
MoRe Semantic Web Applications

Maksym Korotkiyα and Jan L. Topαβ

αVrije Universiteit Amsterdam, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

βWageningen Centre for Food Sciences
P.O. Box 557 6700 AN Wageningen, The Netherlands

maksym@few.vu.nl jltop@few.vu.nl

Abstract. We present MoRe – a framework that allows one to extend a domain
ontology with a remotely invocable reasoning service applicable to concepts de-
fined in that ontology. Our approach bridges the gap between ontology and ap-
plication developers. We allow any reasoning service to be wrapped by a MoRe
ontology extension, the services ranging from generic logics-based reasoners to
specific black box software components. The application developer directly ac-
cesses these reasoning services through documents stated in terms of domain
concepts rather than dealing with remote procedure calls. We describe a case that
applies MoRe to an OWL-ontology of units of measure, and we demonstrate how
this extended ontology can be integrated into a unit conversion application.

1 Introduction

Ultimately, the Semantic Web [1] aims to significantly improve the experience of web
application end-users. To achieve this, the Semantic Web is to provide an environment
that enables an application developer to advance web applications beyond what we
observe nowadays. Ontologies are the keystones of the Semantic Web, and ontology
developers play a crucial role in developing that enabling environment.

It is believed that the current approaches to the Semantic Web make it rather difficult
to develop applications needed so much to materialize the Semantic Web vision [2,
3]. A number of solutions to facilitate design of Semantic Web applications has been
proposed, ranging from authoring [4], browsing and annotation frameworks [5, 6] to
infrastructures for the Semantic Web Services [7]. These approaches address specific
aspects of the Semantic Web application development. In MoRe we take a step back
to see how ontologies can be extended to make them more attractive for application
development in general.

Presently, application developers do not profit much from the increasing availability
of domain ontologies. The latter are typically devised for representation of static domain
knowledge, whereas applications require problem-specific answers and computations.
Generic reasoners and query languages associated with formalisms like RDFS or OWL
are often not expressive, efficient and transparent enough to be used in applications. We
propose MoRe 1 – a simple approach to extend ontologies with application-oriented, but

1 “MoRe” used to be an acronym but with the development of our approach its original interpre-
tation has become irrelevant.

still generic concepts and reasoning services. This provides for solutions, arbitrarily on
the continuous scale between domain- specific ontologies (using generic reasoners) to
task-specific applications (using dedicated procedures). The objective of our approach
is to simplify application development by means of increased (re)usability of ontolo-
gies.

To improve the usability of ontologies MoRe extends them by providing an elemen-
tary mechanism for attaching a reasoning service to these ontologies. We believe that the
availability of a readily accessible reasoning service allows the application developer to
faster evaluate an ontology and to incorporate it more readily into an application.

Our approach can be illustrated by providing an example from e-Science, our field
of application. e-Science aims at providing automated support to researchers in per-
forming experiments and constructing models and theories. A simple but very important
quality requirement for scientific work is correct and consistent use of units of measure.
Traditionally, an application developer would construct a specific algorithm for unit
conversion, using an internal database of units and their values in terms of reference
units. With the availability of a units ontology, the application developer could instead
access this ontology to determine for example the conversion factor between two units.
In this case, he would profit from the shared knowledge provided by the ontology, but
he would still have to write specific code to employ this knowledge in the application.

In MoRe we extend the units ontology with an associated reasoning service. For unit
conversion, we define an additional but still generic concept ConversionExpres-
sion. In this case, the application developer only needs to specify a document with the
following content (simplified):

UnitsOntology
ConversionExpression

sourceUnit: inch
destinationUnit: yard

The appropriate middleware detects the ontology underlying the document, locates
it on the Web and applies the associated reasoning service to this input document. After
that the middleware sends the following document back to the application:

UnitsOntology
ConversionExpression

sourceUnit: inch
destinationUnit: yard
factor: 0.02777778

The resulting document contains a new fact (value of the factor property) allow-
ing the developer to convert inches to yards.

