Towards Implementations for Advanced Equivalence
Checking in Answer-Set Programming

Hans Tompits and Stefan Woltran

Institut fur Informationssysteme 184/3,Technische Univataivien,
Favoritenstrafle 9-11, A-1040 Vienna, Austria
e-mail: {tompits,stefaph@kr.tuwien.ac.at

Abstract. In recent work, a general framework for specifying program corre-
spondences under the answer-set semantics has been defined. The framework al-
lows to define different notions of equivalence, including the well-known notions
of stronganduniform equivalenceas well as refined equivalence notions based
on theprojectionof answer sets, where not all parts of an answer set are of rel-
evance (like, e.g., removal of auxiliary letters). In the general case, deciding the
correspondence of two programs lies on the fourth level of the polynomial hi-
erarchy and therefore this task can (presumably) not be efficiently reduced to
answer-set programming. In this paper, we describe an approach to compute pro-
gram correspondences in this general framework by meamsaottified Boolean
formulas(QBFs). We provide linear-time constructible reductions from program
correspondence problems to the evaluation problem of QBFs. We can thus use
extant solvers for QBFs as back-end inference engines for solving program cor-
respondence problems. We also describe how our translations provide a method
to constructounterexamplei case a program correspondence does not hold.

1 Introduction

Answer-set programmin@ASP) is widely recognised as a fruitful paradigm for declar-
ative knowledge representation and reasoning. It is based on the idea that problems are
encoded in terms of theories of some suitable language, associated with a declarative
semantics, such that the solutions of the given problems are determined by the models
of the corresponding theories. Among the different instances of the ASP paradigm, the
class of nonmonotonic logic programs under the answer-set semantics [14], with which
we are concerned with in this paper, represents the canonical and, due to the availability
of efficient answer-set solvers, like DLV [18], Smodels [26], and ASSAT [22], arguably
most widely used ASP approach.

An important issue for the further development of ASP is to provide methods and
tools forengineering ASP solutionFhis includes techniques for tisemplificationand
(offline) optimisationof programs, tools for supporting the user witbbuggingor ver-
ification features, and methods farodular programmingCrucial for all these issues
are mechanisms for determining tbguivalence ofparts of) logic programs

* This work was partially supported by the Austrian Science Fund (FWF) under grant P18019,
and by the European Commission via projects FET-2001-37004 WASP, IST-2001-33570 IN-
FOMIX, and IST-2001-33123 CologNeT.

116 Hans Tompits and Stefan Woltran

In previous work [13], a general framework for specifying correspondences between
logic programs under the answer-set semantics has been introduced. In this framework,
the correspondence of two programs is determined in terms of a €lassontext
programsand a comparison relatign Correspondence between two prografhand
Q holds iff the answer sets df U R and@ U R satisfyp, for any programR € C. The
framework includes as special cases the well-known notioesarfig equivalenci0],
uniform equivalencgl 0], and relativised notions thereof [28], as well as the practicably
important case of program comparison ungi®jectedanswer sets. In the latter setting,
not a whole answer set of a progrdtris of interest, but only its intersection on a subset
of all letters; this includes, in particular, removal of auxiliary letters in computation.

For the case of propositional disjunctive logic programs, correspondence check-
ing in the above framework under projected answer sets is surprisingly hard]¥iz.
complete in general [13], i.e., lying on the fourth level of the polynomial hierarchy.
Hence, this task can (presumably) not be efficiently reduced to propositional answer-
set programming. Such an approach (used, e.g., by Oikarinen and Janhunen [23] for
ordinary equivalence) reduces equivalence checking to problems like program consis-
tency such that equivalence holds iff the resultant program possesses no answer set.
Taking the results of Eiteet al. [9] into account, a compact reduction as such cannot
even be obtained by using non-ground programs as long as we restrict the arities of
predicates to a fixed constant. This indicates that advanced equivalence tests in answer-
set programming cannot be straightforwardly solved using ASP-systems themselves.

In this paper, we describe an approach to compute program correspondences in the
framework of Eiteret al. [13] by means of efficient reductions tpantified propo-
sitional logic The latter is an extension of classical propositional logic characterised
by the condition that its sentences, usually referred tquasitified Boolean formulas
(QBFs), are permitted to contain quantifications over atomic formulas. More specifi-
cally, our reductions enjoy the following properties:

1. a solution correspondence under projected answer sets between two given logic
programs holds iff the associated QBF is valid in quantified propositional logic,

2. the reduction is constructible iimear time and spaceand

3. determining the validity of the resultant QBFs under the translations is not compu-
tationally harder than checking the original correspondence problem.

Besides the reduction of correspondence problems, we also describe how our transla-
tions provide a method to constric@unterexampleis case a program correspondence
does not hold.

The rationale to consider a reduction approach to QBFs is twofold: On the one
hand, complexity results about quantified propositional logic imply that decision prob-
lems from the polynomial hierarchy can be efficiently represented in terms of QBFs,
and, on the other hand, practicably efficient solvers for quantified propositional logic
have been presented in recent years (like, e.g., the solvers QUBE [15], semprop [19],
or others—see [17,16]). Hence, solvers for QBFs can be used as back-end inference
engines to compute the correspondence problems under consideration. We note that a
similar reduction approach to QBFs has been successfully applied in diverse fields like
nonmonotonic reasoning [6, 5, 12], paraconsistent reasoning [3, 1, 2], planning [25], and
automated deduction [7].

