

Automated Development of Markovian Chains for Fault-

Tolerant Computer-Based Systems with Version-

Structure Redundancy

BogdanVolochiy1, Oleksandr Mulyak2, Vyacheslav Kharchenko3

1National University Lviv Polytechnic, Lviv, Ukraine

bvolochiy@ukr.net
2RPC “PromTechnoServis Ukraine”, Kyiv, Ukraine

mulyak@prom-technoservice.com
3 National Aerospace University “KhAI”, Kharkiv, Ukraine

v.kharchenko@khai.edu

Abstract. Reliability design of fault-tolerant computer-based systems with ver-

sion-structural redundancy and multiply software updates involves solving num-

ber of issues. This paper outlines an availability model of the computer-based

systems which shows the algorithm for reliability behavior. For various configu-

rations of the computer-based systems, the use of the proposed model and prob-

lem-oriented software, ASNA represents the ability to automate constructed the

Markovian chains. This model includes a number of settings: failure rate of the

software; numbers of software updates; duration of software updates; the struc-

ture of the system’s hardware and reliability indicators. The proposed model for

the automated development of Markovian chains is subject to the adaptation of

the structure of the hardware of computer-based systems and/or the algorithms of

reliability behavior. This allows us to obtain a new model and the feasibility to

automate development of the Markovian chains.

Keywords. Markovian Chains, Automated Reliability Design, Fault-Tolerance

System, Version-Structural Redundancy, Common Sliding Standby, Hot

Standby, Cold Standby

Key Terms. Mathematical Modeling, Method, Software Systems.

1 Introduction

1.1 Motivation

Nowadays the developments of fault-tolerant computer-based systems (FTCSs) are

a part of weaponry components, space, aviation, energy and other critical systems. One

mailto:v.kharchenko@khai.edu

2

of the main tasks is to provide requirements of reliability, availability and functional

safety. Thus the two types of possible risks relate to the assessment of risk, and to en-

suring their safety and security.

Reliability (dependability) related design (RRD) [1-6] is a main part of development

of complex fault-tolerant systems based on computers, software (SW) and hardware

(HW) components. The goal of RRD is to develop the structure of FTCS tolerating HW

physical failure and SW designs faults and assure required values of reliability, availa-

bility and other dependability attributes. To ensure fault-tolerance software, two or

more versions of software (developed by different developers, using other languages

and technologies, etc) are used [7]. Therefore use of structural redundancy for FTCS

with multiple versions of software is mandatory. When commissioning software some

bugs (design faults) remain in its code [8], this leads to the shut-down of the FTCS.

After detection the bugs, a software update is carried out. These factors have influence

on the availability of the FTCS and should be taken into account in the availability

indexes. During the operation of FTCS it is also possible that the HW will fail leading

to failure of the software. To recover the software operability, an automatic restart pro-

cedure, which is time consuming, is performed. The efficiency of fault-tolerant hard-

ware of FTCS is provided by maintenance and repair.

Insufficient level of adequacy of the availability models of FTCS leads either to ad-

ditional costs (while underestimating of the indexes), or to the risk of total failure (when

inflating their values), namely accidents, material damage and even loss of life. Relia-

bility and safety are assured by using (selection and development) fault-tolerant struc-

tures at RRD of the FTCS, and identifying and implementing strategies for mainte-

nance. Adoption of wrong decisions at this stage leads to similar risks.

1.2 Related Works Analysis

Research papers, which focus on RRD, consider models of the FTCS. Most models

are primarily developed to identify the impact of one the above-listed factors on relia-

bility indexes. The rest of the factors are overlooked. Papers [4, 5] describe the relia-

bility model of FTCS which illustrates separate HW and SW failures. Paper [6] offer

reliability model of a fault-tolerant system, in which HW and SW failures are differen-

tiated and after corrections in the program code the software failure rate is accounted

for. Paper [8] describes the reliability model of the FTCS, which accounts for the soft-

ware updates. In paper [10] the author outlines the relevance of the estimation of the

reliability indexes of FTCS considering the failure of SW and recommends a method

for their determination. Such reliability models of the FTCS produce analysis of its

conditions under the failure of SW. This research suggests that MTTFsystem=MTTFsoft-

ware. Thus, it is possible to conclude that the author considers the HW of the FTCS as

absolutely reliable. Such condition reduces the credibility of the result, especially when

the reliability of the HW is commensurable to the reliability of the SW. Paper [11]

presents the assessment of reliability parameters of FTCS through modelling behavior

using Markovian chains, which account for multiple software updates. Nevertheless

there was no evidence of the quantitative assessments of the reliability measures of

presented FTCS.