This example provides a simple illustration of the application of our approach. The
main motivation behind MoRe is to make ontologies more (re-)usable to application
developers. Moreover, MoRe can help to overcome the lack of expressiveness, effi-
ciency and transparency of present ontology languages (such as OWL) and associated
generic reasoners. We emphasize that we do not claim to replace or improve existing

formalisms, but rather to provide a pragmatic framework for applying more or less spe-
cific algorithms were needed.

In this paper we first introduce the “Unit Converter” scenario in Section 2 in which
we outline the main steps a developer takes to employ an ontology in the application at
hand. Then in Section 3 we outline the main ideas behind MoRe and in Section 4 we
apply our approach to the “Unit Converter” scenario. After that, in Section 5 we discuss
relationships between MoRe and present approaches to ontologies and Semantic Web
Services. Also we elaborate on how both the application and the ontology developers
are effected by MoRe and how they benefit from it. Finally, we conclude with Section 6.

2 The “Unit Converter” Scenario

To demonstrate the effect of MoRe on application and ontology developers we employ
the “Unit Converter” scenario. In the scenario we consider a task of developing an
ontology-based unit conversion application – Unit Converter – that assists a user with
conversion between different units of measure.

To develop the Unit Converter, an application developer begins with the application
domain analysis. As a part of the analysis, the developer searches for existing ontologies
covering the target domain. Let us assume that the developer has found an ontology of
units of measure describing the application domain.

The ontology of units of measure can for example be utilized to organize the unit
space in a way familiar to the end-user, to select subsets of units that can be converted
to each other and, finally, to determine a conversion expression between two given units
of measure. In this scenario we elaborate on the last application of the ontology.

Let us assume that the ontology describes a number of units of measure (yard, inch
etc) and a conversion factor between a unit and a corresponding reference unit. For
example, the ontology states that yard unit has the SI unit factor property with
value 0.9144 and for inch unit the value is 0.0254. In this example, the SI unit- part
of the property refers to meter unit (meter is the standard SI-unit for length), so the
previous sentence means that 1 yard = 0.9144 meter and 1 inch = 0.0254 meter. An
application developer can use the two property values to compute a conversion factor
between yard and inch: 1 yard = 0.9144 / 0.0254 inch.

At present we see two main styles of employing ontologies into applications. The
first approach is to extract relevant information from an ontology in application-specific
form (most often a database) and then employ traditional techniques to access the data
and to apply application logic to them. The pseudocode in Fig. 1 demonstrates dis-
tinctive features of such an approach. It includes the use of a data query language and
computation of the conversion factor in the application.

The main advantage of this approach is that as soon as relevant data is extracted from
the ontology, the application developer is able to apply conventional (and well-known)
techniques to access the data. The major drawback is that such an approach degrades an
ontology to the level of data and makes it difficult to use domain knowledge captured
by it.

computeConversionFactor (srcUnit, dstUnit, factor)

srcFactor=db.query(‘‘
SELECT SI_unit_factor
FROM ...
WHERE unit=srcUnit’’

).get(‘‘SI_unit_factor’’)

dstFactor=db.query(‘‘...WHERE unit=dstUnit’’).get(...)

factor= srcFactor/dstFactor

Fig. 1. Pseudocode of a traditional DB-based approach. Using general purpose ontology middel-
ware leads to a similar solution.

computeConversionFactor (srcUnit, dstUnit, factor)

reqDoc=
‘‘MyConversionExpression

type ConversionExpression
hasSourceUnit srcUnit
hasDestUnit srcUnit’’

resDoc=MoRe.process(reqDoc)

factor = resDoc.getProperty(‘‘hasConversionFactor’’)

Fig. 2. Pseudocode of a MoRe-based approach.

The second way to exploit an ontology in an application is to employ general pur-
pose ontology middleware, such as Jena [8] or Sesame [9], that provides storage, rea-
soning and query facilities for ontologies.

