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Abstract. The paper describes an approach to the construction of a
resolution-type technique basing on a certain generalization of the reso-
lution notion of a clause. This generalization called a conjunctive clause
(c-clause) leads to a possibility to introduce two different inference rules
and determine two c-clause calculi oriented to refutation search in first-
order classical logic both with and without equality. Using the connection
of these calculi with Robinson’s clash-resolution method, a simple way
for the proving of their soundness and completeness is given. Analogs of
some of the well-known resolution strategies for the calculi are suggested.
Besides, the treatment of Maslov’s inverse method in the resolution terms
is given. This research can be used in (e-)learning systems for the intel-
ligent testing of knowledge of trainees learning a mathematical subject.
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1 Introduction

This paper is devoted to the description of special calculi intended for the es-
tablishing of the unsatisfiability of a formula F of a certain form or a set S of
such formulas in first-order classical logic maybe with equality. The calculi relate
to the class of refutation-search methods based on the ideas firstly presented in
Robinsin’s paper [1] on the well-known resolution method.

After the appearance of the resolution method, the main efforts of automated
theorem-proving community were concentrated on its development in the direc-
tion of the construction of its different modifications and strategies oriented to
increasing the efficiency of deduction search. All such attempts based on the use
of a clause being a well-formed expression of the resolution method leaving aside
the possibility of building efficient methods using modifications of the notion of a
clause, to which this paper is devoted. Besides, the problem of the interpretation
of the Maslov inverse method [2] in resolution terms is solved in it.

Our calculi completely are determined by their (resolution-type) inference
rules. The deducibility of a special expression Λ in such a calculus Π is equivalent
to the unsatisfiability of F or S. At that, Π is called a sound calculus, if the



deducibility of Λ implies the unsatisfiability of F or S; Π is called a complete
calculus, if the unsatisfiability of F or S implies the deducibility of Λ.

If we put certain restrictions on inferences of Λ in a calculus Π, these restric-
tions are said to determine a strategy for proof search in Π.

All the above-said takes place for the clash-resolution method [3] being called
the clause calculus below. It deals with clauses and contains the unique inference
rule – the latent class-resolution rule. The empty clause plays the role of Λ.

Let us stop on the way of the construction of an initial set of clauses for a
formula F (or a set S of such formulas) being investigated on unsatisfiability.
First of all, we can consider that F is a closed formula. Further, let us suppose
that F already is presented in Skolem functional form (for satisfiability), all
the quantifiers of which are omitted. Then, under the condition that all its
variables implicitly are bound by the universal quantifier, the following question
is reasonable: Can we refrain from the obligatory presentation F (or S) as a set
of clauses and develop a technique similar to the resolution one? Research in this
direction is described in what follows. At that, note that the papers [4] and [5]
are a starting point for the development of the approach presented here.

We usually give references to the original papers, which laid the foundations
for the research in a particular direction, although for the modern description of
most of them, one can turn to [6] or [7]. QED indicates the end of any proof.

2 Preliminaries

First-order classical logic with functional symbols and equality is considered.
The notions of terms, atomic formula, and formulas are assumed to be known.

A formula being the result of renaming of variables in a formula F is called a
variant of F . A literal is an atomic formula or its negation. For a literal L of
the form ¬A, its complementary L̃ is A. If L is an atomic formula A, then its
complementary L̃ is ¬A.

As it was said above, we restrict ourselves by the consideration of only closed
formulas F presented in Skolem functional form for satisfiability by means of the
elimination of positive quantifiers. That is, F may be considered as a formula
of the form ∀x1 . . . ∀xm G(x1, , xm), where x1, , xm all the variables of F , and
G(x1, , xm) a quantifier-free formula. I. e. it can be assumed that in the case of
reasoning on satisfiability, one has to deal with only quantifier-free formulas, all
variables of which implicitly are universally bound.

We can reduce G(x1, , xm) to a formula D1 ∧ . . . ∧ Dn, where Di is a for-
mula presented in disjunctive normal form (DNF). As a result, we can make
investigation of the set {D1, . . . , Dn} on unsatisfiability instead of making the
appropriate investigation of G(x1, , xm). This leads to the following notions.

If L1, . . . , Lm are literals, then the expression L1∧. . .∧Lm (m ≥ 1) is called a
conjunct. An expression of the form C1∨. . .∨Cn, where C1, . . . , Cn are conjuncts,
is called a conjunctive clause, or a c-clause (n ≥ 0).

A c-clause not containing any conjunct (that is, if n = 0) is called an empty
clause (or empty c-clause) and denoted by �.



In what follows, any conjunct is considered to be the set of its literals and
any c-clause – the set of its conjuncts. Thus, in the case when any conjunct of
a c-clause contains exactly one literal, this c-clause can be considered as a usual
clause (see, for example, [1] or [6]).

The introduced definitions allow us to use all the semantic notions of first-
order classical logic for c-clauses and sets of c-clauses under the assumption
that every variable in any c-clause is universally bound. The empty clause is
considered to be an unsatisfiable formula.

Our main purpose is to prove that the inferring of � in our calculi is equiv-
alent to the unsatisfiability of an initial set of c-clauses.

An inference from an initial set S of c-clauses in a calculi under consideration
is a sequence D1, . . . , Dn, where every Di (i = 1, . . . , n) is either a variant of
an c-clause from S or a variant of a conclusion of a rule applied to some of the
c-clauses preceding Di. Therefore, our calculi uniquely are identified by their
inference rules. That is why the names of rules will serve as unique names of
the calculi under consideration. The deducibility of a c-clause C from a set S of
c-clauses in a calculus Π is denoted by S `Π C.

The resolution method first was published in [1] in 1965. It contained the only
resolution rule of the arity 2. In [8], J.A.Robinson proposed its modification of
this rule under the name of the hyper-resolution. Its further generalization led
to the clash-resolution method [3]. The peculiarity of this generalization is that
it contains the only latent clash-resolution rule (denoted by RR below) that can
be applied to any finite number of clauses. The corresponding clash-resolution
method (being the clause calculus with the RR-rule) is sound and complete [3].

Let us give some necessary notations.

A substitution, σ, is a finite mapping from variables to terms that has the form
σ = {x1 7→ t1, . . . , xn 7→ tn}, where variables x1, . . . , xn are pairwise different
and for any i (1 ≤ i ≤ n), the term ti is distinct from xi.

A substitution σ is called a variant substitution if t1, . . ., tn from σ are
only variables that are pairwise different. In this case, the inverse (one-one)
correspondence σ−1 exists and presents itself a (variant) substitution.

For an expression Ex and a substitution σ, the result of the application of σ
to the expression of Ex is understood in the usual sense; it is denoted by Ex ·σ.

The composition of substitutions (as mappings) σ and λ is denoted by σ · λ.
It has the property that for any expression Ex, Ex · (σ · λ) = (Ex · σ) · λ.

