A Preliminary Report on Integrating of Answer Set and
Constraint Solving

Sabrina Baselideand Piero Bonattiand M. Gelfond

! Dipartimento di Scienze Fisiche, UnivegsitFederico I1”
Complesso Universitario di Monte Sant’Angelo
Via Cinthia, Napoli, Italy
{baselice,bonatti t@na.infn.it
2 Texas Tech University
Department of Computer Science
Lubbock, TX, USA
mgelfond,@cs.ttu.edu

Abstract. Despite all efforts on intelligent grounding, state-of-the-art answer set
solvers still have huge memory requirements, because they compute the ground
instantiation of the input program before the actual reasoning starts. This prevents
ASP to be effective on several classes of problems. In this paper we integrate an-
swer set generation and constraint solving to reduce the memory requirements
for a class of multi-sortetbgic programs with cardinality constraint¥Ve prove

some theoretical results, introduce a provably sound and complete algorithm,
and report experimental results showing that our approach can solve problem
instances with significantly larger domains.

1 Introduction

Answer set solvers are proving to be competitive with other reasoners on several bench-
marks [10, 11], and are being used successfully as planners and plan verifiers in the
RCS/USA Advisor system [1, 9], a decision support system for NASA shuttle con-
trollers (ttp://krlab.cs.ttu.edu/ ~marcy/RCS/).

Still, state-of-the-art answer set solvers have a major limitation: they use huge
amounts of memory, because the ground instantiation of the input program must be
computed before the actual reasoning starts. This problem is mitigated to some extent
through intelligent grounding techniques that partially evaluate program rules when
possible, thereby deleting some rule instances that are surely not applicable. However,
this technique is not effective enough on some classes of programs, including several
programs for reasoning about actions and change.

In this paper we integrate answer set generation and constraint solving to reduce
the memory requirements for a class of multi-sotiegic programs with cardinality
constraintg10, 11] whose signature can be partitioned into: (i) a set of so-cedtpdar
predicatesover domains whose size can be handled by a standard answer set solver; (ii)
a set ofconstrainedpredicates that can be handled by a constraint solver in a way
that does not require grounding (so larger domains can be allowed here); (iii) a set

14 Baselice, Bonatti, and Gelfond

of predicates—callethixed predicates-that create a “bridge” between the above two
partitions.

Then reasoning can be implemented by having an answer set solver interact with a
constraint solver. A critical aspect is the form that the definitions of mixed predicates
may take. If they were completely general, then that part of the program would be just
as hard to reason with as unrestricted programs because mixed predicates may range
over arbitrary domains. Accordingly, the framework introduced in this paper supports
restricted definitions for mixed predicates, that can be either functions from “regular” to
“large” domains (strong semantics) or slightly weaker mappings where each combina-
tion of “regular” values must be associated to at least one vector of values from “large”
domains (weak semantics).

We study the relationships between strong and weak semantics, and introduce an
algorithm for computing the strong semantics efficiently under the simplifying assump-
tion that mixed predicates do not occur in the scope of negation. Moreover, we report
experimental results providing preliminary evidence that our approach can solve prob-
lem instances with significantly larger domains. In this first paper we focus only on the
comparison with a standard answer set programming approach.

The paper is organized as follows. The next section is devoted to preliminaries.
Then, in Section 3, we introduce the class of programs we deal with, and prove some of
their theoretical properties. The algorithm for reasoning on these programs is described
and proved to be correct and complete in Section 4. Section 6 reports the experiments
and Section 7 concludes the paper with a final discussion and possible directions for
future work.

2 Preliminaries

We adopt a sorted first-order language based on a given sigaatuettersy, y, zrange
over variablesa, b, c range over constant symbols, lettérg, h over function symbols,
and lettersp, g, r over predicate symbols. L& be a finite set oforts And assume a
sort specifications given, that is, a functiosort mapping:

each constartt onto a sesort(c) € S;

each variablex onto a (single) sordort(x) € S;

eachn-ary function symbolff onto a tuplesort(f) = (Ss, ..., Sp1) € S™;
eachn-ary predicate symbagb onto a tuplesort(p) = (S1,...,Sp) € S".

Note that sorts may overlap because constants may be associated to two or more sorts.

