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Abstract. In recent work, a general framework for specifying program corre-
spondences under the answer-set semantics has been defined. The framework al-
lows to define different notions of equivalence, including the well-known notions
of stronganduniform equivalence, as well as refined equivalence notions based
on theprojectionof answer sets, where not all parts of an answer set are of rel-
evance (like, e.g., removal of auxiliary letters). In the general case, deciding the
correspondence of two programs lies on the fourth level of the polynomial hi-
erarchy and therefore this task can (presumably) not be efficiently reduced to
answer-set programming. In this paper, we describe an approach to compute pro-
gram correspondences in this general framework by means ofquantified Boolean
formulas(QBFs). We provide linear-time constructible reductions from program
correspondence problems to the evaluation problem of QBFs. We can thus use
extant solvers for QBFs as back-end inference engines for solving program cor-
respondence problems. We also describe how our translations provide a method
to constructcounterexamplesin case a program correspondence does not hold.

1 Introduction

Answer-set programming(ASP) is widely recognised as a fruitful paradigm for declar-
ative knowledge representation and reasoning. It is based on the idea that problems are
encoded in terms of theories of some suitable language, associated with a declarative
semantics, such that the solutions of the given problems are determined by the models
of the corresponding theories. Among the different instances of the ASP paradigm, the
class of nonmonotonic logic programs under the answer-set semantics [14], with which
we are concerned with in this paper, represents the canonical and, due to the availability
of efficient answer-set solvers, like DLV [18], Smodels [26], and ASSAT [22], arguably
most widely used ASP approach.

An important issue for the further development of ASP is to provide methods and
tools forengineering ASP solutions. This includes techniques for thesimplificationand
(offline) optimisationof programs, tools for supporting the user withdebuggingor ver-
ification features, and methods formodular programming. Crucial for all these issues
are mechanisms for determining theequivalence of(parts of) logic programs.
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and by the European Commission via projects FET-2001-37004 WASP, IST-2001-33570 IN-
FOMIX, and IST-2001-33123 CologNeT.
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In previous work [13], a general framework for specifying correspondences between
logic programs under the answer-set semantics has been introduced. In this framework,
the correspondence of two programs is determined in terms of a classC of context
programsand a comparison relationρ: Correspondence between two programsP and
Q holds iff the answer sets ofP ∪R andQ ∪R satisfyρ, for any programR ∈ C. The
framework includes as special cases the well-known notions ofstrong equivalence[20],
uniform equivalence[10], and relativised notions thereof [28], as well as the practicably
important case of program comparison underprojectedanswer sets. In the latter setting,
not a whole answer set of a programP is of interest, but only its intersection on a subset
of all letters; this includes, in particular, removal of auxiliary letters in computation.

For the case of propositional disjunctive logic programs, correspondence check-
ing in the above framework under projected answer sets is surprisingly hard, viz.ΠP

4 -
complete in general [13], i.e., lying on the fourth level of the polynomial hierarchy.
Hence, this task can (presumably) not be efficiently reduced to propositional answer-
set programming. Such an approach (used, e.g., by Oikarinen and Janhunen [23] for
ordinary equivalence) reduces equivalence checking to problems like program consis-
tency such that equivalence holds iff the resultant program possesses no answer set.
Taking the results of Eiteret al. [9] into account, a compact reduction as such cannot
even be obtained by using non-ground programs as long as we restrict the arities of
predicates to a fixed constant. This indicates that advanced equivalence tests in answer-
set programming cannot be straightforwardly solved using ASP-systems themselves.

In this paper, we describe an approach to compute program correspondences in the
framework of Eiteret al. [13] by means of efficient reductions toquantified propo-
sitional logic. The latter is an extension of classical propositional logic characterised
by the condition that its sentences, usually referred to asquantified Boolean formulas
(QBFs), are permitted to contain quantifications over atomic formulas. More specifi-
cally, our reductions enjoy the following properties:

1. a solution correspondence under projected answer sets between two given logic
programs holds iff the associated QBF is valid in quantified propositional logic,

2. the reduction is constructible inlinear time and space, and
3. determining the validity of the resultant QBFs under the translations is not compu-

tationally harder than checking the original correspondence problem.

Besides the reduction of correspondence problems, we also describe how our transla-
tions provide a method to constructcounterexamplesin case a program correspondence
does not hold.

The rationale to consider a reduction approach to QBFs is twofold: On the one
hand, complexity results about quantified propositional logic imply that decision prob-
lems from the polynomial hierarchy can be efficiently represented in terms of QBFs,
and, on the other hand, practicably efficient solvers for quantified propositional logic
have been presented in recent years (like, e.g., the solvers QuBE [15], semprop [19],
or others—see [17, 16]). Hence, solvers for QBFs can be used as back-end inference
engines to compute the correspondence problems under consideration. We note that a
similar reduction approach to QBFs has been successfully applied in diverse fields like
nonmonotonic reasoning [6, 5, 12], paraconsistent reasoning [3, 1, 2], planning [25], and
automated deduction [7].
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2 Preliminaries

We deal with propositional disjunctive logic programs, which are finite sets of rules of
form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

n≥m≥ l≥ 0, where allai are propositional atoms from a universeU andnot denotes
default negation. If all atoms occurring in a programP are from a given setA ⊆ U of
atoms, we say thatP is a programoverA. The set of all programs overA is denoted
byPA.