For any set Ξ of expressions, Ξ ·σ denotes the set obtained by the application
of σ to each expression in Ξ. If Ξ is a set of (at least two) expressions and Ξ · σ
a singleton, then σ is called a unifier of Ξ. If Ξ1, . . . , Ξn (n ≥ 1) are sets of
expressions and for a substitution σ, the set Ξi · σ is a singleton (i = 1, . . . , n),
then σ is called a simultaneous unifier of Ξ1, . . . , Ξn.

It is known (see, for example, [6] or [3]) that in the case the existence of a
unifier σ of sets Ξ1, . . . , Ξn, there exist such substitutions λ and σ′ that Ξ1 ·
λ, . . . , Ξn ·· λ are singletons and Ξ1 · σ = (Ξ1 · λ) · σ′, . . . , Ξn · σ = (Ξn · λ) · σ′.
The substitution λ is unique up to renaming of its variables. It is called the most
general simultaneous unifier (mgsu) of Ξ1, . . . , Ξn.



Obviously, we can consider that any mgsu σ has the idempotence property
that means that σ· σ = σ. This fact will often be used in what follows implicitly.

Robinson’s latent clash-resolution rule (RR). Let clauses C0, C1, . . . , Cq (q ≥
1) with mutually distinct variables be of the forms C ′0 ∨ L1,1 . . . ∨ L1,r1 . . . ∨
Lq,1 ∨ . . . ∨ Lq,rq , C ′1 ∨E1,1 ∨ . . .∨E1,p1 , . . ., C ′q ∨Eq,1 ∨ . . .∨Eq,pq respectively,
where C ′0, C

′
1, . . . , C

′
q are clauses and L1, . . . , Lq, E1,1, . . . Eq,pq literals. Suppose

that there exists the mgsu σ of the sets {L̃1,1,. . . ,L̃1,r1 , E1,1,. . . , E1,p1}, . . .,
{L̃q,1,. . . , L̃q,rq , Eq,1,. . . , Eq,pq}. Then the clause C ′0 · σ ∨C ′1 · σ ∨ . . . ∨C ′q · σ is
said to be deducible from C0, C1, . . . , Cq by the rule RR.

The RR-rule with two clauses as its premises will be denoted by RR2.
The paper [3] contains the following result (see, also, [6]).

Robinson’s Proposition. An initial set S of clauses is unsatisfiable if and
only if the empty clause � is inferred in the RR-calculus.

3 C-clause calculi for logic without equality

Below, we introduce two resolution-type rules in order to define two specific c-
clause calculi. These calculi have a number of similar properties. That is why
their proofs are detailed only for one of them. As to the other calculus, the
corresponding proofs for it can be obtained in the same way.

3.1 CR calculus

Let us start with the consideration of the calculus that is based on the analog
of Robinson’s rule RR.

Clash-resolution (CR). Let c-clauses D0, D1, . . . , Dq (q ≥ 1) pairwise without
common variables be of the forms D′0 ∨ K1,1 ∨ . . . ∨ K1,r1 ∨ . . . ∨ Kq,1 ∨ . . .
∨ Kq,rq , D′1 ∨ M1,1 ∨ . . . ∨ M1,p1 , . . ., D′q ∨ Mq,1 ∨ . . . ∨ Mq,pq respectively,
where D′0, . . . , D

′
q are c-clauses and K1,1, . . . , Kq,rg , M1,1, . . . Mq,pq conjuncts.

Suppose that K1,1, . . . , Kq,rq contain literals L1,1, . . . , Lq,rq respectively and for
every j = 1, . . . , q, Mj,1,. . .Mj,pj contain literals Ej,1,. . .Ej,pj respectively such

that there exists the mgsu σ of the sets {L̃1,1,. . . ,L̃1,r1 , E1,1,. . . , E1,p1}, . . .,
{L̃q,1,. . . , L̃q,rq , Eq,1,. . . , Eq,pq}. Then the c-clause D′0 · σ∨ D′1 · σ ∨ . . . ∨D′q · σ
is said to be inferred from the nucleus D0 and electrons D1, . . . , Dq by the CR-
rule. Besides, the q-tuple 〈D0, D1, . . . , Dq〉 is called a CR-clash and D′0 · σ ∨
D′1 · σ ∨ . . . ∨ D′q · σ its CR-resolvent.

Remark. If D0, D1, . . . , Dq are only clauses, the definitions of CR and RR
are coincides, which gives a simple way for proving some results relating to CR.

Proposition 1. The CR-rule is sound.

Proof. Since we implicitly consider every variable in any c-clause to be bound by
the universal quantifier, obviously it is enough to prove that a CR-resolvent is
the logical conclusion of its premises only in the propositional case. For this, it
is enough to check the validity of the propositional formula:



((D′0 ∨ (L̃1,1 ∧ K ′1,1) ∨ . . . ∨ (L̃1,1 ∧ K ′1,r1) ∨ . . . ∨ (L̃q,1 ∧ K ′q,1) ∨ . . . ∨
(L̃q,1 ∧ K ′q,rq )) ∧ (D′1 ∨ (L1,1 ∧ M ′1,1) ∨ . . . ∨ (L1,1 ∧ M ′1,p1)) ∧ . . . ∧ (D′q ∨
(Lq,1 ∧ M ′q,1) ∨ . . .∨ (Lq,1 ∧ M ′q,pq ))) ⊃ (D′0 ∨ D′1 . . . ∨ D′q), where ⊃ is the
implication symbol, which can be made by applying induction on q. QED.

Let a c-clause D distinguished from � be of the form K1 ∨ . . . ∨Kn. Then
ρ(D) is the set {L1 ∨ . . . ∨ Ln : L1 occurs in K1, . . . , Ln occurs in Kn}.

For �, we suppose that ρ(�) contains � and only it.
If S is a set of c-clauses, then ρ(S) denotes the set

⋃
D∈S ρ(D).

It is obvious that for any non-empty set S of c-clauses, ρ(S) is a finite non-
empty set and contains only clauses. Moreover, considering D as a formula, we
can produce ρ(D) my means of applying the following propositional tautology:
A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C), where ≡ is the logical equivalence symbol.
Therefore, a set S is unsatisfiable if and only if ρ(S) is an unsatisfiable set.

Remark. According to the previous remark, we conclude that Robinson’s
clash-resolution technique is used when we are interested in the establishing of
the deducibility of � from ρ(S) in the CR-calculus. Thus, for any finite set S of
c-clauses, it is true that S is unsatisfiable if and only if ρ(S) `CR �.

Lemma 1. Let D0, D1, . . . , Dq be c-clauses and A0, A1, . . . , Aq clauses such that
A0 ∈ ρ(D0), A1 ∈ ρ(D1), . . . , Aq ∈ ρ(Dq). If for A0, A1, . . . , Aq, there is the CR-
clash 〈A0, A1, . . . , Aq〉 with A0 as a nucleus and A1, . . . , Aq as electrons and A is
its CR-resolvent, then there exists the CR-clash 〈D0, D1, . . . , Dq〉 with D0 as a
nucleus, D1, . . . , Dq as electrons, and D as its CR-resolvent such that A ∈ ρ(D).