Implemetations for Advanced Equivalence Checking in Answer-Set Programming 117

2 Preliminaries

We deal with propositional disjunctive logic programs, which are finite sets of rules of
form

a1V ---Vap < a1y, Ay, MOt Ay, - - ., NOL Ay, Q)

n>m>1>0, where alla; are propositional atoms from a univeigeandnot denotes
default negation. If all atoms occurring in a progrdtrare from a given setl C U/ of
atoms, we say thaP is a progranmover A. The set of all programs ovet is denoted
by Pa.

Following Gelfond and Lifschitz [14], an interpretatidni.e., a set of atoms, is an
answer sebf a programP iff it is a minimal model of thereduct P!, resulting from
P by (i) deleting all rules containing default negated atamsa such thatz € I and
(ii) deleting all default negated atoms in the remaining rules. The set of all answer sets
of a programP is denoted byAS(P). The relation/ |= P between an interpretatiah
and a progran® is defined as usual.

Under the answer-set semantics, two prograhasd(are regarded as (ordinarily)
equivalent iff AS(P) = AS(Q). The more restrictive form adtrong equivalencf0]
has recently been generalised as follows [28]: Pef) be programs ovet/, and let
A C U. Then, P and @ are strongly equivalent relative tdl iff, for any R € P4
AS(P U R) = AS(Q U R). If A=U, strong equivalence relative té reduces to
strong equivalence; ifl = (), we obtain ordinary equivalence.

We use the following notation: For an interpretatiband a se§ of interpretations
(resp., pairs of interpretations), we wrid; = {Y NI | Y € S} (resp.,S|; =
{(XNLYNI)|(X,Y)eS8}).If S ={s}, we usually writes|; instead ofS|;.

For anyA C U, a pair(X,Y) of interpretations, wher& C U, is an A-SE-
interpretation(over() iff either X = Y or X C Y|4. (X,Y) is an A-SE-modebf
a programP iff (i) Y = P, (i) forall Y/ C Y with Y'|4 = Y|4, Y’ £ PY, and
(i) X C Y implies the existence of a’ C Y with X’|4 = X such thatX’ = PY
holds. A pair(X,Y) is total iff X =Y, andnon-totalotherwise. The set of all-SE-
models ofP is denoted bysE“ (P).

For A = U, the notion of anA-SE-interpretation (respA-SE-model) coincides
with the notion of arSE-interpretatior(resp.,SE-modélas defined by Turner [27], and
we write SE(P) instead ofSEY (P). Thus,(X,Y) € SE(P)iff X CY,Y kE P, and
X = PY.

Proposition 1 ([28]). Two programsP and @ are strongly equivalent relative td iff
SEA(P) = SEA(Q).

Example 1.Consider the following two programs, and@:

P=PyuU{cVvd«—a; cVd«<b},
Q=P U{cVd«—a,b; d—bnotc; ¢c+— a,notd},

for Bp={a«—c¢; b—c; a—d; b d; — notc,notd}.

118 Hans Tompits and Stefan Woltran

They have the following SE-modets:

SE(P) = {(0, abc), (0, abd), (0, abed), (abed, abed),
(abc, abed), (abd, abed), (abe, abe), (abd, abd)},
SE(Q) = SE(P) U {(b,abe), (a,abd), (b, abcd), (a, abed) }.

Hence,P andQ are not strongly equivalent. On the other hadd,(P) = AS(Q) = 0,
i.e., P and@ are (ordinarily) equivalent. MoreoveR, and (@ are strongly equivalent
relative toA iff AN {a,b} = 0. ForA = {a, b}, we get

SE*(P) = {(0, abc), (0, abd), (abe, abe), (abd,abd)},
SEA(Q) = SEA(P) U{(b,abc), (a,abd)}.

Hence,P and@ are not strongly equivalent relative o= {a, b}. For instance, adding
afacta — yields AS(P U {a «—}) = {abe, abd}, while AS(Q U {a «}) = {abc}. O

A setS of SE-interpretations isompletdff, for each(X,Y) € S,also(Y,Y) € §
as well as(X, Z) € S, for any Z such thatt” C Z and(Z, Z) € S. It can be shown
that the setSE(P) of SE-models of any prograrf? is always complete. Conversely,
any complete se$ of SE-interpretations can be represented by some progtaAs
a general result, taking also a restricted alphabétto account, the following result
holds:

Proposition 2. Let S be a complete set of SE-interpretations, andAebe a set of
atoms. Then, there exists a progrdfg 4 € P4 such thatSE(Ps 4)|a = S]a.

One possibility to obtaitPs 4 from S is as follows:

1. foreachy” C Awith (YY) ¢ S|4, add rulesL — Y, not (A\ Y), and
2. foreachX C Y with (X,Y) ¢ S|4 and(Y,Y) € S|4, add rules

Vpex) P — X, not (A\Y).

3 Correspondence Checking

In order to deal with differing notions of program equivalence in a uniform manner,
taking in particular strong equivalence and its relativised version, as well as equivalence
notions based on the projection of answer sets into account,eEigéd{13] introduced

a general framework for specifying differing notions of equivalence. In this framework,
one parameterises, on the one hand, theRset rules to be added to the programs

and (@, and, on the other hand, the relation that has to hold between the collection of
answer sets o U R and@Q U R.

Definition 1. A correspondence framer simplyframe F, is a triple (i, C, p), where
(i) U is a set of atoms, called theniverse ofF, (i) C C Py, called thecontext of F,
and(iii) p C 22" x 22“.

For any programP, @ € P, P and@ are F-correspondingin symbolsP ~~ @,
iff, forall R € C, (AS(PUR), AS(QU R)) € p.

! We write abc instead of{a, b, c}, a instead of{a}, etc.