However, in our scenario the reasoning capabilities of the associated ontology lan-
guages do not allow us to compute the conversion factors in a feasible way (we elabo-
rate on this in Section 4). As a consequence, the second approach would be very similar
to the previous one, only the queries would be expressed in a different language and
applied not to a database but to a stored ontology.

In both cases, the application developer has to incorporate part of the domain knowl-
edge into the application. Nevertheless, it is natural to expect that the way a conversion
factor is computed is part of the units of measure domain. MoRe allows an ontology
developer to incorporate such domain knowledge as a domain-specific reasoning pro-
cedure connected to concepts from the units of measure domain. If an application de-
veloper would have such a MoRe-ontology to his disposal, the pseudocode depicted in
Fig. 2 could be used.

The major difference with the previous cases is that the application developer now
reuses domain knowledge about the conversion factor via the reasoning service pro-
vided by the MoRe-ontology. The second distinction is that the application developer
does not need an additional query language to utilize the domain knowledge captured
in the ontology. He only needs to refer to an instance of ConversionExpression
from the extended units ontology. We will elaborate on this in Section 4 and now we
introduce the main ideas behind MoRe in the following section.

3 MoRe in a Nutshell: Documents, Ontologies and Handlers

This section provides a compressed description of the MoRe framework. Section 4 fills
in missing details and describes how the proposed approach is applied to the introduced
scenario.

In MoRe we use the notion of Document to provide a unified view of Semantic
Web resources. All documents share the same structure (a collection of object-property-
value triples) and syntax (XML-RDF). A document describes a particular situation in
a domain and explicitly refers to exactly one MoRe-ontology. This ontology extension
defines a reasoning service applicable within that domain.

A MoRe-ontology (Fig. 3) extends conventional ontologies by serving as a reason-
ing service provider. To achieve this, a MoRe-ontology exposes exactly one handler
providing an entry point to a reasoning service. In MoRe we assume that the handler
can be invoked via HTTP POST-request with one document as an attachment. The han-
dler processes the attachment and delivers another document as its output. Essentially,
a handler is a black box and a MoRe-ontology provides the information sufficient for its
invocation: the handler’s URL. A MoRe-ontology can reuse reasoning services provided
by other MoRe-ontologies. This aspect will not be discussed further in this paper.

Conceptually, in MoRe we make use of a subset of RDFS (Class, Property,
subClassOf, subPropertyOf, type and label) extended with concepts rep-
resenting main MoRe concepts (MoReOntology, Document, Handler, URL) and
relationships between them.

Having obtained a document, MoRe-middelware is able to identify the extended
ontology underlying it and to apply the reasoning service described in this ontology. The
outcome of the reasoning service depends on domain-specific knowledge captured in
the ontology and the input document that represents a particular situation in the domain.
The ontology also provides terminology for input and output documents.

4 Applying MoRe

In this section we elaborate on the use scenario presented earlier and describe in de-
tail how MoRe-ontologies can be developed to support development of Semantic Web
applications. We also show how an application should be designed to utilize extended
ontologies.

Fig. 3. Relationship between MoRe-ontology, document and handler.

4.1 Designing a MoRe-Ontology

We now describe the detailed design of a MoRe-ontology that extends the ontology of
units of measure. In our case we employ UnitDim 2 for this purpose. One of the prob-
lems we faced during our initial attempts to exploit the knowledge captured in UnitDim
was the difficulty to access domain knowledge expressed in terms of OWL restrictions.
Another reason to extend UnitDim into a MoRe-ontology is the inability to compute
conversion expressions between units using state-of-the-art general purpose reasoners.
We have addressed the former problem by creating the UnitRS MoRe-ontology exten-
sion and the latter has been addressed by the UnitCS ontology extension. Since the
general design steps for both UnitRS and UnitCS are similar, in this paper we only
elaborate on the UnitCS ontology.