Proof. Let us consider A0, A1, . . . , Aq from the lemma conditions. Let they be of
the form: B0 ∨ L1,1 ∨ . . . ∨ L1,r1 ∨ . . . ∨ Lq,1 ∨ . . . ∨ Lq,rq , B1 ∨ E1,1 ∨ . . .
∨ E1,p1 , . . ., Bq ∨ Lq,1 ∨ . . . ∨Lq,pq respectively, where B0, . . . , Bq are clauses
and L1,1, . . . , Lq,rq , E1,1, . . . Eq,pq literals such that there exists the mgsu σ of

the sets {L̃1,1, . . ., L̃1,r1 , E1,1, . . ., E1,p1}, . . ., {L̃q,1, . . ., L̃q,rq , Eq,1, . . ., Eq,pq}.
Then the clause B0 ·σ ∨ B1 ·σ ∨ . . . ∨ Bn ·σ is a CR-resolvent of the above-given
CR-clash.

Since A0 ∈ ρ(D0), D0 can be presented in the form D′0 ∨ K1,1 ∨ . . . ∨
K1,r1 ∨ . . . ∨ Kq,1 ∨ . . . ∨ Kq,rq , where D′0 is a c-clause and K1,1, . . . , Kq,rg

conjuncts such that B0 ∈ ρ(D′0) and K1,1, . . . , Kq,rg contain literals L1,1, . . . ,
Lq,rq respectively.

Making reasoning in the similar way, we obtain that D1, . . ., Dq can be
presented in the form D′1 ∨ M1,1 ∨ . . . ∨ M1,p1 , . . ., D′q ∨ Mq,1 ∨ . . . ∨ Mq,pq

respectively, where D′1, . . ., D′q are c-clauses and M1,1, . . . Mq,pq conjuncts such
that B1 ∈ ρ(D′1), . . . , Bq ∈ ρ(D′q) and M1,1, . . ., Mq,pq contain E1,1, . . . Eq,pq .

In accordance with the definition of CR, this means that D0, D1, . . . , Dq form
a clash with D0 as a nucleus and D1, . . . , Dq as electrons. For this CR-clash,
D′0 · σ ∨ D′1 · σ ∨ . . . ∨ D′q · σ is its CR-resolvent. Obviously, B0 · σ ∨ B1 · σ ∨
. . . ∨ Bn · σ ∈ ρ(D′0 · σ ∨ D′1 · σ ∨ . . . ∨ D′q · σ). QED.

Proposition 2. Let S be a set of c-clauses and B′1, . . ., B′n an inference of
� from ρ(S) in the RR-calculus. Then there exists an inference B1, . . ., Bn of �



from S in the CR-calculus such that for every j (j = 1, . . . , n) B′j ∈ ρ(Bj) and
if B′j is a variant of a CR-resolvent of the CR-clash 〈B′ir , . . ., B′i1〉 with B′ir as
its nucleus, then Bj is a variant of a CR-resolvent of the CR-clash 〈Bir , . . .,
Bi1〉 with Bir as its nucleus (i1 < . . . < ir < j).

Proof. Let B′1, . . ., B′n be an inference of � from ρ(S) in the RR-calculus. It
is an inference of � from ρ(S) in the CR-calculus

For each i = 1, . . . , n, assign a c-clause Bi to a clause B′i in the following way.
j = 1. The definition of an inference implies that B′1 is a variant of a clause

C ∈ ρ(S). That is there exists a variant substitution λ such that B′1 is C · λ.
Hence, we can select such a c-clause D in S that C ∈ ρ(D). Take D · λ as B1.
Obviously, B′1 ∈ ρ(B1).

Suppose that j > 1 and we have c-clauses B1 . . ., Bj−1 that pairwise have no
common variables and satisfy the conditions: B′1 ∈ ρ(B1), . . ., B′j−1 ∈ ρ(Bj−1).
Two cases are possible.

(1) B′j is a variant of a clause C ∈ ρ(S). Proceeding in the same manner as in
the case of j = 1, we easily achieve the necessary renaming some of the variables
of D · λ in order the result Bj has no common variables with B1, . . ., Bj−1.

(2) B′i is a variant of a CR-resolvent C of a CR-clash 〈B′ir , . . ., B′i1〉 with
B′ir as its nucleus (i1 < . . . < ir). Accordantly to Lemma 1, we can construct
the CR-clash 〈Bir , . . ., Bi1〉 with Bir as its nucleus and D as its CR-resolvent,
for which C ∈ ρ(D).

Let λ be a variant substitution such that B′ir is C · λ. Obviously, we can
select a variant B of D · λ not having common variables with B1, . . ., Bj−1 and
satisfying the condition B′j ∈ B. Denote this B by Bj .

Let us consider B1, . . . , Bn. Since B′n is � and ρ(�) contains only �, Bn is
the empty clause �. Thus, accordingly to the construction of B1, . . . , Bn, this
sequence is an inference of � satisfying the conclusion of the proposition. QED.

Now, it is easy to obtain the soundness and completeness of the CR-calculus.

Theorem 1 (Soundness and completeness of CR-calculus). A set S of c-clauses
is unsatisfiable if and only if S `CR �.

Proof. The soundness of CR is provided by Prop. 1.
Completeness. If S is an unsatisfiable set of c-clauses, then ρ(S) is an un-

satisfiable set of clauses. The calculus RR is complete (Robinson’s proposition).
Hence, ρ(S) `RR �. Thus, S `CR � on the basis of Prop. 2. QED.

Let us consider an example of a deduction in the CR-calculus. Note that
all the examples in the paper are given only for propositional case since the
resolution-type technique under consideration uses the usual unification.

Example 1. Let U denote the following set of c-clauses: {(A ∧ ¬A) ∨ (B ∧ C) ∨
(E ∧ L), ¬B ∨ ¬C, ¬E ∨ ¬L}, where A,B,C,E, and L are atomic formulas.
The (minimal) inference of � from U in CR is as follows:
1. (A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L) (∈ U),
2. (A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L) (∈ U),
3. (B ∧ C) ∨ (E ∧ L) (by CR from (1) as a nucleus and (2) as an electron),



4. (B ∧ C) ∨ (E ∧ L) (a variant of (3)),
5. ¬B ∨ ¬C (∈ U),
6. E ∧ L (by CR from (5) as a nucleus and (3) and (4) as electrons),
7. E ∧ L (a variant of (6)),
8. ¬E ∨ ¬L (∈ U),
9. � (by CR from (8) as a nucleus and (6) and (7) as electrons).

Therefore, the set U is unsatisfiable.

3.2 IR calculus

Maslov’s inverse method (denoted by MIM here) and Robinson’s resolution
method (the calculus of clauses in our terminology) appeared approximately
at the same time: MIM – in 1964 [2] and RR – in 1965 [1].