Following Gelfond and Lifschitz [14], an interpretationI, i.e., a set of atoms, is an
answer setof a programP iff it is a minimal model of thereductP I , resulting from
P by (i) deleting all rules containing default negated atomsnot a such thata ∈ I and
(ii) deleting all default negated atoms in the remaining rules. The set of all answer sets
of a programP is denoted byAS(P ). The relationI |= P between an interpretationI
and a programP is defined as usual.

Under the answer-set semantics, two programsP andQ are regarded as (ordinarily)
equivalent iffAS(P ) = AS(Q). The more restrictive form ofstrong equivalence[20]
has recently been generalised as follows [28]: LetP,Q be programs overU , and let
A ⊆ U . Then,P andQ are strongly equivalent relative toA iff, for any R ∈ PA

AS(P ∪ R) = AS(Q ∪ R). If A=U , strong equivalence relative toA reduces to
strong equivalence; ifA= ∅, we obtain ordinary equivalence.

We use the following notation: For an interpretationI and a setS of interpretations
(resp., pairs of interpretations), we writeS|I = {Y ∩ I | Y ∈ S} (resp.,S|I =
{(X ∩ I, Y ∩ I) | (X,Y ) ∈ S}). If S = {s}, we usually writes|I instead ofS|I .

For anyA ⊆ U , a pair (X,Y ) of interpretations, whereY ⊆ U , is anA-SE-
interpretation(overU) iff either X = Y or X ⊂ Y |A. (X,Y ) is anA-SE-modelof
a programP iff (i) Y |= P , (ii) for all Y ′ ⊂ Y with Y ′|A = Y |A, Y ′ 6|= PY , and
(iii) X ⊂ Y implies the existence of anX ′ ⊆ Y with X ′|A = X such thatX ′ |= PY

holds. A pair(X,Y ) is total iff X = Y , andnon-totalotherwise. The set of allA-SE-
models ofP is denoted bySEA(P ).

For A = U , the notion of anA-SE-interpretation (resp.,A-SE-model) coincides
with the notion of anSE-interpretation(resp.,SE-model) as defined by Turner [27], and
we writeSE (P ) instead ofSEU (P ). Thus,(X,Y ) ∈ SE (P ) iff X ⊆ Y , Y |= P , and
X |= PY .

Proposition 1 ([28]).Two programsP andQ are strongly equivalent relative toA iff
SEA(P ) = SEA(Q).

Example 1.Consider the following two programs,P andQ:

P = P0 ∪ {c ∨ d← a; c ∨ d← b},
Q = P0 ∪ {c ∨ d← a, b; d← b,not c; c← a,not d},

for P0 = {a← c; b← c; a← d; b← d; ← not c,not d}.
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They have the following SE-models:1

SE (P ) = {(∅, abc), (∅, abd), (∅, abcd), (abcd, abcd),
(abc, abcd), (abd, abcd), (abc, abc), (abd, abd)},

SE (Q) = SE (P ) ∪ {(b, abc), (a, abd), (b, abcd), (a, abcd)}.

Hence,P andQ are not strongly equivalent. On the other hand,AS(P ) = AS(Q) = ∅,
i.e.,P andQ are (ordinarily) equivalent. Moreover,P andQ are strongly equivalent
relative toA iff A ∩ {a, b} = ∅. ForA = {a, b}, we get

SEA(P ) = {(∅, abc), (∅, abd), (abc, abc), (abd, abd)},
SEA(Q) = SEA(P ) ∪ {(b, abc), (a, abd)}.

Hence,P andQ are not strongly equivalent relative toA = {a, b}. For instance, adding
a facta← yieldsAS(P ∪ {a←}) = {abc, abd}, whileAS(Q ∪ {a←}) = {abc}. 2

A setS of SE-interpretations iscompleteiff, for each(X,Y ) ∈ S, also(Y, Y ) ∈ S
as well as(X,Z) ∈ S, for anyZ such thatY ⊆ Z and(Z,Z) ∈ S. It can be shown
that the setSE (P ) of SE-models of any programP is always complete. Conversely,
any complete setS of SE-interpretations can be represented by some programP . As
a general result, taking also a restricted alphabetA into account, the following result
holds:

Proposition 2. Let S be a complete set of SE-interpretations, and letA be a set of
atoms. Then, there exists a programPS,A ∈ PA such thatSE (PS,A)|A = S|A.

One possibility to obtainPS,A from S is as follows:

1. for eachY ⊆ A with (Y, Y ) /∈ S|A, add rules⊥ ← Y,not (A \ Y ), and
2. for eachX ⊂ Y with (X,Y ) /∈ S|A and(Y, Y ) ∈ S|A, add rules∨

p∈(Y \X) p← X,not (A \ Y ).

3 Correspondence Checking

In order to deal with differing notions of program equivalence in a uniform manner,
taking in particular strong equivalence and its relativised version, as well as equivalence
notions based on the projection of answer sets into account, Eiteret al. [13] introduced
a general framework for specifying differing notions of equivalence. In this framework,
one parameterises, on the one hand, the setR of rules to be added to the programsP
andQ, and, on the other hand, the relation that has to hold between the collection of
answer sets ofP ∪R andQ ∪R.

Definition 1. A correspondence frame, or simplyframe, F , is a triple (U , C, ρ), where
(i) U is a set of atoms, called theuniverse ofF , (ii ) C ⊆ PU , called thecontext ofF ,
and(iii ) ρ ⊆ 22U × 22U .

For any programP,Q ∈ PU , P andQ areF-corresponding, in symbolsP 'F Q,
iff, for all R ∈ C, (AS(P ∪R),AS(Q ∪R)) ∈ ρ.