3

In paper [12], the authors propose a model of FTCS using Macro-Markovian chains,

where the software failure rate, duration of software verification, failure rate and repair

rate of HW are accounted for. The presented method of Macro-Markovian chains mod-

elling [12, 13] is based on logical analysis and cannot be used for profound configura-

tions of FTCS due to their complexity and high probability of the occurrence of mis-

takes. Also there is a discussion around the definition of requirements for operational

verification of software of the space system, together with the research model of the

object for availability evaluation and scenarios preference. It is noted that over the last

ten years out of 27% of space devices failures, which were fatal or such that restricted

their use, 6% were associated with HW failure and 21% with SW failure.
Software updates are necessary due to the fact that at the point of SW commissioning

they may contain a number of undetected faults, which can lead to critical failures of

the FTCS. Presence of HW faults relates to the complexity of the system, and failure to

conduct overall testing, as such testing is time consuming and needs substation financial

support. To predict the number of SW faults at the time of its commissioning various

models can be used, one for example is Jelinski-Moranda [14].

A goal of the paper is to suggest a technique to develop a Markovian chain for com-

plex FTCS with different redundancy types (first of all, structure and version) using the
proposed formal procedure and tool. The main idea is to decrease risks of errors during

development of MC for systems with very large (tens and hundreds) number of states.

We propose a special notation which allows supporting development chain step by step

and designing final MC using software tools. The paper is structured in the following

way. The aim of this research is calculating the availability function of FTCS with ver-

sion-structural redundancy and double software updates.

To achieve this goal we propose a newly designed reliability model of FTCS. As an

example a special computer-based system of space radio-technical complex is re-

searched (Fig.1). The following factors are accounted for in this model: overall reserve

of FTCS and joint sliding reserve of modules of main and diverse FTCS; the existence

of two software versions; SW double update; and automatic software reboot, if its fail-

ure was caused by the HW physicals fault.

Structure of the paper is the following. Researched FTCS is described in the sec-

ond section. An approach to developing mathematical model based on Markovian chain

and detailed procedure for the FTCS are suggested in the third and fourth sections cor-

respondingly. Simulation results for researched Markov’s model are analyzed in the

section 5. Last section concludes the paper and presents some directions of future re-

searches and developments.

2 Researched fault-tolerant computer based system with

structure-version redundancy

The researched FTCS with structure-version redundancy is shown on figure 1. To

ensure the minimal FTCS downtime, overall hot standby with other version of software

is used.

4

Fig. 1. Fault-tolerant Computer Based System (1 – main system, 2 – hot standby, 3 – cold
standby, 4 – diverse system, DCS – Diagnostics Control System).

The FTCS consists of: a main system comprising modules; diverse system consist

of k - modules; for two systems, the common sliding standby of modules is envisaged,

the first module in hot standby and other in cold standby; a diagnostics control system

determines the state of HW and SW, and manages the redundancy; and a switch is

connected the modules to the main and diverse systems.

3 An approach to developing an availability model for FTCS

with software update and restarting

An approach to the development of availability model for FTCS with double soft-

ware updates and automatically software restart in the form of Markovian chains is

presented in figure 2. During the operation of computer based system there are the fol-

lowing states: S1, S4 and S7 – system operable states; S2, S5, S9, S10 –inoperable

states, in which SW updates, are conducted; S3, S6, S8 – inoperable states in which

software restart after physical failure is automatically conducted; S11, S12, S13 – in-

operable states in which HW is repaired after physical failure.