After their appearance, the problem of the interpretation of MIM in the
resolution terms has arisen. This problem has attracted the attention of a number
of researchers in inference search (see, for example, [11] and [12]) also because
MIM was defined as a special calculus of so-called favorable assortments and its
description was made in the terms that did not correspond to traditional logical
terminology and resolution one applied at that time.

In [11], S. Maslov gave himself some MIM explanation in the resolution no-
tions for a restricted case. Later, after an attentive analysis of MIM, the author
of this paper “discovered” that MIM interpretation was preferable to do in the
terms of a special c-clause1 calculus [5], the enough description detailed of which
is given below. Also it was found that this calculus has an independent signifi-
cance. It echoes the CR-calculus and, at the same time, it differs from CR.

Inverse resolution (IR). Let c-clauses D0, D1, . . . , Dq (q ≥ 1) pairwise with-
out common variables be of the forms D′0 ∨ K1 ∨ . . . ∨ Kq, D

′
1 ∨ N1

1,1 ∨
. . . ∨ N1

1,p1,1 ∨ . . . ∨ Nr1
1,1 ∨ . . . ∨ Nr1

1,p1,r1
, . . ., D′q ∨ N1

q,1 ∨ . . . ∨ N1
q,pq,1 ∨

. . . ∨ N
rq
q,1 ∨ . . . ∨ N

rq
q,pn,rn

respectively, where D′0, . . . , D
′
q are c-clauses and

K1, . . . ,Kq, N
1
1,1, . . . , N

rq
q,pn,rn

conjuncts. Suppose that for every j (1 ≤ j ≤ q),

Kj contains literals Lj,1, . . . , Lj,rj and N1
j,1, . . . , N

1
j,pj,1

, . . . , N
rj
j,1, . . . , N

rj
j,pj,rj

contain literals E1
j,1, . . . ,E

1
j,pj,1

, . . . , E
rj
j,1, . . . , E

rj
j,pj,rj

respectively such that there

exists the mgsu σ of the sets {L̃1,1, E
1
1,1, . . . , E

1
1,p1,1}, . . . , {L̃1,r1 , E

r1
1,1, . . . ,

Er11,p1,r1
}, . . . , {L̃q,1, E1

q,1, . . . , E
1
q,pq,1}, . . . , {L̃q,rq , E

rq
q,1,. . . , E

rq
q,pq,rq }. Then the

c-clause D′0 · σ ∨D′1 · σ ∨ . . . ∨D′q · σ is said to be inferred from the nucleus D0

and electrons D1, . . . , Dq by the IR-rule. Besides, the q-tuple 〈D0, D1, . . . , Dq〉
is called its IR-clash and D′0 · σ ∨ D′1 · σ ∨ . . . ∨ D′q · σ its IR-resolvent.

Having the IR-rule, we can speak about the IR-calculus.

1 In 1989, V. Lifschitz independently introducing the notion of a c-clause under the
name of a super-clause improved such interpretation [13]. In [14], T. Bollinger ex-
tended Loveland’s model elimination method [15] to the case of c-clauses using the
name of a generalized clause for a c-clause.



The comparative analysis of IR and CR shows that the only difference be-
tween them is in the ways of the selection of cutting literals for their applications.
The following statement contains a more detailed explanation of this observation.

Lemma 2. If 〈D0, D1, . . ., Dq〉 is a CR-clash with D0 an its nucleus and D1, . . .,
Dq as its electrons, then for any its CR-resolvent D, it is possible to construct
an IR-clash with D0 as its nucleus and certain variants of D1, . . ., Dq as its
electrons such that for its some IR-resolvent D′ and a substitution τ , D = D′ ·τ .

Proof. If 〈D0, D1, . . ., Dq〉 is the CR-clash from the definition of CR-rule, then
the c-clauses D0, D1, . . ., Dq can be presented as D′0 ∨ K1,1 ∨ . . . ∨ K1,r1 ∨ . . .
∨ Kq,1 ∨ . . . ∨ Kq,rq , D′1 ∨ M1,1 ∨ . . . ∨ M1,p1 , . . ., D′q ∨ Mq,1 ∨ . . .∨ Mq,pq

respectively, where D′0, . . . , D
′
q are c-clauses and K1,1, . . . , Kq,rg , M1,1, . . . Mq,pq

conjuncts and moreover for literals L1,1, . . . , Lq,rq , Ej,1, . . .Ej,pj from K1,1, . . . ,
Kq,rg , M1,1, . . . Mq,pq respectively, there exists the mgsu σ of the sets Θ1 =

{L̃1,1,. . . ,L̃1,r1 , E1,1,. . . , E1,p1}, . . ., Θq = {L̃q,1,. . . , L̃q,rq , Eq,1,. . . , Eq,pq} such
that D = D′0 · σ ∨ D′1 · σ ∨ . . . ∨ D′q · σ .

Let us take such variant substitutions λ1,1, . . ., λ1,r1 ,. . ., λq,1,. . ., λq,rq that
D1 ·λ1,1,. . ., D1 ·λ1,r1 , . . ., Dq ·λq,1 . . . Dq ·λq,rq have no common variables with

D0 and each other. Considering λ−11,1, . . ., λ−1q,rq as mapping graphs, construct the

set λ−11,1 ∪ . . . ∪ λ−1q,rq . Obviously, it is a (variant) substitution. Let us denote it

by µ and the c-clause D′j · λj,k ∨ Mj,1 · λj,k ∨ . . . ∨ Mj,pj · λj,k by Dk
j .

Let us consider D1
1, . . ., Dr1

1 , . . ., D1
q , . . ., D

rq
q . Accordantly to their definition

and the definition of µ, we have that Dk
j ·µ is the same as Dk

j ·λ
−1
j,k and, therefore,

it is the same as Dj (j = 1, . . . , q; k = 1, . . . , rj). Thus, we can select literals
E1

1,1, . . . ,E
1
1,p1 , . . . , E

r1
1,1, . . . , E

r1
1,p1

, . . ., E1
q,1, . . . ,E

1
q,pq , . . . , E

rq
q,1, . . . , E

rq
q,pq in

M1,1 · λ1,1, . . ., M1,p1 · λ1,1, . . ., M1,1 · λ1,r1 , . . ., M1,p1 · λ1,r1 , . . ., Mq,1 · λq,1, . . .,
Mq,pq · λq,1, . . ., Mq,1 · λq,rq , . . ., Mq,pq · λq,rq respectively, such that Eki,j · λ

−1
i,k =

Eki,j · µ = Ei,j (i = 1, . . . , q; j = 1, . . . , pq; k = 1, . . . , rq).
Considering σ and µ as mapping graphs, we conclude that ζ = µ · σ ∪ σ is a

substitution. Because σ is the mgsu of the sets Θ1, . . . , Θq, the definition of ζ and
the idempotence of σ imply that ζ is a simultaneous unifier of the sets of literals
{L̃1,1 E

1
1,1, . . . ,E

1
1,p1}, . . . , {L̃1,r1 E

r1
1,1, . . . , E

r1
1,p1
}, . . ., {L̃q,1 E1

q,1, . . . ,E
1
q,pq},

. . ., {L̃q,rq E
rq
q,1, . . . , E

rq
j,pq
}. Therefore, there exists the mgsu θ of these sets, for

which ζ = θ · τ , where τ is a substitution.
As a result, we have that D0, D1

1, . . ., Dr1
1 , . . ., Dq

1, . . ., D
rq
q can form the

IR-clash with D0 as its nucleus and D1
1, . . ., Dr1

1 , . . ., Dq
1, . . ., D

rq
q as its electrons

that produces the IR-resolvent D′ = D′0 · θ ∨ D′1 · (λ1,1 · θ) ∨ . . . ∨ D′1 · (λ1,r1 · θ)
∨ . . . ∨ D′q · (λq,1 · θ) ∨ . . . ∨ D′q · (λq,rq · θ).