Implemetations for Advanced Equivalence Checking in Answer-Set Programming 119

It is quite obvious that the equivalence notions discussed above are special cases
of F-correspondence. Indeed, for any univeisand anyA C U, strong equivalence
relative to A coincides with(i/, P4, =)-correspondence, and ordinary equivalence co-
incides with(i/, {0}, =)-correspondence.

Following Eiteret al.[13], we are mainly concerned with correspondence frames of
form (U, P, Cp) and(U,Pa,=5), whereA, B C U are sets of atoms, ardp and
=p are projections of the standard subset and set-equality relation, respectively, defined
as follows: for any sef, S’ of interpretationsS Cp S’ iff S|p C §'|p, andS =5 &’
iff S|p =S8'|5.

A correspondence problerl, (overl() is a quadruplé P, Q,C, p), whereP, Q €
Py and (U, C, p) is a frame. We say thdl holdsiff P ~¢, ¢) @ holds. For a cor-
respondence problefii = (P, @,C, p) overl, we usually leavé{ implicit, assuming
that it consists of all atoms occurring i, @, andC. We callIl anequivalence problem
if p is given by=g, and aninclusion problemf p is given byC g, for someB C U.

Note that(P, Q,C,=g) holds iff (P, Q,C, Cp) and(Q, P,C, C) jointly hold.

For inclusion problems, we define the concept ebanterexamplewhich is easily

extended to equivalence problems.

Definition 2. A pair (Y, R), whereY is an interpretation and? € C, is called acoun-
terexamplefor (P,Q,C,Cp) iff Y € AS(P U R) and, for eachZ with Z =5 Y,
Z ¢ AS(QUR).

Example 2.We have already seen that {8 @) from Example 1{P, Q, P4, Cy) does

not hold forA = {a,b} andUd = {a,b,c,d}. What happens if we restrict the com-
parison of answer sets frotd to A, i.e., does(P,Q, P4, C4) hold? Note that, e.g.,
AS(PU {a «})|la = AS(Q U {a «})|la = {ab}. Hence, the counterexample
(abe,{a «}) from Example 1 is no longer a counterexample fBYQ, P4, Ca). As

we shall see below, there still exist counterexamples for this problem, but these are more
involving.]

As shown by Eiteet al. [13], inclusion problems with projection may possess only
counterexamples which are exponential in the size of the compared programs. Hence,
instead of guessing concrete programs and checking whether they are counterexamples
for a given inclusion problem, Eitet al. provide a semantical structure, callgubiler,
which operates on the compared programs alone, together with the notiqracial
spoiler.

Definition 3. LetIl = (P, Q, P4, Cp) be an inclusion probleni,” an interpretation,
andS C SEA(Q)N{(X,Z) | Z =aup Y} a complete set afi-SE-interpretations.
The pair(Y, S) is aspoiler forIl iff

1. (Y,Y) € SEA(P),

2. each(Z, Z) € SE*(Q) such thatZ =45 Y is also inS,

3. foreach(Z, Z) € S, some non-total X, Z) € S N SE*(Q) exists, and
4. for each non-total X, Z) € S, (X,Y) ¢ SE*(P).

For a spoiler(Y, S), the interpretatior” is referred to as gartial spoilerfor II.

120 Hans Tompits and Stefan Woltran

Intuitively, in a spoiler(Y,S), the interpretatiorY” is an answer set aP U R but
not of @ U R, whereR is some program which is semantically given®y
We collect and rephrase the main results from [13].

Proposition 3. LetII = (P,Q,Pa4,Cp) be an inclusion problem. Thefl holds iff
there exists no spoilgfy, S) for II.

As an immediate consequence, we obtain that a correspondence pidtieids iff
there exists no partial spoiléf for II. Moreover, we are able to connect spoilers to
counterexamples using the generic progrdras,, as introduced in Section 2.

Proposition 4. If (Y, S) is a spoiler for an inclusion problefl = (P, Q,Pa,Cg),
then(Y, Ps_4) is a counterexample fdi.

Example 3.For P, and P, from Example 1 andd = {a, b}, the pairs(¥7,S) and
(Y2, S) are the only spoilers foiPy, Py, P4, Ca), whereY; = {abc} andY; = {abd}
are the partial spoilers fqtPy, P>, P4, C4), andS = {(a, abd), (b, abe), (abe, abe),
(abd, abd)}. Invoking our program construction, we obtaily 4 = {L « a,not;
L « b,nota; L «— nota,notb; aV b} One can verify that botl; andY, are
contained inAS(P;, U Ps 4), while no interpretatior with Z =4 Y; is an answer set
of P, U PS,A- O

Finally, we recall the computational complexity of checking whether an equivalence
or inclusion problem holds. As shown by Eitetral. [13], deciding(P, Q,Pa,=5) IS
of a significantly higher complexity compared to more restricted notions of equiva-
lence, like strong equivalence (which is coNP-complete) or ordinary equivalence and
relativised strong equivalence (which are bétl -complete).

Proposition 5 ([13]). Given programsP, @, sets of atomsl, B, andp € {Cp,=5},
deciding whether a correspondence problegfQ, P4, p) holds islTf-complete.

4 Reductions

In this section, we provide two approaches to map inclusion prob{éin@, P4, Cg)

into quantified Boolean formulas. By combining the reductiong o1, P4, C5) and

(Q, P,Pa, Cg), we straightforwardly obtain a method to check whether an equivalence
problem(P, Q, P4, =pg) holds. We start with a brief recapitulation of the basic facts
about the quantified version of propositional logic.