1 We writeabc instead of{a, b, c}, a instead of{a}, etc.
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It is quite obvious that the equivalence notions discussed above are special cases
of F-correspondence. Indeed, for any universeU and anyA ⊆ U , strong equivalence
relative toA coincides with(U ,PA,=)-correspondence, and ordinary equivalence co-
incides with(U , {∅},=)-correspondence.

Following Eiteret al.[13], we are mainly concerned with correspondence frames of
form (U ,PA,⊆B) and(U ,PA,=B), whereA,B ⊆ U are sets of atoms, and⊆B and
=B are projections of the standard subset and set-equality relation, respectively, defined
as follows: for any setS,S ′ of interpretations,S ⊆B S ′ iff S|B ⊆ S ′|B , andS =B S ′
iff S|B = S ′|B .

A correspondence problem, Π, (overU) is a quadruple(P,Q, C, ρ), whereP,Q ∈
PU and(U , C, ρ) is a frame. We say thatΠ holds iff P '(U,C,ρ) Q holds. For a cor-
respondence problemΠ = (P,Q, C, ρ) overU , we usually leaveU implicit, assuming
that it consists of all atoms occurring inP ,Q, andC. We callΠ anequivalence problem
if ρ is given by=B , and aninclusion problemif ρ is given by⊆B , for someB ⊆ U .
Note that(P,Q, C,=B) holds iff (P,Q, C,⊆B) and(Q,P, C,⊆B) jointly hold.

For inclusion problems, we define the concept of acounterexample, which is easily
extended to equivalence problems.

Definition 2. A pair (Y,R), whereY is an interpretation andR ∈ C, is called acoun-
terexamplefor (P,Q, C,⊆B) iff Y ∈ AS(P ∪ R) and, for eachZ with Z =B Y ,
Z /∈ AS(Q ∪R).

Example 2.We have already seen that forP ,Q from Example 1,(P,Q,PA,⊆U ) does
not hold forA = {a, b} andU = {a, b, c, d}. What happens if we restrict the com-
parison of answer sets fromU to A, i.e., does(P,Q,PA,⊆A) hold? Note that, e.g.,
AS(P ∪ {a ←})|A = AS(Q ∪ {a ←})|A = {ab}. Hence, the counterexample
(abc, {a ←}) from Example 1 is no longer a counterexample for(P,Q,PA,⊆A). As
we shall see below, there still exist counterexamples for this problem, but these are more
involving. 2

As shown by Eiteret al. [13], inclusion problems with projection may possess only
counterexamples which are exponential in the size of the compared programs. Hence,
instead of guessing concrete programs and checking whether they are counterexamples
for a given inclusion problem, Eiteret al.provide a semantical structure, calledspoiler,
which operates on the compared programs alone, together with the notion of apartial
spoiler.

Definition 3. Let Π = (P,Q,PA,⊆B) be an inclusion problem,Y an interpretation,
andS ⊆ SEA(Q) ∩ {(X,Z) | Z =A∪B Y } a complete set ofA-SE-interpretations.
The pair(Y,S) is aspoiler forΠ iff

1. (Y, Y ) ∈ SEA(P ),
2. each(Z,Z) ∈ SEA(Q) such thatZ =A∪B Y is also inS,
3. for each(Z,Z) ∈ S, some non-total(X,Z) ∈ S ∩ SEA(Q) exists, and
4. for each non-total(X,Z) ∈ S, (X,Y ) /∈ SEA(P ).

For a spoiler(Y,S), the interpretationY is referred to as apartial spoilerfor Π.
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Intuitively, in a spoiler(Y,S), the interpretationY is an answer set ofP ∪ R but
not ofQ ∪R, whereR is some program which is semantically given byS.

We collect and rephrase the main results from [13].

Proposition 3. Let Π = (P,Q,PA,⊆B) be an inclusion problem. Then,Π holds iff
there exists no spoiler(Y,S) for Π.

As an immediate consequence, we obtain that a correspondence problemΠ holds iff
there exists no partial spoilerY for Π. Moreover, we are able to connect spoilers to
counterexamples using the generic programsPS,A, as introduced in Section 2.

Proposition 4. If (Y,S) is a spoiler for an inclusion problemΠ = (P,Q,PA,⊆B),
then(Y, PS,A) is a counterexample forΠ.

Example 3.For P1 andP2 from Example 1 andA = {a, b}, the pairs(Y1,S) and
(Y2,S) are the only spoilers for(P1, P2,PA,⊆A), whereY1 = {abc} andY2 = {abd}
are the partial spoilers for(P1, P2,PA,⊆A), andS = {(a, abd), (b, abc), (abc, abc),
(abd, abd)}. Invoking our program construction, we obtainPS,A = {⊥ ← a,not b;
⊥ ← b,not a; ⊥ ← not a,not b; a ∨ b ←}. One can verify that bothY1 andY2 are
contained inAS(P1 ∪PS,A), while no interpretationZ with Z =A Y1 is an answer set
of P2 ∪ PS,A. 2

Finally, we recall the computational complexity of checking whether an equivalence
or inclusion problem holds. As shown by Eiteret al. [13], deciding(P,Q,PA,=B) is
of a significantly higher complexity compared to more restricted notions of equiva-
lence, like strong equivalence (which is coNP-complete) or ordinary equivalence and
relativised strong equivalence (which are bothΠP

2 -complete).

Proposition 5 ([13]).Given programsP , Q, sets of atomsA, B, andρ ∈ {⊆B ,=B},
deciding whether a correspondence problem(P,Q,PA, ρ) holds isΠP

4 -complete.