Since θ · τ = ζ and ζ = µ · σ ∪ σ, it is obvious that D′ · τ = D. QED.

This result permits to “simulate” any inference in CR by an inference in IR.

Proposition 3. Let S be a set of c-clauses and B1, . . ., Bn an inference of
� from S in the CR-calculus. Then there exists an inference B′1, . . ., B′m of �
from S in the IR-calculus (m ≥ n) such that if Bj is a variant of a CR-resolvent
of an CR-clash with Br as its nucleus, then for some j′ and r′ (j′ ≥ j, r′ ≥ r),



B′j′ is a variant of an IR-resolvent of the corresponding IR-clash with B′r′ as its
nucleus; moreover, Bj = B′j′ · τ for some substitution τ .

Proposition 4. The IR-rule is sound.

Proof. As in the case of the CR-rule, it is enough to establish the validity of
the following formula, “extracted” from the definition of IR-rule:

(D′0 ∨ (L̃1,1 ∧ . . . ∧ L̃1,r1 ∧ K ′1) ∨ . . . ∨ (L̃q,1 ∧ . . . ∧ L̃q,rq ∧ K ′q)) ∧ (D′1 ∨
(L1,1 ∧ M1

1,1) ∨ . . . ∨ (L1,1 ∧ M1
1,p1,1) ∨ . . . ∨ (L1,r1 ∧ M

r1
1,1) ∨ . . . ∨ (L1,r1 ∧

Mr1
1,p1,r1

)) ∧ . . . ∧ (D′q ∨ (Lq,1 ∧ M1
q,1) ∨ . . . ∨ (Lq,1 ∧ M1

q,pq,1) ∨ . . . ∨ (Lq,rq ∧
M

rq
q,1) ∨ . . . ∨ (Lq,rq ∧ M

rq
q,pq,rq ))) ⊃ (D′0∨ D′1 . . . ∨ D′q). QED.

Theorem 2 (Soundness and completeness of IR-calculus). A set S of c-clauses
is unsatisfiable if and only if S `IR �.

Proof. The soundness is provided by Prop. 4.

Completeness. If S is unsatisfiable set, then S `IR � by Theorem 1. By Prop.
3, any inference of � from S in CR can be transformed into an inference of �
from S but already in the IR-calculus, that is S `IR �. QED.

Example 2. Let us consider the set U from Example 1 and construct the (mini-
mal) inference of � from U in IR is as follows:

1. (A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L) (∈ U),
2. (A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L) (∈ U),
3. (B ∧ C) ∨ (E ∧ L) (by IR from (1) ac a nucleus and (2) as an electron),
4. ¬B ∨ ¬C (∈ U),
5. ¬E ∨ ¬L (∈ U),
6. � (by IR from (3) as a nucleus and (4) and (5) as electrons).

We have again proved the unsatisfiability of U .

Draw your attention to the fact that this inference in IR is shorter than the
inference in CR from Example 1. This situation is more or less standard for these
calculi (see the section containing a comparison of CR and IR).

4 C-clause calculi for logic with equality

The CR- and IR-calculi admit equality handling based on a modification of the
paramodulation rule that was proposed in [9] for inference search in first-order
theories with equality (denoted by ').

We are needed in the following notions that provide us with a possibility to
reduce the establishing of the validity of the first-order statement with equality
to the search of the refutation of a certain set of c-clauses.

Let S be a set of c-clauses. Then S' denotes the set of equality axioms for S
in the form of clauses, in which x, y, z, x0, . . . , xp are variables (see, for example,
[6]): consists of the following (1) x ' x, (2) x 6' y ∨ y ' x, (3) x 6' y ∨ y 6'
z ∨ x ' z, (4) xi 6' xo ∨ R̃(x1, . . . , xi, . . . , xp) ∨ R(x1, . . . , x0, . . . , xp) for each
p-arity predicate symbol R occurring in S and for each i = 1, 2, . . . , p, (5) xi 6' xo



∨ f(x1, . . . , xi, . . . , xp) ' f(x1, . . . , x0, . . . , xp) for each p-arity function symbol
f occurring in S and for each i = 1, 2, . . . , p.

A set S of c-clauses is called equationally unsatisfiable if and only if the set
S ∪ S' is unsatisfiable.

Thus, in the case when we have deals with S requiring equality handling,
we must establish the equationally unsatisfiability of the set S, which can be
achieved by deducing the empty clause � from S ∪S'. But such approach leads
to the extreme large growth of the searching space. For the optimization of such
growth, we use a modification of the paramodulation rule [9].

Paramodulation rule PP. Let we have two c-clauses D and D′ ∨ (K ∧ s ' t),
where D′ is a c-clause and K conjunct (possibly, empty). If there exists mgsu
σ of the set of terms {s, u}, where u is a term occurring in D at a selected
position, then the c-clause D′ · σ ∨ (D · σ)[t · σ] is said to be inferred from these
c-clauses by the rule PP , where (D · σ)[t · σ] denotes the result of replacing in
D · σ the term u · σ being at the selected position by t · σ. At that, the or-
dered pair 〈 D, D′ ∨ (K ∧ s ' t) 〉 is called a PP-clash (w.r.t. s ' t) with the
PP -paramodulant D′ ·σ ∨ (D ·σ)[t·σ], nucleus D, and electron D′∨(K∧s ' t).

The set Sf of functionally reflexive axioms for a set S of c-clauses consists
of all the clauses of the form f(x1, . . . , xp) ' f(x1, . . . , xp), where f is a p-arity
function symbol occurring in S.

Adding PP to the CR- and IR-calculi, we get the calculi CR+PP and IR+PP
intended for inference search in first-order classical logic with equality.

Remark. If in the above-given definition, PP is applied to only clauses, we
have the usual paramodulation rule from [9] being denoted by P here.

Because of the completeness of the inference system “negative hyper-resolution
+ paramodulation” (see, for example, [6]), the following result takes place on
the basis that a set S of c-clauses is equationally unsatisfiable if and only if ρ(S)
is equationally unsatisfiable.

Robinson-Wos’s Proposition. A set S of c-clauses is equationally unsatis-
fiable if and only if ρ(S) ∪ {x = x} ∪ Sf `RR+P �.