Fig. 2.Markovian chain which show the reliability behavior of computer-based system with dou-

ble software updates and automatic restart

5

The system functioning after state S1 can unfold in four possible ways: the system

moves to state S9 with rate λsw11 after failure of first software version; the system move

to state S3 with rate λswerror, after temporary failure of SW; the system move to state S2

with rate λup1=1/Tup1 (Tup1 – duration of bugs correction in software) after finished the

first version software operation (ready to use second version of software); the system

move to state S11 with rate λhw, after physical failure.

The system functioning after state S4 can unfold in four possible ways: the system

move to state S10 with rate λsw12 after failure of second SW version; the system move

to state S6 with rate λswerror, after temporary failure of SW; the system move to state S5

with rate λup2=1/Tup2 (Tup2 – duration of bugs correction in software) after finished the

second version SW operation (ready to use the third version of SW); the system move

to state S12 with rate λhw, after physical failure. The system functioning after state S7

can unfold in two possible ways: the system move to state S6 with rate λswerror, after

temporary failure of SW; the system move to state S13 with rate λhw, after physical

failure. System moves from state S3and S6 to states S1 and S4 with a rate of μrest=1/Trest

(Trest – duration of SW restart).
When the system is in state S2 and S5, it replaced the version of SW with rate

μrepl=1/Trepl (Trepl – duration of software replacement). The system moves from states

S9 and S10 to states S2 and S5 with rate λup1=1/Tup1 (Tup1 – duration of bugs correction

in software) and λup2=1/Tup2 (Tup2 – duration of bugs correction in software).

After commissioning of the computer based system starts debugging the software

and develops first update that takes time Tup1. Second update takes timeTup2 and in-

volves finding all bugs in SW. Therefore after first SW update, the numbers of bugs

decreases, and debugging software is more complex, and the development of second
update takes more time Tup2>Tup1.

The described approach to the development of availability model for FTCS with

software update and restart is used to build availability model of FTCS showed in figure

1.

4 Markov’s model for FTCS with software update and

restarting

The method of development Markovian chain of the FTCS is described in the mon-

ograph [9]. It involves a formalized representation of the object of study as a “struc-

tural-automated model”. To develop this availability model of the FTCS one needs to

perform the following tasks: develop a verbal description of the research object (fig.

1); define the basic events; define the component vector of states, which can be de-

scribed as a state of random time; define the parameters for the object of research, which

should be in the model; and shape the tree of the modification of the rules and compo-

nent of the vector of states.

4.1 The procedures to describe behavior of the FTCS

The FTTS behavior is described by the following procedures.

6

Procedure 1. Detection of failure of the FTCS (hardware failure, software failure,

temporary failure). Failure can occur in the main and diverse system.

Procedure 2. Detection of failure in the main or diverse subsystems of the FTCS.

Procedure 3. Connection of the module from hot standby to faulty subsystem.

Procedure 4. Connection of the module from hot standby to cold standby.

Procedure 5. Loading the software on the module with connections from cold to hot

standby.

Procedure 6. Software restart.
Procedure 7. Development the software updates.

Procedure 8. Repair (replacement) of the HW of the FTCS.

4.2 A set of the events for the FTCS

According to described procedures which determine the behavior of FTCS, a list of

events is composed. Events are presented in pairs corresponding to the start and the end

of time intervals to perform each procedure. From this list of events for “structural-

automated model” basic events are selected [9].

As a result of analysis, twelve basic events in particular were determined: Event 1 –

“Hardware failure of main system module”; Event 2 – “Software failure of the main

system module”; Event 3 – “Software fault of the main system module”; Event 4 –

“Hardware failure of the diverse system module”; Event 5 – “Software failure of the

diverse system module”; Event 6 – “Software fault of the diverse system module”;

Event 7 – “Module failure in hot standby”; Event 8 – “Termination of the procedure

of the hot standby module connection to non-operational system”; Event 9 – “Termi-

nation of the procedure of the cold standby module transfer to non-operational system”;

Event 10 – “Termination of the procedure of software reloading on the module with

failure feature in its software work”; Event 11 – “Termination of the procedure of SW

version renovation”; Event 12 – “Termination of the procedure of the HW repair”.