4 Reductions

In this section, we provide two approaches to map inclusion problems(P,Q,PA,⊆B)
into quantified Boolean formulas. By combining the reductions for(P,Q,PA,⊆B) and
(Q,P,PA,⊆B), we straightforwardly obtain a method to check whether an equivalence
problem(P,Q,PA,=B) holds. We start with a brief recapitulation of the basic facts
about the quantified version of propositional logic.

4.1 Quantified Propositional Logic

Quantified propositional logic is an extension of classical propositional logic in which
formulas are permitted to contain quantifications over propositional variables. More for-
mally, formulas of quantified propositional logic are built from atomic formulas using
the primitive sentential connectives¬ and∧, the logical constant>, and unary operators
of form ∀p (wherep is some atom), calleduniversal quantifiers. The operators∨,→,
↔, as well as the symbol⊥, are defined from the primitive ones,¬, ∧, and>, as usual.



Implemetations for Advanced Equivalence Checking in Answer-Set Programming 121

Furthermore, similar to first-order logic,∃p is defined as the operator¬∀p¬, referred to
as anexistential quantifier. Formulas of this language are also calledquantified Boolean
formulas(QBFs) and we denote them by Greek upper-case letters.

An occurrence of an atomp is free in a QBFΦ if it does not occur in the scope of
a quantifierQp, Q ∈ {∃,∀}. In what follows, we tacitly assume that every subformula
QpΦ of a QBF contains a free occurrence ofp in Φ, and for two different subformulas
QpΦ, Qq Ψ of a QBF we requirep 6= q. Moreover, given a finite setP of atoms,QP Ψ
stands for any QBFQp1Qp2 . . .QpnΨ such that the variablesp1, . . . , pn are pairwise
distinct andP = {p1, . . . , pn}.

Towards the definition of the semantics of QBFs, we introduce the following con-
cept. For an atomp (resp., a setP of atoms) and a setI of atoms,Φ[p/I] (resp.,Φ[P/I])
denotes the QBF resulting fromΦ by replacing each free occurrence ofp (resp., any
p ∈ P ) in Φ by> if p ∈ I and by⊥ otherwise.

For an interpretationI and a QBFΦ, the relationI |= Φ is inductively defined as
follows:

1. I |= >,
2. I |= p iff p ∈ I,
3. I |= ¬Φ iff I 6|= Φ,
4. I |= Φ1 ∧ Φ2 iff I |= Φ1 andI |= Φ2, and
5. I |= ∀p Φ iff I |= Φ[p/{p}] andI |= Φ[p/∅].

The truth conditions for⊥, ∨,→,↔, and∃p, for anyp, follow from the above in
the usual way.

A QBF Φ is true underI iff I |= Φ, otherwiseΦ is false underI. A QBF is valid
iff it is true under any interpretation. Note that aclosedQBF, i.e., a QBF without free
variable occurrences, is either true under anyI or false under anyI.

A QBFΦ is said to be inprenex normal formiff it is closed and of the form

QnPn . . .Q1P1 φ, (2)

n ≥ 0, whereφ is a propositional formula,Qi ∈ {∃,∀} such thatQi 6= Qi+1 for
1 ≤ i ≤ n− 1, and(P1, . . . , Pn) is a partition of the propositional variables occurring
in φ, andPi 6= ∅, for each1 ≤ i ≤ n. We call a QBF of the form (2) an(n,Qn)-QBF.

Without going into details, we mention that any closed QBFΦ is easily transformed
into an equivalent QBF in prenex normal form such that each quantifier from the orig-
inal QBF corresponds to a quantifier in the prenex normal form. Call such a QBF the
prenex normal form ofΦ. However, similar as in first-order logic, depending on the
structure of the quantifier occurrences in the formula-tree, there are different ways how
to obtain an equivalent prenex QBF (cf. [8] for more details on this issue).

The following property is essential:

Proposition 6. For everyk ≥ 0, deciding the truth of a given(k,∃)-QBF(resp.,(k,∀)-
QBF) isΣP

k -complete(resp.,ΠP
k -complete).

Hence, any decision problemD in ΣP
k (resp.,ΠP

k ) can be mapped in polynomial
time to a(k,∃)-QBF (resp.,(k,∀)-QBF)Φ such thatD holds iffΦ is valid. In particular,
Proposition 5 implies therefore that any correspondence problem(P,Q,PA, ρ), for ρ ∈
{⊆B ,=B}, can be reduced to a(4,∀)-QBF. In what follows, we construct two such
mappings which are moreover constructible inlinear space and time.
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4.2 Encodings

For our encodings, we use the following building blocks. We assume indexed setsV of
atoms, and we use (pairwise) disjoint copiesVi = {vi | v ∈ V }, for anyi. In fact, we
use subscripts as a general renaming schema for interpretations, formulas, and rules.
For instance, formulaφi is the result of replacing each occurrence of an atomp in φ by
pi, for anyi.

The following abbreviations allow for comparing different subsets ofV :

1. (Vi ≤ Vj) :=
∧

v∈V (vi → vj),
2. (Vi < Vj) := (Vi ≤ Vj) ∧ ¬(Vj ≤ Vi), and
3. (Vi = Vj) := (Vi ≤ Vj) ∧ (Vj ≤ Vi),

with the latter being equivalent to
∧

v∈V (vi ↔ vj).