Taking into account the well-known result [10] about the completeness of
the system “resolution + paramodulation” without using functionally reflexive
axioms, we obtain the further reinforcement of Robinson-Wos’s Proposition.

Corollary. A set S of c-clauses is equationally unsatisfiable if and only if
ρ(S) ∪ {x = x} `RR+P �. Moreover, RR can denote the only binary rule.

Now, we have all the necessary for obtaining the results about the complete-
ness of the calculi CR+PP and IR+PP.

First of all, the following analog of Lemma 1 for the PP -rule is obvious.

Lemma 3. Let D and D′ ∨ (K ∧ s ' t) are c-clauses from the definition of
PP . If for C ∈ ρ(D) and C ′ ∈ ρ(D′), there exists the PP -clash 〈C, C ′ ∨ s ' t〉
w.r.t. s ' t with a PP -paramodulant A, then there exists the PP -clash 〈D,
D′ ∨ (K ∧ s ' t)〉 w.r.t. s ' t with such a PP -paramodulant B that A ∈ ρ(B).



Using this lemma and Prop. 2 and 3, it is easy to obtain the following result.

Proposition 5. Let S be a set of c-clauses and B′1, . . ., B′n an inference of
� from ρ(S) ∪ {x = x} ∪ Sf in the calculus RR+P. Then there exists an infer-
ence B1, . . ., Bn of � from S ∪ {x = x} ∪ Sf in the calculus CR+PP (IR+PP)
such that: (1) if B′j is a variant of a resolvent of an RR-clash with B′r as its nu-
cleus, then for some j′ and r′, Bj′ is a variant of a resolvent of the corresponding
CR-clash (IR-clash) with Br′ as its nucleus and, additionally, B′r ∈ ρ(Br′ ·τ) for
some substitution τ ; (2) if B′j is a variant of a paramodulant of a PP -clash with
B′r as its nucleus, then for some j′ and r′, Bj′ is a variant of a paramodulant of
the PP -clash with Br′ as its nucleus and B′r ∈ ρ(Br′ ·τ) for some substitution τ .

This proposition, in fact, guarantees the completeness of the paramodulation
extensions of the CR- and IR-calculi as well as their methods and strategies, some
of which are given in the next section. Note that the soundness of such extensions
is provided by Prop. 1 and 4 and the obvious fact that PP -paramodulant is a
logical conclusion of the conjunction of all the c-clauses from {N,E} ∪ {N,E}',
where N is a nucleus and E an electron of a PP -rule application.

Theorem 3 (Soundness and completeness of CR+PP and IR+PP). A set S
of c-clauses is equationally unsatisfiable if and only if S ∪ {x = x} `IR+PP �
(S ∪ {x = x} `CR+PP �). Moreover, CR (IR) can be the only binary rule.

Proof. The soundness of CR+PP and IR+PP is provided by the remark in
the preceding paragraph. Completeness takes place for CR+PP and IR+PP due
to Corollary and Prop. 5. The completeness of CR+PP with the binary CR-rule
is obvious. For proving the completeness of IR+PP with the binary IR-rule, it is
enough to note that any binary application of CR can be “decomposed” into r1
binary applications of IR (see the proof of Lemma 2 for the binary case). QED.

5 Methods and strategies for CR and IR

Prop. 5 gives a simple way for transferring most part of the methods and strate-
gies taking place for the usual clash-resolution (RR) to the ones for the CR- and
IR-calculi for classical logic both with and without equality. For the demonstra-
tion of how it is possible to do, let us consider the usual liner resolution and
positive and negative hyper-resolutions in their wording from [6].

Note that they are given for logic with equality. To obtain them for the
case without equality, it is enough to delete all parts concerning the PP -rule in
the definitions and wordings of the theorems given below. Also note that their
soundness is provided by the soundness of the rules CR, IR, and PP . That is
why a soundness proof is absent in corresponding theorems.

Linear strategy for CR2+PP and IR2+PP. It permits to apply CR2

(IR2) or PP to the pair of c-clauses when beginning with the second rule appli-
cation in an inference, any its c-clause is either a CR2-resolvent (IR2-resolvent)
or PP -paramodulant of the previous application of the rule CR2 (IR2) or PP ,
and the other c-clause is a variant of either a c-clause from an initial set S of



c-clauses or a c-clause that was deduced earlier.

Theorem 4 (Soundness and completeness of linear strategy for CR2+PP and
IR2+PP). A set S of c-clauses is equationally unsatisfiable if and only if there
exists an inference of � from S ∪ {x = x} ∪ Sf satisfying to the linear strategy
for CR2+PP (IR2+PP).

Proof. Completeness takes place due to the completeness of the usual linear reso-
lution with paramodulation [6], Robinson-Wos’s Proposition, and Prop. 5. QED.

Positive and negative hyper-resolution for CR2+PP (IR2+PP).
An atomic formula is called a positive literal. A literal of the form ¬A, where A
is an atomic formula, is a negative one.

A c-clause is called a positive (negative) if each its conjunct contains at least
one positive (negative) literal. Note that there are c-clauses being positive and
negative at the same time, for example, ¬A ∧A.

A CR- or IR-clash 〈D0, D1, . . . , Dq〉 with D0 as a nucleus and D1, . . . , Dq

as electrons is called positive (negative), if D1, . . . , Dq are positive (negative)
c-clauses and the cut literals Lj,k in the definitions of CR or IR respectively are
negative (positive).

For logic without equality, positive (negative) hyper-resolution strategy for CR
and IR permits constructing inferences containing only the positive (negative)
hyper-resolution clashes with positive (negative) CR- or IR-resolvents.

In the case of logic with equality, we additionally permit to apply the PP -rule
only to positive nucleus and electron; moreover, a literal containing the selected
occurrence of the term u (see the definition of PP -rule) must be positive.

Theorem 5 (Soundness and completeness of positive and negative hyper-resolu-
tions with PP -rule). A set S of c-clauses is equationally unsatisfiable if and only
if there exists an inference of � from S ∪ {x = x} ∪ Sf satisfying to the positive
and negative hyper-resolution with CR- (IR-) and PP -rules.

Proof. Completeness. Since there exists an inference of � from ρ(S)∪{x = x}∪Sf
satisfying to the usual positive (negative) hyper-resolution and paramodula-
tion (see [6]), this inference can be transformed into an inference of � from
S ∪ {x = x} ∪ Sf satisfying to the positive and negative hyper-resolution with
CR (IR) and PP on the basis of Robinson-Wos’s Proposition and Prop. 5. QED.

Remark. In Theorems 9 and 10, the adding of functionally reflexive axioms
to the set S is the necessary condition for completeness. Examples demonstrating
this for clauses (when CR, IR, and RR are coincided) can be found in [6].

