
Proposals for a Virtual Machine
for Business Processes

Thomas M. Prinz

Chair of Software Technology, Friedrich Schiller University Jena, Germany
Thomas.Prinz@uni-jena.de

Abstract Business process management (BPM) promises an efficient
and simple application of business processes. Although there are many
approaches belonging to BPM, BPM suffers from the wide heterogeneity
of tools and approaches and their missing integration into a homogenous
workflow.
In this paper, we argue for a consistent system, which supports each step
of BPM. The system consists of a virtual machine, a process intermediate
representation, a compiler, and analyses. Thereby, the major focus lies on
the derivation of requirements on a virtual machine for business processes
and its intermediate representation. In a first conceptual approach, we
present our proposals for such a virtual machine.

Keywords: Virtual machine, processes, business process management

1 Introduction

The state of the art in research of business process management (BPM) conveys
a simple and efficient application in practice. Popular business process modeling
languages, e.g., the Business Process Model and Notation (BPMN) [9] and
the Web Services Business Process Excution Language (BPEL) [7], as well as
verifiable process properties, which promise the absence of deadlocks for example
(cf. soundness [1,13]), strengthen this impression. In addition to the prevalence
of service-oriented architectures (SOA) in companies, there is no reason why the
safe and dynamic application of BPM should not be able to work successfully: (1)
the process is analyzed, (2) implemented, and (3) applied. During the process’s
use, it is (4) evaluated (monitored) and (5) improved continuously — the life
cycle of a business process (cf. Fig. 1) [2].

However, Koehler et al. already recognized the lacks in the life cycle [8]
such that the tool landscape of BPM suffers from its wide heterogeneity and
its missing integration into a homogenous workflow. Take the development of a
business process as example: In most graphical process modeling languages exist
elements, whose semantics have obvious dependencies to the process developer’s
intension and are therefore not universally and basically definable. In addition,
most common used process modeling languages (except BPEL) neither have
clear definitions for documents nor for instructions to modify them. As result,

T. S. Heinze, T. M. Prinz (Eds.): Services and their Composition, 7th Central European Workshop,
ZEUS 2015, Jena, Germany, 19-20 February 2015, Proceedings – published at http://ceur-ws.org

http://ceur-ws.org


Proposals for a Virtual Machine for Business Processes 11

1. Analyses

4.
 M

on
it

or
in

g

3. Execution
2. 

Im
p

lem
en

tatio
n

5. Continuous 
Improvement

Figure 1. Process’ life cycle

the majority of processes is performed manually and only an insignificant part
of processes of an organization is executed by a process engine. In short: BPM
would benefit from a system, which combines research approaches and which
homogenizes the life cycle by new research results furthermore. In this paper, we
focus on such a system and, especially, on requirements and on a conception of a
homogenous virtual machine for the execution of business processes.

The remainder of this paper is as follows: At first, we explain our overall
system’s approach [11] (Section 2). In Section 3, we derive requirements of a
machine, which are implemented in a first conception (Section 4). Eventually, we
give an outlook on future work in Section 5.

2 Overall Approach

Our approach is a system, which is organized into a producer side (where
the business process is developed) and a consumer side (where the process
is then executed), inspired by Amme et al. [3] regarding mobile code. Our
proposed system [11] consists of a compiler and a virtual machine (cf. Fig.
2), which support the development, analysis, storage, execution, maintenance,
evaluation, and improvement of processes. We argue for a compiler since the
development process of business processes has adjusted itself to the process of
software development (cf. the life cycle of business processes to the spiral model
[4]). Furthermore, the efficient development of software was improved through a
well-defined computer architecture as well as the programming languages based
on it. The consideration of state-of-the-art tools for business process development
(for a list, visit http://www.bpmn.org/) shows that there is a wide heterogeneity
of different execution techniques and that most tools are monolithically, i.e., it is
hard to include additional analyses and to distribute processes between different
execution engines.