The fact that we develop a MoRe-ontology for an application may seem to contradict
the idea that ontologies should be application independent. However, we will see that
the developed MoRe-ontology does not lose any generality but only gains utility in our
approach. Moreover, we do not create a MoRe-ontology from scratch, but rather extend
UnitDim. This demonstrates how an existing ontology can be made more attractive for
application development and still preserve its generality.

Unit Conversion (UnitCS) Ontology UnitDim describes a quantitative relation be-
tween every unit and a single reference unit. The relation is called SI unit factor

2 Rijgersberg, H., Top, J.: UnitDim: an ontology of physical units and quantities.
http://www.atoapps.nl/foodinformatics. Sec. News (2004)

and represents a conversion factor between the unit and its counterpart from the SI
System of Units. Two such relations can be combined to determine the conversion fac-
tor between any two units. In principle, we could have used a general OWL-reasoners
to do so. Unfortunately, the OWL language cannot express this domain knowledge in
a feasible way. Given a subset of N units, such that any two units can be converted
to each other, in OWL we would have to use the complete enumeration of conver-
sion factors. This would result in N 2 property values instead of the more feasible N
SI unit factor values combined with a capability to infer the rest.

An application can employ the UnitCS ontology to describe documents which then
can be subjected to the reasoning service defined in UnitCS. The UnitCS ontology
employs the conceptualization defined in two ontologies:

– MoRe-Ontology – defines the MoRe framework (concepts and their interpreta-
tion). All MoRe-ontologies reuse this ontology. The handler defined in the MoRe-
Ontology implements the core of what we will be referring to as MoRe-middleware.

– UnitDim – is a conventional domain ontology expressed in OWL. The UnitCS rea-
soning service exploits domain knowledge captured in UnitDim about relationships
between units of measure.

From the ontological point of view, the UnitCS ontology extends UnitDim to in-
fer a conversion expression between convertible units. To achieve this we introduce
the ConversionExpression class to represent a ternary relationship between two
units and a corresponding conversion factor. The ConversionExpression class
has three properties:

– hasSource – points to a source unit, the unit to which we apply the conversion
factor;

– hasDestionation – points to the destination unit to which the hasSource-
unit is to be converted to;

– hasFactor – contains the numerical value of the conversion factor.

We design the handler for the UnitCS ontology in such a way that for every instance
of Conversion Expression contained in the input document, the handler deter-
mines SI unit factors for both the source and destination unit and combines them
to compute the corresponding hasFactor value. More precisely:

FactorsrcUnit,dstUnit = factorSIUnit,srcUnit/factorSIUnit,dstUnit.

The computed factor allows us to use the following conversion expression

srcUnit = FactorsrcUnit,dstUnit · dstUnit.

Note that the UnitCS ontology could have contained an OWL reasoner instead of
our custom-built handler if it could have provided the required functionality. In that
case we could see the UnitRS ontology as a wrapper around UnitDim and the standard
OWL reasoning mechanism.

An application exploiting the UnitCS ontology needs to have access to the MoRe-
middleware in order to utilize the reasoning capabilities of the UnitCS ontology. The
application uses the terminology defined in UnitCS to create a document describing an
instance of the ConversionExpression class (Fig. 6). In addition the document
contains a URL that points to the UnitCS ontology.

Having created the input document, the application submits it to the MoRe-middle-
ware. The middleware analyzes the document, locates its underlying ontology and in-
vokes the handler of that ontology. All inferred facts (statements) are added to the docu-
ment, which is then returned to the MoRe-middleware. The middleware, in turn, returns
the result document to the application. The application updates its state according to the
newly obtained information.

The above scenario demonstrates how the MoRe-framework allows the application
developer to abstract from calls to remote procedures. The essential point is that the
developer can stay at the conceptual level of domain terminology when requesting ex-
ternal domain knowledge.

4.2 Building the Unit Converter Application

We have employed the UnitRS and UnitCS ontologies in the Unit Converter 3 tool.
Figure 5 depicts the architecture of the Unit Converter. In the figure we can see three
distinct layers:

– The layer of traditional ontologies is at the top. The UnitDim ontology is the only
traditional ontology employed in our application.