Example 1.A sort steps modelling plan steps, may contain the integer constants in
the interval[0O, 10], while a sorttime, modelling time points, may contain the integer
constants ifj0, 600000]

All the other terms have a unique sort. Intuitively,sort(f), S; is the sort of the-th
argument off (1 < i < n) andSy,1 is the sort of the output. Similarly, isort(p), S; is
the sort of tha-th argument of predicate (1 <i < n).

Terms and atoms are defined accordingly. Each variabléh sort(x) = S and
each constartt such thatS € sort(c) are terms of sors. Each expressiofi(ty, .. ., t,)

Integrating of Answer Set and Constraint Solving 15

such thatort(f) = (Sy,...,Sn, S) and eacht; is a term of sor§S; is a term of sorS.
Nothing else is a term. We write: sto state that termhbelongs to sors.

All expression9(ty, . . ., ty) such thasort(p) = (S,..., Sy) and each is a term of
sortS; are atoms. Literals are either atoms (positive literals) or expressions of the form
not AwhereAis an atom (negative literals).

A variable substitution oveixy, .. ., X} is a function mapping each variabteonto
a term ofsort(x;). The notions of instance and ground instantiation are defined as usual
from the above notion of (typed) substitution. The ground instantiation of a set of ex-
pressiong will be denoted byground(E).

Given a logic progran® consisting ohormal rulesA « L anddenials« L, where
L is a collection of literals, thetable modelsf P [5] are defined as follows.

We first need a notion of prograraductP', wherel is a set of ground atoms. The
reductP' is obtained fronmground(P) by removing:

— all the rules and constraints with a literadt B in their body, s.tB € I;
— all negative literals from the remaining rules and constraints.

Note thatP' is a set of Horn clauses. ThereforePifis consistent, then it has a unique
minimal Herbrand model, that will be denoted lny(P').

Now | is astable modebf P if and only if | = Im(P").

The most popular answer set frameworks are based on the above notions of program
and semantics, and extensions thereof. Answer sets are identified with stable models;
each answer set represents a possible solution to the given problem instance (programs
may have no stable models, as well as multiple stable models). One important extension
consists otardinality constraint§10, 11], that in their simplest version are expressions
of the form

{Aju

whereA is an atom] andu are integers. Roughly speakin@A}u forces the answer

sets of the given program to contain a numbaef instances oA, such that < n <

u (u may be omitted in case there is no upper bound). The complete framework is
more general. It allows for cardinality constraints in rule bodiesvaeight constraints

that generalize cardinality constraints and allow programmers to express preferences
and optimization criteria on problem solutions. For a general and precise definition
of cardinality and weight constraints, the reader is referred to [10, 11]. They are fully
supported by 80ODELS.

3 Constrained Programs

The sorts of constrained programs are partitioned iegular and constrainedsorts.
Intuitively, regular sorts are small enough to be handled by standard answer set solvers,
while constrained sorts are large enough to require reasoners that do not instantiate the
corresponding variables.

Variables and constants are caliegular or constrainedaccording to their sorts.
A function f is regular (resp. constrained) if all the sortssmrt(f) are regular (resp.
constrained). Functiori is mixedif sort(f) comprises both regular and constrained
sorts. Predicate symbols are classified in a similar way.

16 Baselice, Bonatti, and Gelfond

In this paper we assume that the output sort of all functions is a constrained sort
The reason is that most answer set solvers do not (yet) support function symbols, while
constraint solvers do (functions are typically standard arithmetic functions).

According to the above classification, signatdires partitioned intaX;, 2. andX,
wherer, c andm stand forregular, constrainedandmixedrespectively.

The atoms oveg;, 2., andXy, are referred to as-atoms,c-atoms, andn-atoms
respectively. Similarly for literals. The parameters ofrafmtom whose sorts are con-
strained (regular) will be often referred to @parametersr¢parameters).

We assume that-predicates have a predefined interpretation, and that the equality
predicate is ac-predicate. The intended interpretation mpredicates will be repre-
sented by a set of ground atoik (the set of all true ground-atoms).

Regular predicates can be defined with normal programs, as in standard ASP. The
definitions of mixed predicates are restricted, instead. Let an atoire®# its argu-
ments are all pairwise distinct variables. For all free atédmge write A(X;, X¢) to state
that ther-variables (respc-variables) ofA are those irx; (resp.xc). We denote with
A(a, b) the instance oA such thatx, is replaced bya andx. with b.