4.3 Components of vector states for the FTCS

Components of the vector state that can also be described as a state of random

time. To describe the state of the system, eleven components are used: V1

– displays the current number of modules in the main system (the initial value of

components V1 equal to n); V2 – displays the current number of modules in the

diverse system (the initial value of components V2 equal to k); V3 – displays the

current number of modules in hot standby (the initial value of components V3 equal
to mh); V4 – displays the current number of modules in cold standby (the initial value

of components V4 equal to mc); V5 – displays which software version is operated by

the main system (V5=0 – first version, V5=1 – second version, V5=2 – third version);

V6 – displays which software version operated by diverse system (V6=0 – first

version, V6=1 – second version, V6=2 – third version); V7 – displays the temporary

SW failure in the main system; V8 – displays the temporary SW failure in the diverse

system; V9 – displays the SW fault in the main system; V10 – displays the SW fault

in the diverse system; V11 – displays the number of non-operational units, due to

HW fault.

7

4.4 The parameters of the FTCS Markov’s model

Developing Markov’s model of the FTCS, its composition and separate components

should be set to relevant parameters in particular: n – number of modules that are the

part of the main system; k – number of modules that are the part of the diverse system;

mh –number of the modules in the hot standby; mc – number of the modules in the cold

standby; hw – the failure rate that is in main (diverse) system and in the hot standby;

sw11, sw12 – the failure rate of first and second software versions; swerror – the tempo-
rary failure rate of software; Tup1, Tup2 – duration of the first and second software up-

dates; Trest – duration of software restart on the module; Tswitch – duration of the module

connections of the slight standby; Trep– hardware repair duration.

4.5 Model of the FTCS for the automated development of the Markovian

chain with software update and restart

According to the technology of analytical modeling, the discrete-continuous stochas-

tic systems [9] based on certain events using the component vector state and the param-

eters that describe FTCS, and model of the FTCS for automated development of the

Markovian chains are presented on the table 1.

Table 1. Model “Structural-Automated Model” of the FTCS for the automated development of
the Markovian chains

Terms and conditions

Formula used

for the inten-

sity of the

events

Rule of modification compo-

nent for the state vector

Event 1. Hardware failure of main system module

(V1=n) AND (V3>0) AND (V9=0) V1·λhw
V1:=n; V3:=V3-1;

V11:=V11+1

(V1=n) AND (V3=0) AND (V9=0) V1·λhw V1:=V1-1; V11:=V11+1|

Event 2. Software failure of the main system module

(V1=n) AND (V3=0) AND (V9=0) V1·λswerror V1:=V1-1; V7:=V7+1

(V1=n) AND (V3>0) AND (V9=0) V1·λswerror V1:=n; V3:=V3-1; V7:=V7+1

Event 3. Software fault of the main system module

(V1=n) AND (V5=0) AND (V9=0) V1·λsw11 V1:=V1-1; V5:=0; V9:=1

(V1=n) AND (V5=1) AND (V9=0) V1·λsw12 V1:=V1-1; V5:=1; V9:=1

Event 4. Hardware failure of the diverse system module

(V2=k) AND (V3>0) AND (V10=0) V2·λhw
V2:=k; V3:=V3-1;

V11:=V11+1

(V2=k) AND (V3=0) AND (V10=0) V2·λhw V2:=V2-1; V11:=V11+1

Event 5. Software failure of the diverse system module

(V2=k) AND (V3=0) AND (V10=0) V2·λswerror V2:=V2-1; V8:=V8+1

(V2=k) AND (V3>0) V2·λswerror V2:=k; V3:=V3-1; V8:=V8+1

Event 6. Software fault of the diverse system module

8

(V2=k) AND (V6=0) AND (V10=0) V2·λsw11 V2:=V2-1; V6:=0; V10:=1

(V2=k) AND (V6=1) AND (V10=0) V2·λsw12 V2:=V2-1; V6:=1; V10:=1

Event 7. Module failure that is in the hot standby

(V3>0) AND ((V9=0) OR (V10=0)) V3·λhw V3:=V3-1; V11:=V11+1

Event 8. Termination of the procedure of the hot standby module connection to

non-operational system

(V1<n) AND (V3>0) AND (V11>0) 1/Tswitch V1:=V1+1; V3:=V3-1

(V2<k) AND (V3>0) AND (V11>0) 1/Tswitch V2:=V2+1; V3:=V3-1

Event 9. Termination of the procedure of the cold standby module transfer to non-op-