4.1 Quantified Propositional Logic

Quantified propositional logic is an extension of classical propositional logic in which
formulas are permitted to contain quantifications over propositional variables. More for-
mally, formulas of quantified propositional logic are built from atomic formulas using
the primitive sentential connectivesandA, the logical constant, and unary operators

of form Vp (wherep is some atom), calledniversal quantifiersThe operators/, —,

—, as well as the symboal, are defined from the primitive ones, A, and T, as usual.

Implemetations for Advanced Equivalence Checking in Answer-Set Programming 121

Furthermore, similar to first-order logigp is defined as the operatel/p—, referred to
as arexistential quantifierFormulas of this language are also calientified Boolean
formulas(QBFs) and we denote them by Greek upper-case letters.

An occurrence of an atomis freein a QBF@ if it does not occur in the scope of
a quantifierQp, Q € {3,V}. In what follows, we tacitly assume that every subformula
Qp @ of a QBF contains a free occurrencepah @, and for two different subformulas
Qp @, Qq¥ of a QBF we require # ¢. Moreover, given a finite set of atomsQP ¥
stands for any QBIRQp;Qps . .. Qp, V¥ such that the variables, ..., p, are pairwise
distinct andP = {p1,...,pn}-

Towards the definition of the semantics of QBFs, we introduce the following con-
cept. For an atorp (resp., a seP of atoms) and a sdtof atoms®[p/I] (resp.P[P/I])
denotes the QBF resulting from by replacing each free occurrenceyofresp., any
p€ P)in®by T if p e landbyl otherwise.

For an interpretatiod and a QBF®, the relation! = @ is inductively defined as
follows:

TET,

T Epiffpel,

T = —diff T,

i ':él/\qsg iff 7 ':Qsl and/l ‘:@Q,and

T EVp@iff T E Pp/{p}] andI & @[p/0).

The truth conditions forl, Vv, —, <, and3p, for anyp, follow from the above in
the usual way.

A QBF & is true under! iff I |= &, otherwise® is false underl. A QBF isvalid
iff it is true under any interpretation. Note thatksedQBF, i.e., a QBF without free
variable occurrences, is either true under amy false under any.

A QBF @ is said to be irprenex normal forniff it is closed and of the form

abrwWNPE

QnPn---Q1P1¢7 (2)
n > 0, where¢ is a propositional formulaQ; € {3,V} such thatQ; # Q,;, for
1<i<n-1,and(Py,...,P,) is a partition of the propositional variables occurring

in ¢, andP; # (), for eachl < i < n. We call a QBF of the form (2) afm, Q,,)-QBF.
Without going into details, we mention that any closed QBIS easily transformed
into an equivalent QBF in prenex normal form such that each quantifier from the orig-
inal QBF corresponds to a quantifier in the prenex normal form. Call such a QBF the
prenex normal form ofb. However, similar as in first-order logic, depending on the
structure of the quantifier occurrences in the formula-tree, there are different ways how
to obtain an equivalent prenex QBF (cf. [8] for more details on this issue).
The following property is essential:

Proposition 6. For everyk > 0, deciding the truth of a givefk, 3)-QBF (resp.,(k, V)-
QBF) is X} -complete(resp., 11/ -completd.

Hence, any decision proble® in X7 (resp.,II}’) can be mapped in polynomial
time to a(k, 3)-QBF (resp.(k, V)-QBF) @ such thaD holds iff @ is valid. In particular,
Proposition 5 implies therefore that any correspondence proe®, P, p), for p €
{CB,=pB}, can be reduced to @, v)-QBF. In what follows, we construct two such
mappings which are moreover constructibldiear space and time

122 Hans Tompits and Stefan Woltran

4.2 Encodings

For our encodings, we use the following building blocks. We assume indexed séts
atoms, and we use (pairwise) disjoint copiés= {v; | v € V'}, for anyi. In fact, we
use subscripts as a general renaming schema for interpretations, formulas, and rules.
For instance, formula; is the result of replacing each occurrence of an gtdme by
pi, for anyi.

The following abbreviations allow for comparing different subset® of

1. (Vi <Vj) = /\vev(vi — vj),
2. (Vi < V)) i= (V2 V) A~(V; < V5), and
3. (Vi=V)) = (V; S V) A(V; < Vi),

with the latter being equivalent t§, . (v; < v;).

Proposition 7. Let be an interpretationd, X, Y C V such that, for some j, I|y, =
X;andI|y, =Yj. Then,

1. X‘A§Y|A Iﬁ[':(AZSAJ),
2. X|a CY|aiff I = (A4; < Aj), and
3. X4 =Y|alff I = (A4; =A)).

For aruler of form (1), we defined (r) = a; V---Va;,, BN (r) = a1 A+ A,
andB~(r) = =am41 A --- A —ay,. Furthermore, for a prograrR, we defineP; ; =
Nvep (BT (ri) A B~ (rj)) — H(r)).

Proposition 8. Let P be a program over atomis, I an interpretation, and{,Y C V
.= X;andI|y, =Y;.ThenX |= PV iff = P, ;.

Intuitively, this allows to refer to the reduct d@? (in case that # j) and to the
classical formula associated fo(in case that = j) simultaneously. The latter is seen
by the fact that for any program and any interpretatiol, Y = P iff Y = PY.

The central characterisation towards our encodings is as follows. It is obtained by re-
placing the concept of ad-SE-model in Definition 3 by the test over program reducts,
following the definition ofA-SE-models.

Proposition 9. An interpretationY” is a partial spoiler for(P, Q, P4, Cp) iff

@ Y E P,

(b) foreachy’ c Y withY’ =, Y, Y’ £ PY, and

(c) foreachZ =45 Y, Z = Q implies the existence of & C Z such thatX = Q%
and, if X C Z|4 = Y|4, then, for eachX’ C Y with X’ =4 X, X’ £ PY.