Proposition 7. LetI be an interpretation,A,X, Y ⊆ V such that, for somei, j, I|Vi
=

Xi andI|Vj = Yj . Then,

1. X|A ⊆ Y |A iff I |= (Ai ≤ Aj),
2. X|A ⊂ Y |A iff I |= (Ai < Aj), and
3. X|A = Y |A iff I |= (Ai = Aj).

For a ruler of form (1), we defineH(r) = a1 ∨ · · · ∨al,B+(r) = al+1 ∧ · · · ∧am,
andB−(r) = ¬am+1 ∧ · · · ∧ ¬an. Furthermore, for a programP , we definePi,j =∧

r∈P

(
(B+(ri) ∧B−(rj))→ H(ri)

)
.

Proposition 8. LetP be a program over atomsV , I an interpretation, andX,Y ⊆ V
such that, for somei, j, I|Vi

= Xi andI|Vj
= Yj . Then,X |= PY iff I |= Pi,j .

Intuitively, this allows to refer to the reduct ofP (in case thati 6= j) and to the
classical formula associated toP (in case thati = j) simultaneously. The latter is seen
by the fact that for any programP and any interpretationY , Y |= P iff Y |= PY .

The central characterisation towards our encodings is as follows. It is obtained by re-
placing the concept of anA-SE-model in Definition 3 by the test over program reducts,
following the definition ofA-SE-models.

Proposition 9. An interpretationY is a partial spoiler for(P,Q,PA,⊆B) iff

(a) Y |= P ,
(b) for eachY ′ ⊂ Y with Y ′ =A Y , Y ′ 6|= PY , and
(c) for eachZ =A∪B Y , Z |= Q implies the existence of aX ⊂ Z such thatX |= QZ

and, ifX ⊂ Z|A = Y |A, then, for eachX ′ ⊆ Y withX ′ =A X,X ′ 6|= PY .

Definition 4. LetP,Q be programs overV and letA,B ⊆ V . Furthermore, consider
Π = (P,Q,PA,⊆B). Then,

SΠ(V1) := P1,1 ∧ S1(P,A) ∧ ∀V3

(
S2(Q,A,B)→ S3(P,Q,A)

)
, where

S1(P,A) := ∀V2

(
(A2 = A1) ∧ (V2 < V1)→ ¬P2,1

)
,

S2(Q,A,B) :=
(
(A ∪B)3 = (A ∪B)1

)
∧Q3,3, and

S3(P,Q,A) := ∃V4

(
(V4 < V3) ∧Q4,3 ∧

(
(A4 < A1)→

∀V5((A5 = A4) ∧ (V5 ≤ V1)→ ¬P5,1)
))
.
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Lemma 1. Let P andQ be programs overV , and letA,B, Y ⊆ V . Then,Y is a
partial spoiler forΠ = (P,Q,PA,⊆B) iff Y1 |= SΠ(V1).

We do not give a formal proof here, but just provide the following explanations.
The subformulaP1,1 ∧ S1(P,A) of SΠ(V1) takes care of Conditions (a) and (b) from
Proposition 9; we use atomsV1 to refer toY , and atomsV2 to refer to theY ′ therein.
Note that(A2 = A1) ∧ (V2 < V1) thus guarantees that we take only thoseY ′ for
testingY ′ |= PY into account, whereY ′ ⊂ Y andY ′ =A Y . The next subformula,
S2(Q,A,B), “returns” allZ (via assignments toV3) such thatZ =A∪B Y andZ |=
Q. Finally, for each suchZ, S3(P,Q,A) has to be true. By(V4 < V3) we let the
assignments toV4 (which refer to theX in Item (c) of Proposition 9) be a proper subset
of those toV3, i.e., we requireX ⊂ Z. Then we test whetherX |= QZ via Q4,3,
as follows from Proposition 8, and in the caseX|A ⊂ Y |A (checked viaA4 < A3),
the remaining formula encodes the test whether for allX ′ (assignments toV5) with
X ′ =A X andX ′ ⊆ Y , X ′ 6|= PY , i.e.,P5,1 is false under the current assignment to
V1 andV5.

In what follows, we give a more compact encoding, which in particular reduces the
number of universal quantifications. The idea is to save on the fixed assignments as,
e.g., inS2(Q,A,B) where we have(A ∪ B)3 = (A ∪ B)1. That is, inS2(Q,A,B),
we implicitly ignore all assignments toV3 where atoms fromA or B have different
truth values as those inV1. Therefore, it makes sense to consider only atoms from
V3 \ (A3 ∪B3) and useA1 ∪B1 instead ofA3 ∪B3 in Q3,3.

This calls for a more subtle renaming schema for programs, however. LetV be a set
of indexed atoms, and letr be a rule. Then,rVi,k results fromr by replacing each atom
x in r by xi, providingxi ∈ V, and byxk otherwise. For a programP , we define

PV
i,j,k :=

∧
r∈P

(
(B+(rVi,k) ∧B−(rVj,k))→ H(rVi,k)

)
.

Moreover, for anyi ≥ 0, any setV of atoms, and any setC, V C
i := (V \ C)i.

Definition 5. LetP,Q be programs overV , letA,B ⊆ V , andΠ = (P,Q,PA,⊆B).
Furthermore, letV = V1 ∪ V A

2 ∪ V A∪B
3 ∪ V4 ∪ V A

5 . Then,

T Π(V1) := P1,1 ∧ T 1(P,A,V) ∧ ∀V A∪B
3

(
QV

3,1,1 → T 3(P,Q,A,V)
)
, where

T 1(P,A,V) := ∀V A
2

(
(V A

2 < V A
1 )→ ¬PV

2,1,1

)
and

T 3(P,Q,A,V) := ∃V4

((
V4 < ((A∪B)1 ∪ V A∪B

3 )
)
∧QV

4,3,1 ∧
(
(A4 < A1)→

∀V A
5 ((V A

5 ≤ V A
1 )→ ¬PV

5,1,4)
))
.

