to
integrate web services into the WebML design
framework; they simply treat them as functionalities,
which can be invoked, much like any other web
application.

6. Conclusions

This paper has shown how we have augmented

OntoWeaver, a data-driven web design framework, to
produce OntoWeaver-S, a semantic service driven
framework, which supports rapid prototyping of web
service centred data-intensive web sites. OntoWeaver-S is
integrated with a comprehensive platform, IRS-II [17] for
the specification, discovery, and execution of semantic
web services. Moreover, OntoWeaver-S provides a set of
user interface constructs to support the modelling of the
typical user interfaces of service centred data-intensive
web sites, including information visualization, which
allows the visualization of dynamic data content coming
from the underlying databases or remote web services,
and information provision, which allows the provision of
information for updating or querying the back-end domain
data sources or for invoking remote web services.

Tools have been implemented to support service
centred data-intensive web sites at design time as well as
at run time. In particular, a Site Designer has been
implemented to offer graphic user interfaces to allow the
design of data-intensive web sites; and the Service
Integrator has been prototyped to provide support for the
integration of web services into data-intensive web sites at
run time.

To our knowledge OntoWeaver-S is the first toolkit
that attempts to integrate (semantic) web services into a
high level design framework. In the future, we will focus
on defining constraints validating the complex site
specifications and provide tools helping developers to find
and correct the specifications that are either with errors or
being inconsistent in the entire site model.

References

[1] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,

D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, T.
Payne, and K. Sycara, DAML-S: Web Service Description
for the Semantic Web, in Proceedings of the 1st
International Semantic Web Conference (ISWC 2002).

[2] P. Atzeni, G. Mecca, and P. Merialdo, Design and
Maintenance of Data-Intensive Web Sites, in proceeding of
the 6th int. Conference on Extending Database Technology
(EDBT), Valencia, Spain, March 1998.

[3] M. Brambilla, S. Ceri, S. Comai, and P. Fraternali, Model-
driven Development of Web Services and Hypertext
Applications, SCI2003, Orlando, Florida, July 2003.

[4] S. Ceri, P. Fraternali, and S. Paraboschi, Design Principles
for Data-Intensive Web sites, SIGMOD Record, 24(1),
March 1999.

[5] S. Ceri, P. Fratenali, and A. Bongio, Web Modelling
Language (WebML): A Modelling Language for Designing
Web Sites, WWW9 Conference, Amsterdam, May 2000.

[6] D. Fensel and C. Bussler (2002), the Web Service
Modeling Framework WSMF, available online at
http://informatik.uibk.ac.at/users/c70385/wese/wsmf.bis200
2.pdf.

[7] F. Frasincar, G. Houben, and R. Vdovjak, Specification
Framework for Engineering Adaptive Web Applications, in
the Eleventh International World Wide Web Conference
WWW2002 Web Engineering Track.

[8] P. Fraternali, Tools and Approaches for Developing Data-
Intensive Web Applications: a survey, ACM Computing
Surveys, Sept. 1999.

[9] F. Garzotto, P. Paolini, and D. Schwabe, HDM—A Model-
Based Approach to Hypertext Application design, ACM
Trans. Inf. Syst. 11, 1 (Jan. 1993), pp. 1 – 26.

[10] IBM Web Services Toolkit – A Showcase for Emerging
Web Services Technologies, available online at
http://www-
3.ibm.com/software/solutions/webservices/wstk-info.html.

[11] T. Isakowitz, E.A. Stohr, and P. Balasubramaninan, RMM:

A Methodology for Structured Hypermedia Design,
Communications of the ACM, August 1995.

[12] Java Web Services Developer Pack, available online at
http://java.sun.com/webservices/webservicespack.ht
ml.

[13] Y. Jin, S. Decker, and G. Wiederhold, OntoWebber:
Model-Driven Ontology-Based Web Site Management,
Semantic Web Workshop, Stanford, California, July 2001.

[14] Y. Lei, E. Motta, and J. Domingue, An Ontology-Driven
Approach to Web Site Generation and Maintenance, in
proceedings of 13th International Conference on
Knowledge Engineering and Management, Sigüenza, Spain
1-4 October 2002, pp. 219-234.

[15] Y. Lei, E. Motta, and J. Domingue, Design of Customized
Web Applications with OntoWeaver, in proceedings of the
International Conference on Knowledge Capture, Florida,
October, 2003.

[16] Y. Lei, E. Motta, and J. Domingue, Modelling Data-
Intensive Web Sites with OntoWeaver, accepted in
International Workshop on
Web Information Systems Modelling (WISM 2004), Riga,
Latvia, 2004.

[17] E. Motta, J. Domingue, L. Cabral, and M. Gaspari, IRS-II:
A Framework and Infrastructure for Semantic Web
Services, in Proceedings of the 2nd International Semantic
Web Conference 2003 (ISWC 2003), 20-23 October 2003,
Sundial Resort, Sanibel Island, Florida, USA.

[18] Resource Description Framework (RDF) Model and
Syntax, W3C Proposed Recommendation.
http://www.w3.org/TR/PR-rdf-syntax/.

[19] Resource Description Framework (RDF) Schema
Specification 1.0, W3C Candidate Recommendation.
http://www.w3.org/TR/rdf-schema/.

[20] W. Retschitzegger, W. Schwinger, Towards Modelling of
DataWeb Applications - A Requirement's Perspective,
Proc. of the Americas Conference on Information Systems
(AMCIS) Long Beach California, Vol. I, August 2000.

[21] D. Schwabe and G. Rossi, The Object Oriented
Hypermedia Design Model, Comm. Of the ACM, Vol.38,
#8, pp 45-46, August 1995.

[22] Simple Object Access Protocol (SOAP) (2000). W3C Note
08. Available online at http://www.w3.org/TR/SOAP/.

[23] UDDI Specification, available online at
http://www.uddi.org/specification.html.

[24] Web Services Description Language (WSDL) (2001), W3C
Note 15, available online at http://www.w3.org/TR/wsdl.