Definition 4. Let P,) be programs ovel” and letA, B C V. Furthermore, consider
IT=(P,Q,Pa,Cp). Then,
Stu(Vi) := Py A S'(P,A) AVV3(S*(Q, A, B) — S*(P,Q, A)), where
SHP,A) :=YVa((As = A) A (Vo < Vi) — =Pyy),
S%(Q,A,B) := ((AUB)3 = (AUB)1) AQs3, and
S(P,Q,A) ==3Vi((Va < V3) AQus A ((Ag < Ay) —
VVs((As = Ag) A (V5 < V1) — —P51))).

Implemetations for Advanced Equivalence Checking in Answer-Set Programming 123

Lemma 1. Let P and @ be programs ove#, and letA, B,Y C V. Then,Y is a
partial spoiler forIl = (P, Q, P4, Cp) iff Y1 E Su(Vh).

We do not give a formal proof here, but just provide the following explanations.
The subformulaP; ; A S*(P, A) of Sii(V1) takes care of Conditions (a) and (b) from
Proposition 9; we use atom§ to refer toY’, and atomd/; to refer to theY” therein.
Note that(4, = A;) A (Vo < Vi) thus guarantees that we take only thdSefor
testingY’ = PY into account, wher@”’ C Y andY’ =, Y. The next subformula,
SQ(Q,A, B), “returns” all Z (via assignments td3) such thatZ =, 5 Y andZ =
Q. Finally, for each suct?, S*(P,Q, A) has to be true. ByV, < V3) we let the
assignments t&; (which refer to theX in Item (c) of Proposition 9) be a proper subset
of those toVj, i.e., we requireX C Z. Then we test whethek = Q7 via Qq 3,
as follows from Proposition 8, and in the ca¥¢, C Y|4 (checked viad, < As),
the remaining formula encodes the test whether forXdll(assignments td’5) with
X' =4 XandX' C Y, X' £ PY, i.e., P5; is false under the current assignment to
Vi andVs.

In what follows, we give a more compact encoding, which in particular reduces the
number of universal quantifications. The idea is to save on the fixed assignments as,
e.g., inS*(Q, A, B) where we havéA U B); = (AU B),. Thatis, inS*(Q, A, B),
we implicitly ignore all assignments tt; where atoms frond or B have different
truth values as those ;. Therefore, it makes sense to consider only atoms from
V3 \ (A3 U B3) and used; U B, instead ofd; U Bs in Q3 3.

This calls for a more subtle renaming schema for programs, howevey. het set
of indexed atoms, and letbe a rule. Thenr;}fk results fromr by replacing each atom
x inr by x;, providingz; € V, and byz; otherwise. For a programR, we define

PY= N\ ((BY () A B~ (1)) — H(r}y)).-
reP
Moreover, for anyi > 0, any sefl” of atoms, and any sét, V¢ := (V' \ O);.

Definition 5. Let P, @ be programs oveV, let A, B C V, andIl = (P,Q,Pa,Cp).
Furthermore, let = V; U VA U VAYE UV, U VA, Then,

Tu(Vi) = Pii ATH(P, A V) AV YR (QY, , — T°(P,Q, A, V)), where
T'(P,A,V) =V (V' < V') — -PY,) and
T°(P,Q, A, V) :=3Vy((Va < (AUB) UVE"YP)) A QY51 A ((As < Ay) —
vV5A((V5A < VlA) - ﬁpsmfm)))-
Note that the subformule, < ((AUB); U Vi5*“F)in T*(P,Q, A, V) denotes
(((AUB)4 < (AUB)1) A (Va < V1)) A=(((AUB); < (AUB),)) A (Vi < Vy)).

Also note that, compared to the first encodifig (1), we do not have a pendant to
subformulaS? here, which reduces simply t@}im due to the new renaming schema.

Lemma 2. Let P, Q be programs ove¥/, and letA, B,Y C V. Then,Y is a partial
spoiler forTl = (P, Q, P4, Cp) iff Vi = Tu(Vh).

124 Hans Tompits and Stefan Woltran

For illustration, consider the two progrands = {a Vb «— ¢} and@ = {a «
c,notb}, A = {a}, andB = {b}. The encodings for the probleth= (P, Q, P4, Cp)
are as follows:

Su(Vi) = (¢1 — a1 Vb)) ASYHP,A) A
Vasbses(S*(Q, A, B) — §°(P,Q, 4)),
Sl(P, A) = VangCQ((ag —a1) A ({ba,ca} < {b1,c1}) = —(ca = a2 VvV bg)),
S*(Q, A, B) = (a3 < a1) A (b3 <> b1) A (c3 A —bz — az),
S*(P,Q,A) = 3(141)404(({(14, by, ca} < {as,bs,c3}) A(cg A—by — ag) A
(({aa} < {a1}) — Vasbses((as < ag) A
({as, bs, ¢} < {ax,br,c1}) = =(cs — a5 V bs))));
Tr(Vi) = (c1 — a1 Vb)) ATHP, A, V) A
V03((03 A=by — ar) — T?*(P,Q, A, V))7
T (P, A, V) = Vbaca(({ba, ca} < {b1,c1}) — =(c2 — a1 V ba),
T3(P, Q,AYV) = E|a4b404(({a4, by,cat < {ai,b1,c3}) A(cg A—by — aq) A
(({aa} <{ar}) — Vbscs(({bs, c5} < {br,e1}) —
—(cs = ag V b5))))

As mentioned before, the optimised encodiig(-) saves “fixed assignments”, like
(a2 < a1), which occur inSy(-), by employing the advanced renaming schema in
such a way that, instead of atarp, atoma; is used in the encoding. One effect of this
refinement is the decrease of universally quantified atoms.