6 IR calculus and Maslov’s inverse method

Below, we give the description of MIM in the form of a special strategy for IR.
Maslov’s inverse method deals with so-called favorable assortments. In this

connection, we consider MIM as a calculus of favorable assortments that has
two inference rule: A and B. The A rule determines an initial set of favorable



assortments, while the B rule produces new favorable assortments from the al-
ready deduced ones. That is why we treat assortments as clauses and favorable
assortments as favorable clauses being produced by the α and β rules (see below).

If C is a conjunct L1 ∧ . . .∧Lr, where L1, . . . , Lr are literals, then C̃ denotes
the clause L̃1 ∨ . . . ∨ L̃r.

Rule α. Let S be a set of c-clauses and Sd = {C̃ : C is a conjunct from a
c-clause belonging to S}. If Sα = {C : C = C ′ · σ ∨ C ′′ · σ, where C ′, C ′′ ∈ Sd
and C ′ and C ′′ contain literals L and L′ respectively such that there exists the
mgsu σ of {L̃, L′}}, then any clause from Sα is called a favorable one deduced
from S by the α-rule.

Obviously, Sα is a finite set if S is the same. Besides, each its (favorable)
clause contains both a literal and its complementary. That is why S is a unsat-
isfiable set of c-clauses if and only if the set S ∪ Sα is unsatisfiable.

Rule β. Let S be a set of c-clauses, D ∈ S, D consists of q conjuncts, and
C1, . . ., Cq be favorable clauses. If the IR-rule can be applied to D as a nucleus
and C1, . . ., Cq as electrons, than the IR-resolvent of this application is called
a favorable clause that is deducible from D, C1, . . ., Cq by the β-rule.

Note that the requirement that the number of conjuncts in D ids equal to q
leads to the fact that any IR-resolvent of β-rule is a clause.

In these terms, MIM presents itself the following strategy for IR-calculus
called a MIM-strategy: First of all, we produce all the possible favorable clauses
applying the α-rule; then, we apply only the β-rule attempting to deduce �.

The soundness of the MIM-strategy provides the soundness of IR-rule and
the above-given remark about S ∪ Sα. As to completeness, the proof of it is
omitted here; we simply give the rewording of the main result for MIM from [2].

Theorem 6 (Soundness and completeness of MIM-strategy). A set S of c-clauses
that pairwise have no common variables is unsatisfiable if and only if there exists
an inference of � from S satisfying to the MIM-strategy.

This result seams unexpected because of the requirement that D from the
definition of the β-rule must consist of exact q conjuncts. This apparent contra-
diction is explained by the fact that when using the MIM-strategy, we construct
Sα containing clauses, the usage of which in an application of the β-rule can be
considered as a “latent” way for reducing the number of electrons.

The below-given example demonstrates some of the features of inferences
satisfying to the MIM-strategy.

Example 3. It is easy to see that for U from Example 1, Ud = {¬A∨A,¬B∨¬C,
¬E ∨¬L,B,C,E,L}. As a result, Uα = {¬A∨A∨¬A∨A,¬B ∨¬C ∨B,¬B ∨
¬C ∨ C,¬E ∨ ¬L ∨ E,¬E ∨ ¬L ∨ L}. We have the following MIM-inference:

1. (A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L) (∈ U),
2. ¬B ∨ ¬C (∈ U),
3. ¬E ∨ ¬L (∈ U),
4. ¬A ∨A ∨ ¬A ∨A (by α-rule),



5. ¬B ∨ ¬C ∨B (by α-rule),
6. ¬B ∨ ¬C ∨ C (by α-rule),
7. ¬E ∨ ¬L ∨ E (by α-rule),
8. ¬E ∨ ¬L ∨ L (by α-rule),
9. B∨E (by β-rule from (1) as a nucleus and (4), (5), and (7) as electrons ),
10 . C ∨E (by β-rule from (1) as a nucleus and (4), (6), and (7) as electrons),
11. E (by β-rule from (2) as a nucleus and (9) and (10) as electrons),
12. B ∨L (by β-rule from (1) as a nucleus and (4), (5), and (8) as electrons),
13 . C ∨L (by β-rule from (1) as a nucleus and (4), (6), and (8) as electrons),
14. L (by β-rule from (2) as a nucleus and (12) and (13) as electrons),
15. � (by β-rule from (3) as a nucleus and (11) and (14) as electrons).

We have proved the unsatisfiability of U at the 3rd time.

7 Comparison of CR- and IR-calculi

One can see that the obtained results on the CR- and IR-calculi “echo” each
other. In this connection, it is interesting to know is there any advantages of one
of them over the other? Moreover that Prop. 3 states that any inference of � in
CR can be simulated by an inference of � in IR with the same number of rule
applications. This section contains an answer on this question when comparison
is made w.r.t. inferences being minimal on the number of rule applications.

By ψ(Π,∆, S), denote the number all the c-clauses in an inference ∆ of
a c-clause C from a set S in a calculus Π that are deduced by different rule
applications. The inference ∆ is minimal on the number of rule applications if
for any other inference∆′ of a variant of C from S inΠ, the inequality ψ(Π,∆, S)
≤ ψ(Π,∆′, S) holds.

Let ∆ denote an inference of � from S in CR. Using Prop. 3, it is easy to
construct an inference Γ of � from S in IR such that ψ(IR, Γ, S) ≤ ψ(CR,∆, S).
Thus, in the case when ∆min and Γmin denotes the minimal inferences on the
introduced characteristic, we have that ψ(CR,∆min, S) − ψ(IR, Γmin, S) ≥ 0.

Let us make an attempt to find an upper bound for this difference restricting
us by the case when an initial set S contains only c-clauses without variables.

Let us consider an application of IR-rule to a nucleus c-clauseD0 and electron
clauses D1, . . . , Dn (n ≥ n) with an IR-resolvent D. Its attentive analysis
demonstrates that this (n + 1)-arity application can be slitted into n binary
applications of CR-rule in the following way: first we make a binary application
of CR to D0 and D1, then to an obtained CR-resolvent and D2, and so on. That
is we can split any n+ 1-arity IR-application into n binary CR-applications in
such a way that for the result C of such CR-rule applications, C will contain all
or some of conjuncts belonging to D.