Note that the subformulaV4 < ((A∪B)1 ∪ V A∪B
3 ) in T 3(P,Q,A,V) denotes((

(A∪B)4 ≤ (A∪B)1
)
∧ (V4 ≤ V1)

)
∧ ¬

((
(A∪B)1 ≤ (A∪B)4)

)
∧ (V1 ≤ V4)

)
.

Also note that, compared to the first encodingSΠ(V1), we do not have a pendant to
subformulaS2 here, which reduces simply toQV

3,1,1 due to the new renaming schema.

Lemma 2. LetP,Q be programs overV , and letA,B, Y ⊆ V . Then,Y is a partial
spoiler forΠ = (P,Q,PA,⊆B) iff Y1 |= T Π(V1).
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For illustration, consider the two programsP = {a ∨ b ← c} andQ = {a ←
c,not b},A = {a}, andB = {b}. The encodings for the problemΠ = (P,Q,PA,⊆B)
are as follows:

SΠ(V1) = (c1 → a1 ∨ b1) ∧ S1(P,A) ∧
∀a3b3c3(S2(Q,A,B)→ S3(P,Q,A)),

S1(P,A) = ∀a2b2c2
(
(a2 ↔ a1) ∧ ({b2, c2} < {b1, c1})→ ¬(c2 → a2 ∨ b2)

)
,

S2(Q,A,B) = (a3 ↔ a1) ∧ (b3 ↔ b1) ∧ (c3 ∧ ¬b3 → a3),
S3(P,Q,A) = ∃a4b4c4

(
({a4, b4, c4} < {a3, b3, c3}) ∧ (c4 ∧ ¬b3 → a4) ∧
(({a4} < {a1})→ ∀a5b5c5((a5 ↔ a4) ∧
({a5, b5, c5} ≤ {a1, b1, c1})→ ¬(c5 → a5 ∨ b5)))

)
;

T Π(V1) = (c1 → a1 ∨ b1) ∧ T 1(P,A,V) ∧
∀c3

(
(c3 ∧ ¬b1 → a1)→ T 3(P,Q,A,V)

)
,

T 1(P,A,V) = ∀b2c2(({b2, c2} < {b1, c1})→ ¬(c2 → a1 ∨ b2),
T 3(P,Q,A,V) = ∃a4b4c4

(
({a4, b4, c4} < {a1, b1, c3}) ∧ (c4 ∧ ¬b1 → a4) ∧
(({a4} < {a1})→ ∀b5c5(({b5, c5} ≤ {b1, c1})→
¬(c5 → a4 ∨ b5)))

)
.

As mentioned before, the optimised encodingT Π(·) saves “fixed assignments”, like
(a2 ↔ a1), which occur inSΠ(·), by employing the advanced renaming schema in
such a way that, instead of atoma2, atoma1 is used in the encoding. One effect of this
refinement is the decrease of universally quantified atoms.

Theorem 1. For any inclusion problemΠ = (P,Q,PA,⊆B), the following statements
are equivalent:(i) Π holds;(ii ) ¬∃V1SΠ(V1) is valid; and(iii ) ¬∃V1T Π(V1) is valid.

Corollary 1. Let Π = (P,Q,PA,=B) be an equivalence problem. Then, forΠ′ =
(P,Q,PA,⊆B) and Π′′ = (Q,P,PA,⊆B), the following statements are equivalent:
(i) Π holds; (ii ) ¬∃V1SΠ′(V1) ∧ ¬∃V1SΠ′′(V1) is valid; and (iii ) ¬∃V1T Π′(V1) ∧
¬∃V1T Π′′(V1) is valid.

4.3 Applicability and Adequacy of the Encodings

In order to employ off-the-shelves QBF-solvers for deciding answer-set correspon-
dence, we have to transform above encodings into prenex normal form. The propo-
sitional part of these prenex QBFs additionally has to be reduced to CNF, which can be
accomplished by usual techniques. We thus focus here just on possible prenex normal
forms of our encodings.

Recall that there are several ways to transform a QBF into prenex normal form. For
our encodings, the situation is as follows. Take, e.g., the existential closure ofSΠ(V1),
given by∃V1SΠ(V1): for this closed QBF, different prenex forms can be obtained, e.g.,

∃V1∀(V2 ∪ V3)∃V4∀V5 φ or ∃V1∀V3∃V4∀(V5 ∪ V2)φ,
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whereφ represents the so-calledpropositional skeletonof the QBFSΠ(V1) (cf. [8]),
which, roughly speaking, results fromSΠ(V1) by deleting all quantifiers. For later pur-
poses, we use in the following the second variant, and defineSp

Π := ∃V1∀V3∃V4∀(V5∪
V2)φ. Likewise, we useT p

Π := ∃V1∀V A∪B
3 ∃V4∀(V A

5 ∪ V A
2 )ψ as a prenex form for

∃V1T Π(V1), whereψ is the propositional skeleton ofT Π(V1).

Theorem 2. For any inclusion problemΠ = (P,Q,PA,⊆B), the following statements
are equivalent:(i) Π holds;(ii ) ¬Sp

Π is valid; (iii ) ¬T p
Π is valid.