In this paper we deal with two possible semantics of mixed prediédtesler the
weak semanticdor all free mixed atom#\(x,, Xc) there is an implicit axiom

VX IXe. AXr, Xc) s 1)

that can be expressed by including into the program a cardinality consttAiiat x;)}
for each sequence of ground argumeants the appropriate type and length.
Under thestrong semanticgor all free mixed atom#\(x;, X¢) there is an implicit
axiom
VX A X A, Xe) (2)

that can be encoded in a similar way with a suitable set of cardinality constraints like
L{A(a, Xc)}.

Moreover, constrained programs may contain constraints that relate all kinds of
predicates (regular, constrained, and mixed).

Definition 1

1. Aregular rule(r-rule) is a rule of the formA « B or « B whereAis anr-atom
andBiis a collection ofr-literals.

2. A (proper)constraints a rule of the form— B whereB is a collection of arbitrary
literals, including at least one nonregular literal.

3. Aconstrained progran®, is the union of a set of regular ruleR(P), and a set of
constraintsC(P).

Example 2.In our running example (a planning and scheduling problem) we have two
regular sortsstep(representing plan steps) aaction We writestep: 0..10to state that
the constants with stepe sort(c) are those in the integer intenf8, 10]. Analogously,

3 A more general approach is described in the final discussion.
4 In SMODELS this can be done with a single rule having a cardinality constraint in the head. A
similar remark applies to the encoding of (2). We refer the reader to [10, 11] for more details.

Integrating of Answer Set and Constraint Solving 17

we may writeaction: a, .. ., &, to enumerate all possible actions. The regular signature
2, contains only one relation overactionx step Intuitively, o(A, S) means that action

A occurs at stef®. The regular parR(P) containsn rules that force at least one action
to be executed at each step. Ferl,...,n:

o(a, S) « noto(a;, S),...,not0(a_1,S),not 0(aj;1,S), ..., not o(an, S).
Moreover,R(P) contains a denial that forbids concurrent actions:

— 0(A1,S),0(Az, S),not e(Ay, Ay).
eq X, X).

The constraint signatutg, comprises the sotime: 0..600000with the standard arith-
metic functions:+, —, | | etc., and relationss, >, etc.

The mixed signaturé,, comprises a relatiotimg(S, T) associating each plan step
S to at least one time poirift under the weak semantics (exactly one under the strong
semantics).

The following constraint€(P) ensure that time is assigned to steps monotonically
and that each step is associated to exactly one time point (the latter is needed only under
the weak semantics);

— time(S1, T1), timeg(S2, T2),S1 < S2, T1 > T2.
— time(S, T1), time(S, T2), T1 # T2.

Moreover, one can specify a minimal duration for each action, e.g., 3 time unds for
« 0o(ag, S1),timeg(S1, T1), o(A2, S2),timeg(S2,T2),|T2-T1| < 3. (3)

Formally, the semantics of constrained programs is a specialization of the stable
model semantics for logic programs with weight constraints, taking into account the
intended interpretatioM. of 2, and the implicit semantics of mixed predicates.

We first need a generalization of the prograeduct P', whereP is now a con-
strained program anida set of ground atoms. The rediRtis obtained fronground(P)
by removing:

— all the rules and constraints with a literadt B in their body, s.tB € | U M;
— all rules and constraints with@atomA in their body, such thah ¢ Mc;
— all negative literals and-atoms from the remaining rules and constraints.

Note thatP' is a set of Horn clauses also under the generalized definition. Therefore, if
P! is consistent, then it has a unique minimal Herbrand mipai@?). Like the standard
notion of reductP' results from the evaluation of negative literals againsforeover,

the generalized notion evaluates all the constrained literals w.r.t. their intended seman-
ticsMc.

Definition 1. A weak answer saif a constrained prograr® is a set of ground atoms
M = M, U My, satisfying the following conditions:

18 Baselice, Bonatti, and Gelfond

AS1 M is a set ofr-atoms andM, is a set ofm-atoms;

AS2 R(P)M is consistent andil, = Im(R(P)M);

AS3 each constrain{«— L) € ground(C(P)) contains a literalL; false inM;

AS4 for each freematomA(X;, Xc), and for each vector af-constantsa of the appro-
priate length,M,, contains at least one instance Afa, x.).