erational CS

(V3<mh) AND (V4>0) 1/Tswitch V3:=V3+1; V4:=V4-1

Event 10. Termination of the procedure of software reloading on the module with

failure feature in its software work

(V1<n) AND (V7>0) 1/Trest V1:=V1+1; V7:=V7-1

(V2<k) AND (V8>0) 1/Trest V2:=V2+1; V8:=V8-1

Event 11. Termination of the procedure of software version renovation

(V1<n) AND (V5=0) AND (V9=1) 1/Tup1 V1:=n; V5:=1; V9:=0

(V1<n) AND (V5=1) AND (V9=1) 1/Tup2 V1:=n; V5:=2; V9:=0

(V2<k) AND (V6=0) AND (V10=1) 1/Tup1 V2:=k; V6:=1; V10:=0

(V2<k) AND (V6=1) AND (V10=1) 1/Tup2 V2:=k; V6:=2; V10:=0

Event 12. Termination of the procedure of the hardware repair

(V1<n) AND (V2<k) AND (V11=2) 1/Trep V1:=n; V2:=k; V11:=0

As shown in Table 1, the model can be easily adapted for other fault-tolerant hard-

ware configurations, or any number of software updates can be provided. For example,

if the main and diverse system built with rule of voting 2-out-of-3, the description of

the terms and conditions for the events of 1-6 should be replaced with (V1=n)

(V1<=2) і (V2=k) (V2<=2). In this way, we obtain the FTCSC for the automated

development of the Markovian chains in which permanent and diverse fault-tolerant

systems are built with rule of voting 2-of-3.

The number of software updates can be also changed. It is necessary to change vec-

tors V5 and V6 the event 11, that are responsible for the number of updates. For exam-

ple, if there are three software updates, the entry component of the event will be as

follows:

(V1<n) AND (V5=2) AND (V9=1) 1/Tup3 V1:=n; V5:=3; V9:=0

(V2<k) AND (V6=2) AND (V10=1) 1/Tup3 V2:=k; V6:=3; V10:=0

In order to present the necessary strategy of hardware repair can be transformed the

event 12.

9

4.6 Automated development of the Markovian chain and determining of

availability function

The developed availability model of the FTCS gives the possibilities according to

technology [9] for automated construct of the Markovian chains. This construction pro-

vides a software module ASNA [15]. The Markovian chains which take into account

the following settings FTCS: n=2; k=2;mh=0; mc=0; hw; sw11, sw12; swerror; Tup1, Tup2;

Trest; Tswitch; Trep, are presented in figure 3. Information is available on the status of each

software module ASNA we have on file "vector.vs", which is written in the form:

State 1: V1=2; V2=2; V3=0; V4=0; V5=0; V6=0; V7=0; V8=0; V9=0; V10=0; V11=0
State 2: V1=1; V2=2; V3=0; V4=0; V5=0; V6=0; V7=0; V8=0; V9=0; V10=0; V11=1

……….

State 121: V1=1; V2=1; V3=0; V4=0; V5=2; V6=2; V7=1; V8=1; V9=0; V10=0; V11=0

As the configurations of researched FTCS changes, the dimension of graphs in-

creases. Therefore for the configuration of FTCS (Fig. 1) with one module in a hot

reserve graph has 395 states and 976 transitions.

The proposed availability model of FTCS can be easily transformed for other fea-

tures of the object of study. It is enough to: add / remove basic event (4.2); attach /

remove components of the state vector (4.3); and include / exclude parameters that de-

scribe the studied system (4.4). Based on information about the work of FTCS an ap-

propriate change in the model could be made (Fig 1).