Starting from these coniderations, the first step should be the definition of
a (virtual) machine, which realizes the execution of a (technical) process. In

http://www.bpmn.org/


12 Thomas M. Prinz

Business
process
repository

Compiler

Error 
handler

Process 
intermediate 

representation (PIR)

Virtual Machine

Business process

P
ro

d
u

ce
r 

si
d

e

C
o

n
su

m
e

r sid
e

Developer
Users

Services/Tools

PIR

Execution

Figure 2. Overall system consisting of a compiler and a virtual machine

the second step, we should develop a technical and general process description
language (process intermediate representation (PIR)). Afterwards, in the third
step, existing process description languages should be modified in such that
the automatic transformation into the PIR is possible. It is not the goal, in
doing so, that the iterative derivation of a process from an abstract model to a
technical process should be automated, since the inclusion of the process analyst
is essential (cf. requirements analysis in software engineering). The goal is to
define limitations for which such a transformation is possible at all and to allow
a stepwise refinement of the business process into a technical one. In the last
step, verifiable properties of processes based on the PIR should be found and
some analyses should be developed which seriously support a solution-oriented
failure diagnostic. Especially, in the context of business processes, such analyses
must be applied to minimize the enormous costs in cases of malfunctions.

As mentioned before, in this paper, we focus on the first two steps: a conception
of a virtual machine for the execution of business processes and the definition of
a PIR. For this, we derive requirements for such a virtual machine in the next
section.

3 Requirements on a Virtual Machine

One of the most famous virtual machines is the Java Virtual Machine (JVM). The
JVM supports the execution of Java Bytecode (JBC), which is generated from
Java programs by a compiler. The advantage is, that also other programming
languages can be compiled to JBC and, therefore, programs based on multiple
programming languages are possible. A process engine should follow that approach
as it grows its flexibility. For this, (R.1) a virtual machine has to allow for the
execution of a process code, i.e., the conception of such a machine affiliates with
the language to be executed.

Popular process modeling languages have a quite large common subset of
description elements on closer considerations. (R.1.1) A virtual machine should



Proposals for a Virtual Machine for Business Processes 13

allow the handling of basic elements to model the control flow, e.g., exclusive de-
cisions, parallelisms, inclusive decisions, and simple tasks. (R.1.2) These elements
should be extended by explicit exception and error handling, high-language loops,
events and signals, as they are frequently used in processes. Furthermore, (R.1.3)
the inclusion of roles also is essential to ensure organizational structures as well
as access permissions and common security. Eventually, (R.2) a process modeling
language should naturally enable the usage of instructions and data structures
for the modification of data and branch conditions. Such instructions are cur-
rently rare in previous languages as mentioned before. (R.2.1) The reception and
sending of messages besides the usage of documents and conditions naturally
are very important. With traditional programming languages in mind, (R.2.2)
arithmetic operations, comparisons, objects, and method invocations on objects
should be part of a process modeling language to modify and compare data. For
this, documents are special cases of objects. Method invocations encapsulate the
access on object fields and have to be restricted on state changes of objects, in
such that side effects are rare and the analysis of processes is more simple. The
start of sub processes is incumbent upon the "super" process.

P1

1 define A

2 use A
3 use B

4 define B

P2 P3

Figure 3. A process defines
and uses data

(R.3) A virtual machine has to be able to load
processes, which are ready to be started. As re-
sult, (R.3.1) the virtual machine should have a
separate storage for processes. Besides the stor-
age for processes, it needs a further data storage
since a process being executed modifies objects.
Furthermore, (R.3.2) the data storage should be
separated (with reference to a single control flow)
in a local and a global part as processes have com-
monly different parallel control flows with their
own (private) data. (R.3.3) Each of those concur-
rent control flows should have its own local storage.
It then has only the permission to access the lo-
cal storages of those control flows leading to its
execution, i.e., those local storages are global with
regard to that single control flow. This is manda-
tory as some information is not safe on some points of the process. With this in
mind, consider the process P1 of Fig. 3 in BPMN. This process defines a local
object A in a task and starts two parallel sub processes P2 and P3. Both sub
processes get the global object A and have access on it (like done in process
P2). However, the process P2 has no permission to access the local object B of
process P3 since P3 does not start P2 (neither direct nor indirect). Therefore,
the instruction (3) use B is displaced. For this, (R.3.4) a virtual machine and
the corresponding process intermediate representation should define the scopes
of objects carefully.