A strong answer seif a constrained prograrR is a weak answer sél = M; U M,
satisfying the following additional condition:

AS5 for each freematomA(X;, Xc), and for each vector af-constantsa of the appro-
priate length,M, containsat mostone instance of\(a, X).

Note that AS2 basically states thdt is a stable model of the regular partfef

Remark 1.We might have alternatively specified the semantics of a constrained pro-
gramP as the stable models of the program obtained by exterfelingh M. and with

the cardinality constraints that encode (1) and (2). Then AS1-AS5 might have been
proved as theorems. This requires an extension osghigting set theorenf7]. The
details have been worked out in [2] and are omitted here due to space limitations.

Theorem 2 (Strong vs. Weak semantics).et P be a constrained program in which
m-atoms never occur in the scope of negation. For each weak answit sEP, there
exists a strong answer sbt’ of P such thatM’ ¢ M andM \ M’ is a set ofm-atoms.

Note that the assumption on negative m-atoms is satisfied by our running example.

Corollary 1. Under the hypothesis of Theorem 2, the strong answer sétsacf the
minimal weak answer sets Bf

Corollary 2. Under the hypothesis of Theorem 2, the strong and weak skeptical seman-
tics of P (i.e., the intersection of the strong, resp. weak answer sets) coincide.

In the light of the above corollaries, we shall focus on the strong semantics, which is a
way of computing a “representative” class of answer sets.

4 Computing strong answer sets

In this section we introduce a nondeterministic algorithm for computing strong answer
sets. The actual implementation used in the experiments is derived from the nondeter-
ministic algorithm by adding backtracking. The algorithm we introduce can be applied
to constrained programs where mixed predicates have only positive occurrences. More
general approaches require further work (cf. Section 7).

Our algorithm computestrong kernelsthat is, compact representations of a (po-
tentially large) set of strong answer sets.

Definition 2.

1. Astrong completiomf a set of ground atomisis a setl U J such that:
— Jis a set of ground m-atoms;

Integrating of Answer Set and Constraint Solving 19

— for each free m-atom\(x;, Xc) and each vector of r-constantsof the appro-
priate length,l U J contains exactly one instance Afa, Xc).
2. Astrong kernebf a constrained prograr® is a set of ground atomis with at least
one strong completion, and such that all the strong completion§ afe strong
answer sets dP.

In general K is the intersection of exponentially many strong answer seis &ince
all strong completions df are strong answer sets, it is trivial to generate any particular
answer set including, givenK itself.

The algorithm that integrates answer set solving and constraint solving is formu-
lated in terms of a generic answer set solver and a generic constraint solver. The for-
mer, called ASEN, takes as input a regular progrdPrand a set of ground literalS.
Intuitively, ASGEN is an incremental solver, arfl is the previous partial attempt at
constructing an answer set fBr The solver may either fail to further extei®lto an
answer set o, or it may return a refined attemt. So we assume that ASE enjoys
of following formal properties:

1. ASGEN(P, S) returns either NULL or a s&&’ of ground literals consistent with.

2. If ASGEN(P, S) returns a se$’ thenS c S'.

3. If ASGEN(P,S) returns a complete s&’ thenS’ is an answer set oP; here,
by completewe mean that each ground literal occurs3fy either positively or
negatively.

4. ASGEN is nondeterministically complete, that is for each answefsef P there
exists an integen > 0 s.t. at least one computation of A&G"(P, 0) returnsS.

As usually, when we write ASEN"(P, 0) we mean:

ASGEN’(P,0) = 0
ASGEN"(P,0) = ASGEN(P, ASGEN"1(P, 0)).

Note that this formulation is compatible with virtually any strategy for interleaving the
answer set construction and constraint solving. Note also that as a special cagy ASG
may immediately return complete sets (upon success) likergLs.

The only requirements on the constraint solver are that it should be sound and non-
deterministically complete for each set of c-claygds other words, all substitutions
returned by the constraint solver should be solutions(@k., yo should be satisfiable),
and for each solutionr of y, there should be a computation that returns

The constraint solver is applied to a partially evaluated version of the constraints.
To specify the partial evaluation procedure we need some auxiliary notation.

For each constrairt =« B, we denote byeg(c), con(c), andmix(c), respectively,
the collections of regular, constrained and mixed literals belongiiiy to

We say that a substitutiop is r-groundingiff y replaces each-variable with a
groundr-term and leaves the other variables unchanged.