These prenex forms also give evidence that our encodings areadequatein a certain
theoretical sense: Following [3], given decision problemsD ⊆ L andD′ ⊆ L′ in
languagesL andL′, respectively, we call an encodingf : L → L′ adequateiff, for
eachs ∈ L, (i) s ∈ D iff f(s) ∈ D′, (ii) f(s) is constructible in polynomial time from
s, and (iii) deciding whetherf(s) ∈ D′ is not computationally harder than deciding
whethers ∈ D.

From Proposition 5, we get that the complementary problem of inclusion checking,
i.e., checking whether, for givenP , Q, A, B, the problemΠ = (P,Q,PA,⊆B) does
not hold, isΣP

4 -complete. Note that, for any suchΠ, (i) Sp
Π is valid iff Π does not hold

(by Theorem 2), (ii)Sp
Π is always computable in polynomial time (indeed, in linear

time) in the size ofΠ (as is easily verified from the definitions), and (iii)Sp
Π is a(4,∃)-

QBF. From Proposition 6, we know that determining the truth ofSp
Π is thus in the same

complexity class (viz.ΣP
4 ) as the encoded problem. All these properties hold forT p

Π

as well. Hence, both of our encodings are adequate.

5 Obtaining Counterexamples

In this section, we provide a theoretical basis how to use our encodings to obtain coun-
terexamples for an inclusion problem(P,Q,PA,⊆B). To this end, we use the concept
of policiesfor prenex QBFs, along the lines of Coste-Marquiset al. [4].

Definition 6. The setP (k,Q, Xk, . . . , X1) of policies for a (k,Q)-QBF of the form
QkXk . . .Q1X1φ is inductively defined as follows:

1. P (0,Q) = {λ},
2. P (k,∃, Xk, . . . , X1) = {(I, π) | I ⊆ Xk, π ∈ P (k − 1,∀, Xk−1, . . . , X1)}, and
3. P (k,∀, Xk, . . . , X1) = {π | π : 2Xk → P (k − 1,∃, Xk−1, . . . , X1)},

whereλ represents the empty policy.

Note that policies for(k,∃)-QBFs are pairs(I, π), whereI is an interpretation over
atoms from the outermost group of quantifiers andπ is a policy itself, whereas poli-
cies for(k,∀)-QBFs are functions assigning to each interpretation over atoms of the
outermost group of quantifiers a policy.

Definition 7. A (k,Q)-QBFΦ = QkXk . . .Q1X1φ is satisfiedby a policyπ (for Φ) iff
one the following conditions applies(inductively):

1. k = 0, π = λ, andφ is true,
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2. k > 0, Q = ∃, π = (I, π′), and∀Xk−1 . . .Q1X1φ[Xk/I] is satisfied byπ′,
3. k > 0, Q = ∀, and for anyI ⊆ Xk, ∃Xk−1 . . .Q1X1φ[Xk/I] is satisfied byπ(I).

Denote bySP(Φ) the set of satisfying policies for a prenex QBFΦ.

Proposition 10. A prenex QBFΦ is valid iff SP(Φ) 6= ∅.

For illustration, considerφ = (p→ q) ∧ (q → p) and the following QBFs:2

Φ1 = ∃pq φ, Φ2 = ∀pq φ, Φ3 = ∃p∀q φ, and Φ4 = ∀p∃q φ.

The set of policies forΦ1 is given by{(I, λ) | I ⊆ {p, q}}, i.e., the satisfying policies
for Φ1 are in a one-to-one correspondence to the models ofφ, and are given by(∅, λ)
and({p, q}, λ). ForΦ2, the only policy is the functionπ assigning to eachI ⊆ {p, q}
the empty policyλ. Note thatπ is not satisfyingΦ2 since, for instance, withI = {p},
we getπ(I) = λ, butφ[{p, q}/I] = (> → ⊥)∧ (⊥ → >) is not true. ForΦ3, we get as
policiesπ1 = ({p};π′) andπ2 = (∅;π′), whereπ′ is defined asπ′({q}) = π′(∅) = λ.
It can be shown that neitherπ1 norπ2 satisfyΦ3, by similar arguments as for the case
of Φ2. Finally,Φ4 yields four policies, given as follows:

π(p) = (q, λ), π(∅) = (q, λ); π′(p) = (q, λ), π′(∅) = (∅, λ);
π′′(p) = (∅, λ), π′′(∅) = (q, λ); π′′′(p) = (∅, λ), π′′′(∅) = (∅, λ).

One can verify thatπ′ is the only satisfying policy forΦ4.
We now use the concept of policies to obtain the counterexamples from the satis-

fying policies of our encodings. Note that, in the definition below, we make use of our
renaming schema as used in the encodings; e.g.,Z3 = {z3 | z ∈ Z}.

Definition 8. Let Π = (P,Q,PA,⊆B) be an inclusion problem,Sp
Π and T p

Π as in
Subsection 4.3, andΩ ∈ {S,T }. Then,

σ(Ω,Π) := {(Y,ΣΩ,Y,π) | (Y1, π) ∈ SP(Ωp
Π)},

where

ΣS,Y,π := {(X,Z), (Z,Z) | Z =A∪B Y, (Z,Z) ∈ SEA(Q),
π(Z3) = (X4, π

′), for someπ′} and

ΣT ,Y,π := {(X,Y +̇Z), (Y +̇Z, Y +̇Z) | (Y +̇Z, Y +̇Z) ∈ SEA(Q),
π(Z3) = (X4, π

′), for someπ′},

andY +̇Z stands forY |A∪B ∪ Z.