The separation between local and global objects has less attention in previous
research. The determination of local and global objects is simple in structured
processes as it can be done like for traditional programming languages, e.g.,



14 Thomas M. Prinz

by data flow analyses [5]. We propose the application of a process structure
tree (PST) for unstructured or irreducible processes, who structures the process
as a tree [14]. Although we worked on analyses for irreducible processes in
previous work [10,12], we (R.4) plead in or for transformations to structured
processes to simplify analyses or to make them possible at all. This step towards
"structures" was already done for today’s programming languages. However, the
transformation of irreducible processes into structured ones is challenging since
most algorithms (e.g., node splitting [6]) only work for sequential processes and
have an exponential growth behavior of the entire graph.

The terms of local and global objects belong to a single control flow in processes
and belong not to their spatial position. In general, (R.5) sub and partial processes
of a process should be able to be executed on different physical machines. That
belongs to the fact, that business processes are almost implemented by the use of
SOA and that they work beyond company borders. As result, (R.5.1) a virtual
machine has to abstract from the underlying physical network. For this reason,
our considerations have a secure business network and standardized processes
in mind as, otherwise, we have to know all details about processes which is
commonly not the case. The difficulty is to identify communication partners in
networks and to guarantee the correct usage of state-based services.

4 Conception of a Virtual Machine

The requirements mentioned before are implemented as a conception in the
following. For this, Figure 4 shows the overall structure of our proposed virtual
machine. Concluding from requirements (R.1) and (R.3), the machine owns a
process loader which loads a process and recognize the PIR part. We recommend to
use a PIR in a tree representation as such a representation has many advantages
[3] and leads to structured processes (R.4). Furthermore, the representation
should contain instructions (R.1.1) - (R.2.2). Since the PIR is in a linearized
file form, a decoder has to rebuild the PIR and, afterwards, a verificator checks
the PIR for unallowed modifications with regard to security properties, e.g.,
soundness and reference safety. Then, the process is executed in the process
interpreter.

As argued in previous work [11], a dynamic semantic analyser should monitor
and analyze the process’s execution to detect possible runtime process failures as
early as possible. Those failures could be tried to be solved by a runtime error
handler which interacts with the user or developer. So, a “rescue” of the process
is still possible in failure situations and, afterwards, the process interpreter can
continue its work.

The process interpreter gets the PIR and creates a new process frame. The
structure of such a process frame illustrates Fig. 5. Each frame defines the state of
each (sub) process and hence stores all necessary execution information (R.3.1):
A process object stack, a process extract, an in-/output, a process position
pointer, and a process stack. The process stack (illustrated as arc in the figure)
contains all process frames of started sub processes. Once a sub process starts,



Proposals for a Virtual Machine for Business Processes 15

Runtime error handler

Verificator

Decoder

PIR

Process interpreter

Dynamic 
semantic 
analyser

Process loader

PIR

Process frame

Permanent 
object storage

Process (PIR)

Figure 4. Proposals for a virtual machine for processes

the virtual machine creates a process frame for it. and pushs the frame on the
process stack on the calling process. If the work of the sub process is done, its
frame can be popped from the process stack. The “super” process can continue
its work not until its process stack is empty (as, otherwise, it has to wait for
the results of its sub processes). Although other implementations are possible,
this stack-based approach reflects all hierarchic dependencies between different
processes in a simple way. For example, Java uses a stack for its hierarchy of
method invocations.