Theorem 1. For any inclusion problenil = (P, Q, P4, Cp), the following statements
are equivalent{i) II holds; (ii) -3V; St (V1) is valid; and(iii) -3V, T (V7) is valid.

Corollary 1. LetIl = (P,Q,Pa,=p) be an equivalence problem. Then, faf =
(P,Q,Pa,Cp) andIl” = (Q, P,P4,Cp), the following statements are equivalent:
(i) II holds; (ii) —=3V1.Sw (V1) A =3V1.Sn (V1) is valid; and (i) -3ViTw (V1) A
—|E|V1THH(V1) is valid.

4.3 Applicability and Adequacy of the Encodings

In order to employ off-the-shelves QBF-solvers for deciding answer-set correspon-
dence, we have to transform above encodings into prenex normal form. The propo-
sitional part of these prenex QBFs additionally has to be reduced to CNF, which can be
accomplished by usual techniques. We thus focus here just on possible prenex normal
forms of our encodings.

Recall that there are several ways to transform a QBF into prenex normal form. For
our encodings, the situation is as follows. Take, e.g., the existential clos$he(df),
given by3V; St (11): for this closed QBF, different prenex forms can be obtained, e.g.,

INV(VaUV)AViVVs ¢ or 3ViVVAIVIY(Vs U Va) 6,

Implemetations for Advanced Equivalence Checking in Answer-Set Programming 125

where¢ represents the so-callgdopositional skeletoof the QBF S (V1) (cf. [8]),
which, roughly speaking, results frofy; (V1) by deleting all quantifiers. For later pur-
poses, we use in the following the second variant, and déffpe= 3V, V33V, V(Vs U
Vi) ¢. Likewise, we usel'}; := 3ViVVAYBIV,V(VA U Vi)« as a prenex form for
V1T (V1), wherey is the propositional skeleton @' (V7).

Theorem 2. For any inclusion problenil = (P, Q, P4, C), the following statements
are equivalent{i) II holds; (i) —.S¥; is valid; (iii) —=T'%; is valid.

These prenex forms also give evidence that our encodingedaguaten a certain
theoretical sense: Following [3], given decision problethsC £ andD’ C £’ in
languagesC and £, respectively, we call an encoding: £ — £’ adequateff, for
eachs € L, (i) s € Diff f(s) € D/, (ii) f(s) is constructible in polynomial time from
s, and (iii) deciding whetheyf(s) € D’ is not computationally harder than deciding
whethers € D.

From Proposition 5, we get that the complementary problem of inclusion checking,
i.e., checking whether, for giveR, @, A, B, the problenll = (P, Q, P4, Cp) does
not hold, isX’{’-complete. Note that, for any suéh (i) S¥, is valid iff IT does not hold
(by Theorem 2), (ii)S¥; is always computable in polynomial time (indeed, in linear
time) in the size ofI (as is easily verified from the definitions), and (i, is a(4, 3)-
QBF. From Proposition 6, we know that determining the truti§§fis thus in the same
complexity class (vizX}) as the encoded problem. All these properties holdItfyr
as well. Hence, both of our encodings are adequate.

5 Obtaining Counterexamples

In this section, we provide a theoretical basis how to use our encodings to obtain coun-
terexamples for an inclusion problef®, Q, P4, C). To this end, we use the concept
of policiesfor prenex QBFs, along the lines of Coste-Maraqgiigl. [4].

Definition 6. The setP(k,Q, Xk, ..., X) of policiesfor a (k, Q)-QBF of the form
Qr Xk ...Q1X1¢is inductively defined as follows:

1. P(0,Q) ={\},
2. P(k,3, Xg,..., X0)={{I,7) | I C Xy, € P(k—1,V¥, X;_1,...,X1)}, and
3. PV, Xp,...,. X1) ={r|7m:2% - P(k—1,3, Xs_1,..., X1},

where) represents the empty policy.

Note that policies for(k,3)-QBFs are pairg/, 7), wherel is an interpretation over
atoms from the outermost group of quantifiers anis a policy itself, whereas poli-
cies for (k, V)-QBFs are functions assigning to each interpretation over atoms of the
outermost group of quantifiers a policy.

Definition 7. A (k,Q)-QBF® = QX ... Q1 X1 ¢ is satisfiedby a policyr (for @) iff
one the following conditions appliémductively:

1. k=0,7 =)\ and¢ is true,

126 Hans Tompits and Stefan Woltran

2.k>0,Q=3, 7= (I,n"),andVXy_; ... Q1 X1 ¢[X}/I] is satisfied byr’,
3. k>0,Q=V,andforanyl C X, 3X,_1...Q1X14[Xy/I]is satisfied byr(I).

Denote bySP (&) the set of satisfying policies for a prenex QBF
Proposition 10. A prenex QBF is valid iff SP(®) # (.

For illustration, considep = (p — ¢) A (¢ — p) and the following QBF$:
®1=3pq¢p, P2=Vpqop, P3=73IpVq¢, and P4=VpIg¢.

The set of policies fo?; is given by{(I,\) | I C {p,q}}, i.e., the satisfying policies
for @, are in a one-to-one correspondence to the modefs ahd are given by, \)
and({p, ¢}, A). For ®,, the only policy is the functiom assigning to eaclh C {p, ¢}
the empty policy\. Note thatr is not satisfyingp, since, for instance, witlh = {p},
we getr(I) = A, butg[{p,q}/I] = (T — L)A(L — T)isnottrue. Forp;, we get as
policiesm = ({p};7’) andme = (0; 7'), wherer’ is defined as’({¢}) = «'(0) = .