Basing on the Markovian chains (Fig 3) formulas for designing of availability FTCS

can be assembled. One measure of the availability of recovered FTCS reveals it is an

availability function. Availability function of FTCS is calculated as the sum of the prob-

ability functions staying in operable states of chains. Basing on these states the FTCS

availability function with parameters of FTCS n=2; k=2; mh=0; mc=0 is determined by

the formula (1):

10

Fig. 3.The Markovian chains of the researched FTCS

11

5 26 31 36 41

Г i 9 13 i i i i 45 49
i=1 i=17 i=30 i=33 i=40

82 91 100

53 57 61 i 86 i 95 95 i
i=65 i=90 i=99

104 108 11

К (t)= P (t)+P (t)+P (t)+ P (t)+ P (t)+ P (t)+ P (t)+P (t)+P +

+(t)+P (t)+P (t)+P (t)+ P (t)+P (t)+ P (t)+P (t)+P (t)+ P (t)+

+P (t)+P (t)+P

1 115 119(t)+P (t)+P (t)

 (1)

Based on the Markovian chains (Fig.3) a system of differential equations (2) was

formed. Its solution allows us to estimate the function availability value of researched

FTCS.

1

2 5 11 4 13 3

9 6 3 3

2

1 10 6 10

11 14

3

1 3 7

2 2 2

1 1
2

1
2 2 2

2

1
2 2 2

hw sw swerror

swerror

rep rest

hw hw swerror

rest

sw

hw hw swer

rest

dP t
Р t Р t Р t Р t Р t

dt

Р t Р t Р t Р t
T T

dP t
Р t Р t Р t Р t

dt T

Р t

dP t
Р t Р t Р t

dt T

11

11 11 15

121

90 90 119

1
2

1
2 2

ror

sw

rest

swerror hw

rest

Р t

Р t Р t
T

dP t
Р t Р t Р t

dt T

(2)

Initial conditions for the system (2) is 1 1;Р t 2 121... 0.Р t Р t

5 Simulation results

5.1 Research of influence of software updates duration on the availability

function

With the assistance of the proposed model, the following questions can be answered:

What are the duration values of the first and the second software update (ensuring the

values of the availability function of FTCS of the initial phase of its operation do not

reach below the specified level)? What are the allowed duration values of the first and

the second SW updates? How does the correlation between the first and the second SW

updates influence on the availability function?

12

The first experiment is conducted for the condition where the duration of the first

software update is significantly shorter than the duration of the second update. The du-

ration of the first update is given within 10 - 50 hours, and the duration of the second

update - 200 hours. The experiment is conducted with the following parameters FTCS:

hw=1·10-5 hour-1; sw11=2·10-3 hour-1, sw12=1·10-3 hour-1; swerror=1·10-2 hour-1; Trest=6

min; Tswitch; Trep=200 hour; Tup2=200 hour; (line 1 -Tup1=10 hour; line2 - Tup1=20 hour;

line3 - Tup1=30 hour; line4 - Tup1=40 hour; line5 -Tup1=50 hour).

Fig. 4. Dependencies of availability function of the FTCS on values of the software update dura-

tions (duration of the first software update for 10 to 50 hours; the duration of the second firmware

update - 200 hours).

The second experiment is conducted for the condition where the duration of the first

SW update is significantly longer then the duration of the second SW update. The du-

ration of the first update is 200 hours and the duration of the second update is given

within 10 - 50 hours. The experiment is conducted with the following parameters FTCS:

hw=1·10-5 hour-1; sw11=2·10-3 hour -1, sw12=1·10-3 hour-1; swerror=1·10-2 hour-1; Trest=6

min; Tswitch; Trep=200 hour; Tup1=200 hour; (line 1 - Tup2=10 hour; line2 - Tup2=20 hour;

line3 - Tup2=30 hour; line4 - Tup2=40 hour; line5 - Tup2=50 hour).

The following results are produced by the proposed experiments:

1) If the duration of the first software update is significantly shorter than the duration

of the second update, a decrease of the availability function of the readiness of the op-

erational interval to 1700 hours is observed. If the duration of the first software update

is significantly longer the decrease of the availability function, are readiness of the op-

erational interval to 800 hours is observed.

13

Fig. 5. Dependencies of availability function of the FTCS on the values of software update dura-

tion (duration of the first software update - 200 hours; the duration of the second firmware update

from 10 to 50 hours).

2) The minimal decrease level of the availability function of the readiness of FTCS

in the first and the second experiments is the same. This is explained by the values

chosen for the duration for the first and the second software updates.