– The application layer forms the bottom layer. Inside this layer we can distinguish
two sub-layers that represent the application logic and the user interface (UI). The
UI sub-layer accepts user’s commands and displays the relevant the application
state. In our case the user is able to perform three actions: select source (step 1 in
Fig. 4) and destination units, and ask for a conversion expression (step 2 in Fig. 4.
Two of the actions are connected to the application logic layer in which there are
two components responsible for determining 1) a set of convertible units and 2) a
conversion expression between two units.

– The application and ontology layers are connected by the MoRe-layer. The UnitRS
ontology provides a unit retrieval service which makes it easier for an application
developer to access domain knowledge captured in UnitDim. UnitCS extends Unit-
Dim with a new concept (ConversionExpression) and provides a reasoning
service capturing domain knowledge about this concept.
The application layer interacts with the MoRe layer in two ways. First, it employs
ontological terminology defined in MoRe-ontologies for interfacing purposes (doc-
uments). Second, it communicates with MoRe-middleware. The middleware is re-
sponsible for delivering the input document to the corresponding ontology (its rea-
soning service) and communicating the output document back to the application
layer.

3 The Unit Converter is accessible via http://www.cs.vu.nl/∼maksym/MoRe/

Fig. 4. Main steps of the Unit Converter applicaton

Fig. 5. The architecture and the user interface of the “Unit Converter” application. Numbers on
the UI screenshots correspond to the UI components in the application layer.

rdf:Description rdf:about=’’ceInst0’’
* hasFactor 0.0277776

hasSource rdf:resource=’’inch’’
rdf:type rdf:resource=’’ConversionExpression’’
hasDestination rdf:resource=’’yard’’

rdf:Description

Fig. 6. A simplified example of a document communicated between the application and MoRe
layers. Initially the document does not contain a line with “*” which is added by a reasoning
service.

Fig. 6 contains a fragment of input and output documents communicated between
the “Find Conversion Factor” component of the application layer and the MoRe layer.
The input document does not contain a line marked with “*”. The value of the hasFac-
tor property is computed by the UnitCS handler and added to the input document. The
initial situation reflects the state of the application after the user has selected the source
and destination units. The output document contains a new fact (hasFactor property
value in our case) which is used to update the application state (step 3 in Fig. 5).

5 Discussion

Despite its brevity, Section 3 describes the main ideas underlying the proposed frame-
work. Nevertheless, we believe that the potential impact of MoRe on ontology and ap-
plication developers can be significant. In this section we discuss the effect of MoRe on
the current approaches to using ontologies in applications. We also clarify the difference
between the proposed approach and the usual view on Semantic Web Services.

5.1 Explicating reasoning mechanisms

The proposed framework does not compete with existing approaches to ontology lan-
guages but rather complements them by explicating the link between an ontology and
an applicable reasoning mechanism. We believe that this can improve the flexibility of
ontologies and make it easier to develop ontology-based applications.

In Section 4 we have explained that state-of-the-art ontology languages such as
RDFS and OWL cannot determine a conversion expression between units of measure.
We believe that this problem is caused not only by lack of expressiveness of the lan-
guage but that it is rather a manifestation of the inflexibility of these languages. In
MoRe, the ontology developer can attach an arbitrary reasoning service to an ontology,
ranging from general purpose reasoners to dedicated, goal-specific algorithms. This
allows one to handle the limitations of present ontology languages. These limitations
become visible when designing real-world applications, either in terms of limited ex-
pressiveness or of limits in performance.

MoRe enables development of domain ontologies which are easy to apply. We sub-
mit that the success of knowledge-intensive ontologies will be determined primarily
by their usability in applications and only secondarily by their definition as a general
standard.