This observation leads to the following upper bound for the difference given
above: ψ(CR, ∆min, S) − ψ(IR, Γmin, S) ≤

∑
(mi − 2), where mi is the arity

of the ith CR-rule application in ∆min and the sum is taken over all of mi.
To demonstrate that this upper bound is achieved, let us take the sets Sn =

{(L1 ∧ E1) ∨ . . . ∨ (Ln ∧ En), (A1,1 ∧ B1,1) ∨ . . . ∨ (A1,m1 ∧ B1,m1) ∨ L̃1 ∨



Ẽ1, Ã1,1 ∨ B̃1,1 ∨ L̃1 ∨ Ẽ1, . . ., Ã1,m1
∨ B̃1,m1

∨ L̃1 ∨ Ẽ1, . . ., (An,1 ∧ Bn,1) ∨
. . . ∨ (An,mn

∧ Bn,mn
) ∨ L̃n ∨ Ẽn, Ãn,1 ∨ B̃n,1 ∨ L̃n ∨ Ẽn, . . ., Ãn,mn

∨ B̃n,mn

∨ L̃n ∨ Ẽn}, where L1, . . ., Ln, E1, . . ., En, A1,1, . . ., An,mn , B1,1, . . ., Bn,mn

are literals.
Below we give an inference ∆ of � from Sn in the IR-calculus. (Thus, Sn is

an unsatisfiable set.)

d (A1,1 ∧ B1,1) ∨ . . . ∨ (A1,m1 ∧ B1,m1) ∨ L̃1 ∨ Ẽ1 (∈ S),

| Ã1,1 ∨ B̃1,1 ∨ L̃1 ∨ Ẽ1 (∈ S),
| . . .
b Ã1,m1 ∨ B̃1,m1 ∨ L̃1 ∨ Ẽ1 (∈ S),

. . .
d (An,1 ∧ Bn,1) ∨ . . . ∨ (An,mn

∧ Bn,mn
) ∨ L̃n ∨ Ẽn (∈ S),

| Ãn,1 ∨ B̃n,1 ∨ L̃n ∨ Ẽn (∈ S),
| . . .
b Ãn,mn

∨ B̃n,mn
∨ L̃n ∨ Ẽn (∈ S),

d (L1 ∧ E1) ∨ . . . ∨ (Ln ∧ En) (∈ S),
| L̃1 ∨ Ẽ1 (by IR from the 1st-block c-clauses with the 1st c-clause as a nucleus),
| . . .
b L̃n ∨ Ẽn (by IR from the nst-block c-clauses with the 1st c-clause as a nucleus),

� (by IR from the (n+1)st block c-clauses with the 1st c-clause as a nucleus).
Using the ideas from [16], we can prove that ∆ is a minimal inference in IR

containing n+ 1 rule applications with the arities m1 + 1, . . . ,mn+ 1, and n+ 1.
Now, let us convert ∆ into an inference Γ of � from Sn, but already in the

CR-calculus in the following way:
For each i (i = 1, . . . , n), let us replace the c-clause L̃i ∨ Ẽi by the sequence

of c-clauses (Ai,2 ∧ Bi,2) ∨ . . . ∨ (Ai,mi
∧ Bi,mi

) ∨ L̃i ∨ Ẽi, . . ., (Ai,mi
∧ Bi,mi

)

∨ L̃i ∨ Ẽi, L̃i ∨ Ẽi that along with the all c-clauses form the i th block is an
inference of L̃i ∨ Ẽi in CR. Replace the empty clause � by the sequence (L2 ∧
E2) ∨ . . . ∨ (Ln ∧ En), . . ., . . . (Ln ∧ En), �, being an inference of � in CR
since (L2 ∧ E2) ∨ . . . ∨ (Ln ∧ En) is deduced from (L1 ∧ E1) ∨ (L2 ∧ E2) ∨
. . . ∨ (Ln ∧ En) and (L1 ∧ E1) by the CR-rule, . . ., (Ln ∧ En) is deduced from
(Ln−1 ∧ En−1) ∨ . . . ∨ (Ln ∧ En) and (Ln−1 ∧ En−1) by the CR-rule, � is
deduced from (Ln ∧ En) and (Ln ∧ En) by CR.

We have that Γ is an inference of � from Sn in CR, for which ψ(CR,Γ , Sn)
= (

∑n
i=1mi) + (n+ 1). Again using the ideas from [16], we can conclude that Γ

is a minimal inference in CR.
Finally, we get ψ(CR,Γ , Sn)−ψ(IR,∆, Sn) = (n− 1) +

∑n
i=1(mi− 1), that

is the upper bound is reachable.

8 Conclusion

The paper does not touch any practical aspects and is purely theoretical. Never-
theless, the author considers that it may be useful for researchers involved in the
implementation of intelligent systems, in particular, e-learning systems requiring
tools for proof search in classical logic at least for the following reasons.



The research demonstrates that the transition to c-clauses being the gener-
alization of the widely-used resolution notion as a clause gave the possibility to
construct the calculi possessing different properties in general and not worsening
such an important characteristic as the minimum number of rule applications
in comparison with the usual resolution methods. Although now it is difficult to
say that the “behavior” of provers based on these calculi will be better than the
“behavior” of the well-know resolution provers such as Vampire or Prover 9, we
may expect that more detailed analysis of the proposed approach will lead to
the further improvement of the traditional resolution technique. From this point
of view, MIM seems to be a more attractive method, possessing a number of
positive features not mentioned in the paper and requiring a separate study.

References

1. J. A. Robinson. A machine-oriented logic based on the resolution principle. In J.
Assoc. Comput. Mach. 12, 23-41, 1965, 28: 2–20.

2. S. Yu. Maslov. The inverse method for establishing the deducibility in the classical
predicate calculus. In DAN SSSR, 159(1): 17–20, 1964. In Russian.

3. J. A. Robinson. An Overview of mechanical theorem proving. In Lecture Notes in
Operations Research and Mathematical Systems, 28: 2–20, 1970.

4. A. V. Lyaletski and A. I. Malashonok. A calculus of c-clauses based on the clash-
resolution rule. In Mathematical Issues of Intellectual Machines Theory, GIC AS
UkrSSR: Kiev, 3–33, 1975. In Russian.

5. A. V. Lyaletski. On a calculus of c-clauses. In Mathematical Issues of Intellectual
Machines Theory, GIC AS UkrSSR: Kiev, 34–48, 1975. In Russian.

6. Ch. Lee and R. Ch. Chang, Richard (1987). Symbolic Logic and Mechanical The-
orem Proving. Academic Press: New York, 331 pp., 1997.

7. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (vol-
ume 1). Elsevier and MIT Press, 981 pp., 2001.

8. J. A. Robinson. Automatic deduction with hyper-resolution. In International
Journal of Computer Mathematics, 227–234, 1965.

9. G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order the-
ories with equality. In Machine Intelligence, 4: 135–150, 1969

10. D. Brand. Proving theorems with the modification method. In SIAM Journal on
Computing, 4: 412–430, 1975.

11. S. Yu. Maslov. Proof-search strategies for methods of resolution type. In Machine
Intelligence, 6: 77–90, 1971.

12. D. Kuechner. On the relation between resolution and Maslov’s inverse method. In
Machine Intelligence, 6: 73–76, 1971.

13. Lifschitz V. What is the inverse method? In Journal of Automated Reasoning, 5:
1–23, 1989.

14. Bollinger T. A model elimination calculus for generalized clauses. In Proceedings
of IJCAI’91, v. 1: 126–131 , 1991.

15. Loveland D.W. A simplified format for the model elimination theorem-proving
procedure. In Journal of the ACM (JACM), v. 16, n. 3: 349–363, 1969.

16. A. V. Lyaletski. On minimal inferences in the calculi of c-clauses. In Issues of the
Theory of Robots and Artificial Intelligence, GIC AS UkrSSR: Kiev, 88–101, 1977.
In Russian.