It can be shown that neither, nor 7y satisfy®s, by similar arguments as for the case
of &,. Finally, &, yields four policies, given as follows:

n(p) = (3., 7(0)=(02); () =(33), 70
7 (p) = (B, N), ©"(0) = (¢, \); 7" (p)=(0,)), =" ()

One can verify that’ is the only satisfying policy fod,.

We now use the concept of policies to obtain the counterexamples from the satis-
fying policies of our encodings. Note that, in the definition below, we make use of our
renaming schema as used in the encodings; B:g= {23 | z € Z}.

= (05 /\)7
= (0,).

Definition 8. LetII = (P,Q,Pa,Cp) be an inclusion problemS}, and T, as in
Subsection 4.3, an® € {S,T}. Then,

o(2,10) :={(Y,X0y.) | (Y1,7) € SP(2p)},
where
Ssyvae=1{(X,2),(2,2) | Z=auY,(Z,Z) € SE*(Q),
7(Z3) = (X4, "), forsomer’} and
Srya = {(X,Y+2),Y+2,Y+2Z) | (Y+2,Y+Z) € SEAQ),
7w(Z3) = (X4, 7"), for somen’},
andY +Z stands forY | 4up U Z.

These two projectionss (S,) ando (T, -), on the satisfying policies for our two
encodings are actually identical. Hence, our final two results in this section apply to
both encodings.

Theorem 3. LetIl = (P, Q, P4, Cg) be aninclusion problem an@ € {S,T}. Then,
each(Y,) € o(£2,1I) is a spoiler forIl.

2 In what follows, we sometimes omit bracketg ‘and “}” for ease of notation.

Implemetations for Advanced Equivalence Checking in Answer-Set Programming 127

In view of the construction of Proposition 2, we can thus construct counterexamples
directly from the satisfying policies of our encodings.

Corollary 2. LetIl = (P,Q,Pa,Cp) be an inclusion problem an®? € {S,T}.
Then, eacllY, X) € o(£2,1I) induces a counterexamp(&, Py, 4) for II.

From Proposition 10 and Theorem 2, in turn, we obtain that in case no satisfying
policy for our encodings exists, the considered inclusion problem holds, and therefore
does not possess any counterexample.

6 Special Cases

Finally, we analyse our encodings in the light of special instantiations of correspon-
dence problems and give pointers to related work.

In what follows, for every equivalence probleth = (P,Q,Pa,=5), letIl' =
(P,Q,Pa,Cp) andll” = (Q, P, P4, Cp) be the associated inclusion problems (see
also Corollary 1).

In case ofstrong equivalencg0], i.e., for problems of formil = (P, Q,Pa,=a4)
with A = U, the encodingd '/ (V1) and T~ (V1), as defined in Definition 5, can be
drastically simplified sincé* = Vi = V4 = (. In particular, Ty (V1) is equivalent
to

P A (Ql,l — 3‘/4((‘/4 <VI)ANQaa A —‘P4,1))~

Note that the composed encoding for deciding strong equivalence, i.e., the closed QBF
-3AViTn (V1) A =3V T (V1), amounts to a propositional unsatisfiability test, wit-
nessing the coNP-completeness complexity for checking strong equivalence [24]. One
can show that the reductions due to Peatal [24] and Lin [21] for testing strong
equivalence in terms of propositional logic are simple variants thereof.

For strong equivalenceslativeto a setA of atoms [28], i.e., forlI being of form
(P,Q,Pa,=p)with B = U butwith arbitraryA, our encodingd'ry- (V1) andT'r1» (V1)
can still be simplified sinc&;*“2 = (). Indeed, T}, andT?},, are then(2, 3)-QBFs,
reflecting the complexity of strong equivalence relativedtowhich is on the second
level of the polynomial hierarchy [28].

Next, we address the caselmfundedelativised strong equivalence, as investigated
by Eiteret al. [11]. This notion applies to problems of forth= (P, Q, P4, =), where
the cardinality of(i/ \ A), i.e., the number of atoms missing iy is bounded by a
constant. Hereby, the seits* andV;*, which build the only universal quantifiers in the
encodingT ;- (V1) for relativised strong equivalence, are sets of a fixed size. Hence,
we can eliminate these quantifiers according to the semantics and still get an adequate
encoding for this particular notion of equivalence. Consequently, bounded relativised
strong equivalence can be checked with a polynomial unsatisfiability test, once again
reflecting the coNP-complexity of this problem [11].

Finally, we address the case of ordinary equivalence, i.e., considering problems of
formIT = (P,Q,P4,=) with A =), which is well known to be7}’-complete [10].
Here, the encodingr (V1) from Definition 4 can be simplified as follows:

P AVYVa((Va < Vi) = =Pa1) A Q11 — IVa((Va < Vi) AQun)).

128 Hans Tompits and Stefan Woltran

One can observe that this encoding is related to encodings for computing stable models
via QBFs, as discussed by Egyal [6] and Pearcet al. [24]. Indeed, taking the two

main conjuncts fronS (V1), ® = Py AVVa((Va < Vi) — =Pyp) and¥ = Q11 —
3V4((V4 < Vi) A Q4,1)), we get, for any assignmeiy C V3,Y; E @ iff YV is an
answer set of?, andY; | ¥ iff Y is not an answer set @. Note that once more

the encodings reflect the inherent complexity of the reduced equivalence checking task,
viz. the I11’-completeness for ordinary equivalence in this case.