The process extract shows a subgraph of a tree representation (from the
PIR) of the process that should be executed (R.3.1). That tree representation
is generated by the compiler with the help of the PST (R.4). Each node of this
tree has its own functionality (branch, parallelism, task, etc.) (R.1.1) - (R.2.2).
Through link edges in the tree, sequences are implicit and the tree can be traversed
easily. Furthermore, that fact guarantees a simple reference safety, since global
objects can be derived by a backward traverse from the current executed node to

Process object stack

Global

Local

G1

L1

G0

L0 Process
position
pointer

IF

T T

PAR

TIF

Process extract

Process n
Process ...
Process 2
Process 1

Input/Output

Process
stack

link

Figure 5. Structure of a process frame



16 Thomas M. Prinz

the root of the tree (R.3.4). The current executed node is marked by the process
position pointer as the machine has to know which process’s nodes are currently
executed. The execution semantics of a node depends on its functionality. For
example, if the current node produces parallelism, for each of its child nodes,
the virtual machine creates a process frame, passes the process object stack,
determines the subtree as process extract, and pushes the frame on the current
process’s process stack. After each sub process is finished, the process frames
are popped from the process stack and the link node is executed afterwards.
If an execution produces objects, they are pushed on the process object stack
and they are locatable via this stack (R.3.3). That stack contains all objects,
which the (sub) process can access (R.3.2),(R.3.4). Objects, which are stored
over process borders, are stored within a permanent object storage (data base).
Only processes, which have the permission, can access those objects.

If the execution arrives at an instruction for the reception or sending of a
message and event, respectively, (R.2.1) the virtual machine uses the in-/output
mechanism that handles the communication — regardless whether it talks locally
or via a network (R.5),(R.5.1). For this, each virtual machine can provide its
processes by a RESTful web service, i.e., it automatically creates an unique
uniform resource identifier (URI) for each process. Another process may then
contact that URI via a network and gets an URI for the resource which points
to the corresponding started instance of the process. Now, it is simply possible
to communicate with a state-based process via a network. However, for this, it
has to know its communication partners before.

5 Conclusion and Outlook

In this paper, we have extracted the need for a complete and consistent system
for the development, analysis, and execution of processes in business process
management. For this, we have focused on the conception of a virtual machine
for the execution of processes. Besides the conception, we derived requirements
for such a virtual machine.

In future work, these proposals have to be implemented and have to be
compared to and extended for its application on business process management.
Additionally, some parts of the machine (e.g., an efficient intermediate represen-
tation of a process) are in our focus of research.

References

1. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.E.: An alternative way to
analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Özsu, M.T.
(eds.) Advanced Information Systems Engineering, 14th International Conference,
CAiSE 2002, Toronto, Canada, May 27-31, 2002, Proceedings. Lecture Notes in
Computer Science, vol. 2348, pp. 535–552. Springer (2002), http://link.springer.
de/link/service/series/0558/bibs/2348/23480535.htm

http://link.springer.de/link/service/series/0558/bibs/2348/23480535.htm
http://link.springer.de/link/service/series/0558/bibs/2348/23480535.htm


Proposals for a Virtual Machine for Business Processes 17

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske,
M. (eds.) Business Process Management, International Conference, BPM 2003,
Eindhoven, The Netherlands, June 26-27, 2003, Proceedings. Lecture Notes in
Computer Science, vol. 2678, pp. 1–12. Springer (2003), http://dx.doi.org/10.
1007/3-540-44895-0_1

3. Amme, W., Heinze, T.S., von Ronne, J.: Intermediate representations of mobile
code. Informatica (Slovenia) 32(1), 1–25 (2008), http://www.informatica.si/PDF/
32-1/11_Amme-Intermediate%20Representations%20of%20Mobile%20Code.pdf