5.2 The Black-Box Approach to Capturing Domain Knowledge

In MoRe we apply the black-box model to represent a reasoning mechanism. Such a
non-declarative approach makes it impossible to reuse parts of the knowledge captured
within the black-box. We argue, however, that any declarative language also requires its
own black-box to interpret language statements.

In MoRe we leave it to the user to decide where to draw the border between a
declarative and non-declarative representation of domain knowledge. Usually, it is
much easier to initially capture knowledge in a procedural way because it does not

restrict the user to a particular declarative representation. Later on, some parts of the
procedural knowledge can be exposed in a declarative way. In this way, MoRe allows an
evolutionary transition from procedural to declarative knowledge representation. More-
over, sometimes it is just impossible to express domain knowledge in a declarative way.
For example, a neural network can be trained to organize domain objects into cate-
gories, in an inherently non-declarative way. Current approaches do not allow the user
to benefit from advances in such non-symbolic areas as evolutionary computing, ma-
chine learning and neural networks. We believe that in MoRe we enable the user to
combine declarative representation techniques with computational (AI) methods and
we are going to investigate this ability in our future work.

5.3 Software Components

One more benefit of the black-box approach is that any software component can be
represented in this way. This provides us with a link between software engineering and
ontologies. MoRe makes it possible for software component developers and ontology
engineers to combine their efforts to create reusable domain ontologies. In many cases
a software component can be relatively easily modified to become part of the Semantic
Web. The interface of the component must be reformulated to express input arguments
as RDF-XML documents. The terminology employed in the interface becomes part
of the component ontology and the logic implemented in the component defines an
applicable reasoning mechanism. We believe that MoRe will allow us to bridge software
engineering and ontological design, improving reusability of the former and flexibility
of the latter.

Additionally, MoRe allows application developers to abstract from the level of ex-
plicit calls to remotely invocable procedures to the ontological level, in which docu-
ments are created according to ontologies and reasoning is applied to those document
transparently to developers and end-users.

5.4 MoRe and the Semantic Web Services

The proposed approach is based upon ontologies and reasoning mechanisms readily-
available on the Web. We rely on well-established Web standards such as URI, HTTML,
XML and RDF to make the proposed framework operational. This results in a super-
ficial similarity between MoRe and the existing approaches to Semantic Web Services
such as OWL-S and WSMO. A detailed overview of present approaches to the Semantic
Web Services is given in [10]. Here we highlight the major differences between MoRe
and the Semantic Web Services in general and OWL-S in particular.

MoRe is a general extension to ontologies. In MoRe we provide the user with a general
mechanism to attach a reasoning mechanism to a domain conceptualization. It should
not be compared with, for example, OWL-S, which provides a conceptualization of the
domain called “Semantic Web Services”.

MoRe does not address problems of automatic discovery and composition addressed
by other SWS-techniques. Instead MoRe provides a simple framework enabling reuse
of ontology-based reasoning services. If desirable, additional reasoning services can be

plugged in into MoRe to address, for example, the automatic discovery task typical for
the Semantic Web Services.

MoRe promotes different usage patterns for ontologies. In Semantic Web Services,
ontologies are used to annotate a Web Service. To use this resource an agent has to
understand the annotation, reason about it and, finally, exploit the resource. In MoRe
an ontology is rather seen as a language that is used to express documents. We believe
that the language and the document have a value of their own. An ontology becomes a
resource directly exploitable by an agent. MoRe enables us to incorporate any compu-
tational activity into the reasoning stage transparently to the agent.

At the operational level, OWL-S primarily uses an RPC-style of interaction with the
service, focusing on the procedural approach to service specification. This, along with
the extensive exposure of internal service details in the process model contrasts with
MoRe, where we rely on the document-based interaction style with one predefined entry
point to the reasoning mechanism. We believe that such an approach is more flexible
and offers more opportunities to manage complexity by hiding details of reasoning.

6 Conclusions

We have proposed MoRe – a framework for development of ontology-based applica-
tions by enabling an explicit link between domain terminology and the appropriate
reasoning mechanisms. The proposed framework is based on documents and ontolo-
gies containing explicit references to remotely invocable reasoning services (handlers),
providing a simple and flexible foundation for development of ontology-based Web
applications.