Definition 3. The partial r-evaluatiorof a set of constraint€ w.r.t. a set of ground
literals S, denoted byE(C, S), is defined by

PE(C, S) = {(«~ mix(c), con(c))y | c € C, v r-grounding, andeg(c)y c S}.

20 Baselice, Bonatti, and Gelfond

Note that the members &E(C, S) contain nor-atoms and ne-variables, because the
former have been simplified away and the latter have been replaced-adthstants.
Note also that in this process some constraints may disappeag(asmay match no
literals inS. Intuitively, S is to be provided by the answer set solver.

The constraint processing algorithm applies tocamalizedversion of PE(C, S),
denoted byPE"(C, S), satisfying the following properties:

N1 No mliteral occurring inPE"(C, S) contains two or more occurrences of the same
variable;

Moreover, for all freem-atomsA(X;, X¢),

N2 If both A(a, y.) andA(a, z.) occur inPE"(C, S), theny, = z.
N3 If both A(a, y.) andA(b, z.) occur inPE"(C, S) anda # b, theny, andz have no
variables in common.

Note that condition N2 is the opposite of the classic standardization apart approach. N2
and N3 together require the vectorsasvariables to be in one-to-one correspondence
with the vectors of regular arguments. Condition N1 can be fulfilled by introducing
equationsx; = x; in con(c) when needed. Condition N2 and N3 can be fulfilled by
variable renaming.

Example 3.In the running example, whenev8&r contains the paio(ai, 1), o(a;, 2),
constraint (3) yields the partially evaluated constraint

— time(1, T1), time(2, T2), T2 - T1 < 3.

After normalization, and assuming this particular constraint has not been modified, for
all the atomstime(1, x) occurring inPE"(C(P), S), we havex = T1. In this way—
roughly speaking—any solution to the constraints is forced to fulfil the property (2) of
strong semantics.

We are now ready to prove soundness and completeness for Algorithm 1.

Theorem 3. If a non-failed run of Algorithm 1 returns a set of literadfs thenK is a
strong kernel of.

Theorem 4. For each strong answer s&f of P there exists a run of Algorithm 1 that
returns a strong kernek € M.

5 The CASP prototype

The CASP prototype is a simplified implementation of Algorithm 1, based on the an-
swer set solver BODELS [8]. CASP is meant to be an exploratory prototype, built with
off-the-shelf components. While this strategy accelerated prototype deployment, it pre-
vented us from exploiting the potential interleaving of answer set solving and constraint
solving, supported by Algorithm 1. In this first prototype, the answer set solver always
returns a complete answer set, so the loop in Algorithm 1 makes always one iteration.

Integrating of Answer Set and Constraint Solving 21

Algorithm 1
CASPSOLVER (P)

1: Inputs: P = R(P) U C(P): a constrained program with no negativditerals.
2: Outputs: either a strong kernel ¢ or FAIL

3: begin

4. S:=0;

5: loop

6: S:=ASGEN(R(P),S);

7: if S=NULL then

8 FAIL,

9: else

10: C := PE"(C(P),S);
11: if Acc —con(c) has no solutiorthen
12: FAIL;
13: else ifS is completehen
14: choosea solutiono of A ¢ —con(c);
15: LetM(C) be the set of mixed literals i@;
16: return SuU M(C)o;
17: end

Let P be the input program. Whehas a strong answer set, CASP returns a strong
kernel forP, plus auxiliary information useful for analyzing the behavior of the system
including the number of atoms, conjunctions, disjunctions, and variables occurring in
Neec —|COI'I(C).

CASP consists of a script&3PScRIPTthat first runs the answer set solverR(r).

Then for each answer s8tof R(P), CASPScRIPT calls a GNU Prolog constraint logic
program with finite domains, that implements steps 10-16 of Algorithm 1. In case of
failure (step 12), @sPScRrIPT does not always fail; iR(P) has more stable models,
CAspPScRIPTfeeds the next one to the Prolog module.

The finite domain (FD) constraint solver of GNU Prolog is an instance of the Con-
straint Logic Programming scheme introduced by Jaffar and Lassez in 1987 [6] and
is based on th€LP(FD) framework [4]. Constraints are defined on FD variables and
solved by means of arc-consistency (AC) techniques [12]. Arc consistency is not a com-
plete inference mechanism; it ensures only that all solutions (if any) are in the current
variable domains. In general, some variable assignments over the current domains are
not solutions. Therefore, a final solution generation and checking phase is needed. In
many cases, though, the domains produced by arc consistency are tight enough to speed
up significantly the computation of solutions.