3) With the assistance of the proposed model it is possible to choose the duration of

software updates that helps to ensure a minimum allowed level of the decrease of the

availability function of the FTCS.

6 Conclusion

This research presents a model of FTCS with version-structural redundancy, with

software updates and restart for automated development of Markovian chains using a

unique technology and specific tool ASNA.

The presented model can be easily adapted to different configurations of FTCS,

which envisages the use of the majority voting reservation in the hardware part and as

a consequence in the majority of software versions from different developers. This

model can be adopted for an unlimited number of software updates.

Future research has the potential to supplement this model with further factors:

- Erlang distribution for durations of software updates [15];

- unsuccessful restarting; unreliable commutation of elements and so on.

14

References
1. Mudry, P.A., Vannel, F., Tempesti, G., Mange, D. A Reconfigurable Hardware Platform for

Prototyping Cellular Architectures. In: International Parallel and Distributed Processing

Symposium. IEEE International, pp. 96–103 (2007)

2. Viktorov, O. Reconfigurable Multiprocessor System Reliability Estimation. Asian Jounal of

Information Technology 6 (9),958–960 (2007)

3. Rajesh, S., Vinoth Kumar C., Srivatsan, R., Harini, S., Shanthi, A. Fault Tolerance in Mul-

ticore Processors With Reconfigurable Hardware Unit. In: 15th International conference on

high performance computing. Bangalore, INDIA, pp. 166–171 (2008)

4. Amerijckx, C., Legat, J.-D. A Low-Power Multiprocessor Architecture For Embedded Re-

configurable Systems. In: Power and Timing Modeling, Optimization and Simulation, In-

ternational Workshop, pp. 83–93 (2008)

5. Changyun Zhu, Gu, Z., Dick, R., Shang, L. Reliable Multiprocessor System-On-Chip Syn-

thesis. In: International Conference Hardware/Software Codesign and System Synthesis, pp.

239–244 (2007)

6. Kim P. Gostelow. The Design of a Fault-Tolerant, Realtime, Multi-Core Computer System.

In: In Aerospace Conference, IEEE, pp. 1–8 (2011)

7. Lyu M.R. (ed.), Software Fault Tolerance, New York: John Wiley & Sons (1995)

8. Korotun, Т.М. Models and Methods for Testing Software Systems. Programming problems

2, 76–84 (2007) (In Russian)

9. Volochii, B.: Technology of Modeling the Information Systems. Publishing NU "Lviv Pol-

ytechnic" (2004) (In Ukranian)

10. Lei Xiong, Qingping Tan, Jianjun Xu. Effects of Soft Error to System Reliability. In: Work-

shops of International Conference on Advanced Information Networking and Applications.

pp. 204–209 (2011)

11. Ponochonvyi, J.L., Odarushchenko, E.B. The Reliability Modeling Non-Redundant Infor-

mation and Control Systems with Software Updated. Radioelectronic and computer systems

4(8), 93–97 (2004) (In Russian)

12. Kharchenko, V., Sklyar, V., Volkoviy, A.: Development and Verification of Dependable

Multi-Version Systems on the Basic of IP-Cores. Proc. Int. Conf. Dependability of Com-

puter Systems (2008)

13. Kharchenko V., Ponochovny Y., Boyarchuk A., Ermolayev V.: Availability Assessment of

Information and Control Systems with Online Software Update and Verification. In: Infor-

mation and Communication Technologies in Education, Research, and Industrial Applica-

tions Communications in Computer and Information Science, Vol. 469, Springer Interna-

tional Publishing Switzerland, pp. 300-324 (2014)

14. Moranda, P. B. An Error Detection Model for Application During Software Development.

IEEE Trans. Reliability 4, 309–312 (1981)

15. Bobalo, J., Volochiy. B., Lozynskyi, O., Mandzii, B., Ozirkovskyi, L., Fedasuk, D.,
Shcherbovskyh, S., Yakovyna, V. Mathematical Models and Methods for Reliability Anal-
ysis of Electronic, Electrical and Software Systems, Lviv Polytechnic Press (2013)

http://vlp.com.ua/node/10764
http://vlp.com.ua/node/10764