7 Conclusion

In this paper, we discussed a novel decision procedure for advanced program com-
parison in answer-set programming (ASP) via encodings into quantified propositional
logic. This approach was motivated by the high computational complexity we have to
face for this task, making a direct realisation via ASP hard to accomplish. Furthermore,
we showed how to obtain counterexamples from policies, which satisfy these encod-
ings, and discussed special instances of the considered correspondence problems. Since
currently practicably efficient solvers for quantified propositional logic are available,
they can be used as back-end inference engines to compute the correspondence prob-
lems under consideration using the proposed encodings. Moreover, since these corre-
spondence problems are one of the few natural problems lying above the second level
of the polynomial hierarchy, yet still part of the polynomial hierarchy, we believe that
our encodings also provide valuable benchmarks for evaluating QBF-solvers, for which
there is actually a lack of structured problems with more than one quantifier alternation
(see [17, 16]).

References

1. O. Arieli. Paraconsistent Preferential Reasoning by Signed Quantified Boolean Formulae.
In Proc. ECAI'04 pages 773-777. 10S Press, 2004.

2. O. Arieli and M. Denecker. Reducing Preferential Paraconsistent Reasoning to Classical
Entailment.Journal of Logic and Computatioi3(4):557-580, 2003.

3. P.Besnard, T. Schaub, H. Tompits, and S. Woltran. Representing Paraconsistent Reasoning
via Quantified Propositional Logic. Imconsistency Tolerancgolume 3300 of NCS pages
84-118. Springer, 2005.

4. S. Coste-Marquis, H. Fargier, J. Lang, D. Le Berre, and P. Marquis. Function Problems
for Quantified Boolean Formulas. Technical Report 2003-15-R, Institut de Recherche
en Informatique de Toulouse (IRIT), 2003. Available undgtp://www.cril.
univ-artois.fr/asqbf/pub/files/gbfeng7.pdf .

5. J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On Computing Solutions to Belief
Change Scenariodournal of Logic and Computatioi4(6):801-826, 2004.

6. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks using
Quantified Boolean Formulas. FProc. AAAI'0OQ pages 417-422. AAAI Press/MIT Press,
2000.

7. U. Egly, R. Pichler, and S. Woltran. On Deciding Subsumption Problémsals of Mathe-
matics and Artificial Intelligence43(1-4):255-294, 2005.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Implemetations for Advanced Equivalence Checking in Answer-Set Programming 129

. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different Prenex-

ing Strategies for Quantified Boolean FormulasPhoc. SAT’03, Selected Revised Papers
volume 2919 oLNCS pages 214-228. Springer, 2004.

. T. Eiter, W. Faber, M. Fink, G. Pfeifer, and S. Woltran. Complexity of Answer Set Checking

and Bounded Predicate Arities for Non-ground Answer Set Programmingroln KR'04

pages 377-387. AAAI Press, 2004.

T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model
Semantics. IiProc. ICLP’03 number 2916 in LNCS, pages 224-238. Springer, 2003.

T. Eiter, M. Fink, and S. Woltran. Semantical Characterizations and Complexity of Equiva-
lences in Answer Set Programming. Technical Report INFSYS RR-1843-05-01, Institut f
Informationssysteme, Technische UniveisitVien, Austria, 2005.

T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Modal Nonmonotonic Logics Revisited:
Efficient Encodings for the Basic Reasoning TasksPitac. TABLEAUX'02volume 2381

of LNCS pages 100-114. Springer, 2002.

T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondences in Answer Set Program-
ming. InProc. IJCAI'05 2005.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Data-
basesNew Generation Computing:365-385, 1991.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified Boolean Logic
Satisfiability. Artificial Intelligence 145:99-120, 2003.

D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The Second QBF Solvers Compar-
ative Evaluation. Available dtttp://www.qbflib.org/ , 2004.

D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF Arena: the SAT'03 Eval-
uation of QBF Solvers. IfProc. SAT'03, Selected Revised Papedume 2919 oLLNCS

pages 468-485. Springer, 2004.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. Technical Report cs.Al/0211004,
arXiv.org. To appear in thACM Transactions on Computational Logic

R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean Formu-
las. InProc. TABLEAUX'02volume 2381 oL NCS pages 160-175. Springer, 2002.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Progr&@84 Trans-
actions on Computational Logi2(4):526-541, 2001.

F. Lin. Reducing Strong Equivalence of Logic Programs to Entailment in Classical Proposi-
tional Logic. InProc. KR'02 pages 170-176. Morgan Kaufmann, 2002.

F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
In Proc. AAAI'02 pages 112-117. AAAI Press / MIT Press, 2002.

E. Oikarinen and T. Janhunen. Verifying the Equivalence of Logic Programs in the Disjunc-
tive Case. IrProc. LPNMR’04 volume 2923 oL NCS pages 180-193. Springer, 2004.

D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and Logic Pro-
grams with Nested Expressions. Pnoc. EPIA'01 volume 2258 oLNCS pages 306—320.
Springer, 2001.

J. Rintanen. Constructing Conditional Plans by a Theorem Pral@urnal of Artificial
Intelligence Researgti0:323-352, 1999.

P. Simons, |. Niemé| and T. Soininen. Extending and Implementing the Stable Model
SemanticsArtificial Intelligence 138:181-234, 2002.

H. Turner. Strong Equivalence Made Easy: Nested Expressions and Weight Constraints.
Theory and Practice of Logic Programming(4-5):602—622, 2003.

S. Woltran. Characterizations for Relativized Notions of Equivalence in Answer Set Pro-
gramming. InProc. JELIA'04 volume 3229 oL NCS pages 161-173. Springer, 2004.