4. Boehm, B.W.: A spiral model of software development and enhancement. IEEE
Computer 21(5), 61–72 (1988), http://doi.ieeecomputersociety.org/10.1109/
2.59

5. Hecht, M.S.: Flow Analysis of Computer Programs. Elsevier Science Inc., New York,
NY, USA (1977)

6. Hecht, M.S., Ullman, J.D.: Flow graph reducibility. SIAM J. Comput. 1(2), 188–202
(1972), http://dx.doi.org/10.1137/0201014

7. Juric, M.B.: Business Process Execution Language for Web Services BPEL and
BPEL4WS 2Nd Edition. Packt Publishing (2006)

8. Koehler, J., Gschwind, T., Küster, J.M., Völzer, H., Zimmermann, O.: Towards a
compiler for business-it systems - A vision statement complemented with a research
agenda. In: Huzar, Z., Kocí, R., Meyer, B., Walter, B., Zendulka, J. (eds.) Software
Engineering Techniques - Third IFIP TC 2 Central and East European Conference,
CEE-SET 2008, Brno, Czech Republic, October 13-15, 2008, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 4980, pp. 1–19. Springer (2008),
http://dx.doi.org/10.1007/978-3-642-22386-0_1

9. OMG: Business Process Model and Notation 2.0. formal/2011-01-03 (2011), http:
//www.omg.org/spec/BPMN/2.0

10. Prinz, T.M., Amme, W.: Practical compiler-based user support during the develop-
ment of business processes. In: Lomuscio, A., Nepal, S., Patrizi, F., Benatallah, B.,
Brandic, I. (eds.) Service-Oriented Computing - ICSOC 2013 Workshops - CCSA,
CSB, PASCEB, SWESE, WESOA, and PhD Symposium, Berlin, Germany, Decem-
ber 2-5, 2013. Revised Selected Papers. Lecture Notes in Computer Science, vol. 8377,
pp. 40–53. Springer (2013), http://dx.doi.org/10.1007/978-3-319-06859-6_5

11. Prinz, T.M., Heinze, T.S., Amme, W., Kretzschmar, J., Beckstein, C.: Towards a
compiler for business processes - a research agenda. In: de Barros, M., Rückemann,
C.P. (eds.) SERVICE COMPUTATION 2015, The Seventh International Confer-
ences on Advanced Service Computing. pp. 49–55. IARIA, IARIA XPS Press, Nice,
France (March 22 - 27 2015)

12. Prinz, T.M., Spieß, N., Amme, W.: A first step towards a compiler for business
processes. In: Cohen, A. (ed.) Compiler Construction - 23rd International Confer-
ence, CC 2014, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8409, pp. 238–243. Springer (2014),
http://dx.doi.org/10.1007/978-3-642-54807-9_14

13. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2), 117–134 (2000)

14. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl.
Eng. 68(9), 793–818 (2009), http://dx.doi.org/10.1016/j.datak.2009.02.015

http://dx.doi.org/10.1007/3-540-44895-0_1
http://dx.doi.org/10.1007/3-540-44895-0_1
http://www.informatica.si/PDF/32-1/11_Amme-Intermediate%20Representations%20of%20Mobile%20Code.pdf
http://www.informatica.si/PDF/32-1/11_Amme-Intermediate%20Representations%20of%20Mobile%20Code.pdf
http://doi.ieeecomputersociety.org/10.1109/2.59
http://doi.ieeecomputersociety.org/10.1109/2.59
http://dx.doi.org/10.1137/0201014
http://dx.doi.org/10.1007/978-3-642-22386-0_1
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://dx.doi.org/10.1007/978-3-319-06859-6_5
http://dx.doi.org/10.1007/978-3-642-54807-9_14
http://dx.doi.org/10.1016/j.datak.2009.02.015

	Proposals for a Virtual Machine for Business Processes
	Introduction
	Overall Approach
	Requirements on a Virtual Machine
	Conception of a Virtual Machine
	Conclusion and Outlook