These two projections,σ(S, ·) andσ(T , ·), on the satisfying policies for our two
encodings are actually identical. Hence, our final two results in this section apply to
both encodings.

Theorem 3. LetΠ = (P,Q,PA,⊆B) be an inclusion problem andΩ ∈ {S,T }. Then,
each(Y,Σ) ∈ σ(Ω,Π) is a spoiler forΠ.

2 In what follows, we sometimes omit brackets “{” and “}” for ease of notation.
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In view of the construction of Proposition 2, we can thus construct counterexamples
directly from the satisfying policies of our encodings.

Corollary 2. Let Π = (P,Q,PA,⊆B) be an inclusion problem andΩ ∈ {S,T }.
Then, each(Y,Σ) ∈ σ(Ω,Π) induces a counterexample(Y, PΣ,A) for Π.

From Proposition 10 and Theorem 2, in turn, we obtain that in case no satisfying
policy for our encodings exists, the considered inclusion problem holds, and therefore
does not possess any counterexample.

6 Special Cases

Finally, we analyse our encodings in the light of special instantiations of correspon-
dence problems and give pointers to related work.

In what follows, for every equivalence problemΠ = (P,Q,PA,=B), let Π′ =
(P,Q,PA,⊆B) andΠ′′ = (Q,P,PA,⊆B) be the associated inclusion problems (see
also Corollary 1).

In case ofstrong equivalence[20], i.e., for problems of formΠ = (P,Q,PA,=A)
with A = U , the encodingsT Π′(V1) andT Π′′(V1), as defined in Definition 5, can be
drastically simplified sinceV A

2 = V A
3 = V A

5 = ∅. In particular,T Π′(V1) is equivalent
to

P1,1 ∧
(
Q1,1 → ∃V4

(
(V4 < V1) ∧Q4,1 ∧ ¬P4,1

))
.

Note that the composed encoding for deciding strong equivalence, i.e., the closed QBF
¬∃V1T Π′(V1) ∧ ¬∃V1T Π′′(V1), amounts to a propositional unsatisfiability test, wit-
nessing the coNP-completeness complexity for checking strong equivalence [24]. One
can show that the reductions due to Pearceet al. [24] and Lin [21] for testing strong
equivalence in terms of propositional logic are simple variants thereof.

For strong equivalencerelative to a setA of atoms [28], i.e., forΠ being of form
(P,Q,PA,=B) withB = U but with arbitraryA, our encodingsT Π′(V1) andT Π′′(V1)
can still be simplified sinceV A∪B

3 = ∅. Indeed,T p
Π′ andT p

Π′′ are then(2,∃)-QBFs,
reflecting the complexity of strong equivalence relative toA, which is on the second
level of the polynomial hierarchy [28].

Next, we address the case ofboundedrelativised strong equivalence, as investigated
by Eiteret al. [11]. This notion applies to problems of formΠ = (P,Q,PA,=), where
the cardinality of(U \ A), i.e., the number of atoms missing inA, is bounded by a
constant. Hereby, the setsV A

2 andV A
5 , which build the only universal quantifiers in the

encodingT Π′(V1) for relativised strong equivalence, are sets of a fixed size. Hence,
we can eliminate these quantifiers according to the semantics and still get an adequate
encoding for this particular notion of equivalence. Consequently, bounded relativised
strong equivalence can be checked with a polynomial unsatisfiability test, once again
reflecting the coNP-complexity of this problem [11].

Finally, we address the case of ordinary equivalence, i.e., considering problems of
form Π = (P,Q,PA,=) with A = ∅, which is well known to beΠP

2 -complete [10].
Here, the encodingSΠ′(V1) from Definition 4 can be simplified as follows:

P1,1 ∧ ∀V2

(
(V2 < V1)→ ¬P2,1

)
∧

(
Q1,1 → ∃V4((V4 < V1) ∧Q4,1)

)
.
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One can observe that this encoding is related to encodings for computing stable models
via QBFs, as discussed by Eglyet al. [6] and Pearceet al. [24]. Indeed, taking the two
main conjuncts fromSΠ′(V1),Φ = P1,1∧∀V2

(
(V2 < V1)→ ¬P2,1

)
andΨ = Q1,1 →

∃V4

(
(V4 < V1) ∧ Q4,1)

)
, we get, for any assignmentY1 ⊆ V1, Y1 |= Φ iff Y is an

answer set ofP , andY1 |= Ψ iff Y is not an answer set ofQ. Note that once more
the encodings reflect the inherent complexity of the reduced equivalence checking task,
viz. theΠP

2 -completeness for ordinary equivalence in this case.

7 Conclusion

In this paper, we discussed a novel decision procedure for advanced program com-
parison in answer-set programming (ASP) via encodings into quantified propositional
logic. This approach was motivated by the high computational complexity we have to
face for this task, making a direct realisation via ASP hard to accomplish. Furthermore,
we showed how to obtain counterexamples from policies, which satisfy these encod-
ings, and discussed special instances of the considered correspondence problems. Since
currently practicably efficient solvers for quantified propositional logic are available,
they can be used as back-end inference engines to compute the correspondence prob-
lems under consideration using the proposed encodings. Moreover, since these corre-
spondence problems are one of the few natural problems lying above the second level
of the polynomial hierarchy, yet still part of the polynomial hierarchy, we believe that
our encodings also provide valuable benchmarks for evaluating QBF-solvers, for which
there is actually a lack of structured problems with more than one quantifier alternation
(see [17, 16]).
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