We start with the observation that at some point any ontology requires a directly
invocable reasoning mechanism. MoRe provides a framework for linking this mecha-
nism, represented as a black-box, to terminology defined in the ontology. This approach
not only allows us to incorporate inherently non-declarative reasoning mechanisms, for
example based on neural networks, evolutionary computing or any software component
into an ontology, but also empowers the user to decide where to draw a border between
declarative and procedural representation of domain knowledge.

We believe that MoRe helps us to bridge the gap between ontological domain knowl-
edge and application development. On the one hand, it provides a pragmatic application-
driven view of extending ontologies. On the other hand, it facilitates application de-
velopment by enabling easy integration of reasoning services into end-user software
solutions. MoRe supports an evolutionary development path from existing (legacy) ap-
plications to ontology based services.

We are yet to obtain a definitive answer about the practical implications of MoRe and
a number of technical design decisions. In particular the question on how to combine
several ontologies with their respective reasoning services is to be answered. Our next
step will be to further validate and refine the method by applying it in the domain of
e-Science, in particular in managing scientific knowledge in models and experimental
data.

References

1. W3C: Semantic web. (http://www.w3.org/2001/sw/)
2. McBride, B.: Four steps towards the widespread adoption of a semantic web. In: Proceedings

of the First International Semantic Web Conference, Sardinia, Italy (2002)
3. Etzioni, O., Gribble, S., Halevy, A., Levy, H., McDowell, L.: An evolutionary approach to

the semantic web. In Poster Presentation at the First International Semantic Web Conference
(2002)

4. Quan, D., Huynh, D., Karger, D.R.: Haystack: A platform for authoring end user semantic
web applications. International Semantic Web Conference (2003) 738–753

5. Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., Goranov, M.: KIM - Se-
mantic Annotation Platform. International Semantic Web Conference (2003) 834–849

6. Dzbor, M., Motta, E., Domingue, J.: Opening up magpie via semantic services. In McIl-
raith, S.A., Plexousakis, D., van Harmelen, F., eds.: International Semantic Web Conference.
Volume 3298 of Lecture Notes in Computer Science., Springer (2004) 635–649

7. Motta, E., Domingue, J., Cabral, L., Gaspari, M.: IRS-II: A Framework and Infrastructure
for Semantic Web Services. International Semantic Web Conference (2003) 306–318

8. HP Labs Semantic Web Activity: Jena Semantic Web Toolkit.
(http://www.hpl.hp.com/semweb/)

9. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for storing and
querying rdf data and schema information. In D. Fensel, J. Hendler, H. Lieberman, and W.
Wahlster, editors, Semantics for the WWW. MIT Press. (2001)

10. Cabral, L., Domingue, J., Motta, E., Payne, T.R., Hakimpour, F.: Approaches to semantic
web services: an overview and comparisons. In Bussler, C., Davies, J., Fensel, D., Studer, R.,
eds.: ESWS. Volume 3053 of Lecture Notes in Computer Science., Springer (2004) 225–239

	header-2: MoRe Semantic Web Applications 21
	header-4: MoRe Semantic Web Applications 23
	header-1: 20 Maksym Korotkiy and Jan L. Top
	header-3: 22 Maksym Korotkiy and Jan L. Top
	header-6: MoRe Semantic Web Applications 25
	header-5: 24 Maksym Korotkiy and Jan L. Top
	header-8: MoRe Semantic Web Applications 27
	header-7: 26 Maksym Korotkiy and Jan L. Top
	header-10: MoRe Semantic Web Applications 29
	header-9: 28 Maksym Korotkiy and Jan L. Top
	header-12: MoRe Semantic Web Applications 31
	header-11: 30 Maksym Korotkiy and Jan L. Top
	header-13: 32 Maksym Korotkiy and Jan L. Top