6 Experimental Results

We experimented with a few variants of the constrained program illustrated in the exam-
ples. Of course, this can only be regarded as a preliminary evaluation. Still, the example
we choose is of significant interest. Programs similar to our running example have been
used in the USA Advisor project, related to NASA missions [1, 9], and for protocol
verification [3]. In both cases memory requirements happened to cause problems.

22 Baselice, Bonatti, and Gelfond

We did not insist much on the performance of the answer set solver, because there
exists a rich body of literature on experimental evaluations and benchmarkingoai-S
ELS. We focused on the performance of the constraint solvexas —con(c) and the
number of disjunctions occurring in it grow.

The tests have been run on a Pentium(R) M processor 1.5GHz, with 1Mb cache and
512Mb core memory.

Fig. 1. SMODELS program

Regular part :

step(0..1).

action(1..2).

1{o(A,S) : action(A)}1 :— step(S).

Costrained part :

time(0..600000).

1{time(S,T) : time(T)}1 :— step(S).

:— 0(A1,S1), time(S1,T1),0(A2, S2), time(S2, T2), abs(T1 — T2) < 3,neq(S1,S2),
time(T1), time(T2), step(S1), step(S2),action(Al),action(A2).

— time(S1,T1), time(S2,T2),S1 < S2,T1 >= T2, time(T1), time(T2), step(S1), step(S2).

— time(S, T1), time(S, T2),neq(T1, T2), time(T1), time(T2), step(S).

Recall that the example has two regular satgionandstep and one constrained
sorttime We started by encoding the planning and scheduling problem asvtbe-S
ELS program with weight constraints [10, 11] in Figure 1. In particular, the implicit
semantics of mixed predicates has been encoded with the weight constraint

1{time(S, T) : time(T)}1 :— step(S). 4)

This constraint says that for all stefghere exists exactly one time poiftsatisfying
time(S, T).

Sorttimeis the interval of integerf0 — 600000] These values are determined by
the following requirement: scheduling should cover plans at least one week long with
the granularity of seconds.

With 2 actions and 2 steps, the front-end oi &®ELS (Iparse), responsible of the
ground instantiation of the program and its simplification, did not terminate within 95
minutes and was killed (the main reasoning process was never reached). On the same
program (without weight constraints, which are implicit in the strong semantics) CASP
solves up to 10 steps in about 30 seconds. If the time domain is increased to 6 mil-
lion points, therlparsecrashes (probably because of exceeding memory needs), while
CASP solves up to 10 steps in less than 2 minutes.

Integrating of Answer Set and Constraint Solving 23

The details of the experiment with 6 million time points are given in Figure 2.
Columnsteprepresents the corresponding regular sort, the figdos var, conj, and
disj, respectively, show the number of atoms, variables, conjunctions and disjunctions
of the formula A ..c —con(c) fed to the constraint solver. Fielttemptsis related to
the number of backtracks; it counts the number of stable models of the regular part fed
into the Prolog module before the first strong kernel is found. Finally, col8mnodels
reports the time needed by Smodels to compute the stable models of the regular part,
and columrtime shows the overall time needed to produce the first strong kernel.

Fig. 2.test-1 results

120

step |atoms |var|conj |disj | attempts Smodels time 110
{0,1} 8 2 5 2 1{0m0.016s 0m1.259s 100
(0,2} 1o 3 12| 6 1| om0.007s 0m1.363s 90
{0,....3} 35| 4 22| 12 1|0m0.007s 0m3.379s - jz
{0,...4} 56| 5| 35 20 1{0m0.012s 0m7.440s T &0
{0.....5} 32 6/ 51| 30 1{0m0.092s Om14.091s E 1]
{0,....6} 113 70 70| 42 1{0m0.112s 0m24.253s 40
(0.7} | 149| 8| 92| 56 1[0mo0.1655 0m38.430s 30
{0,....8} 1901 9| 117 72 110m0.356s 0m57.580s jz g
{0....9} 236| 10| 145| %0 1{0m0.758s Im22.542s 0 fil T !
{0.....10} 287| 11| 176|110 1{0m1.309s Im54.056s 8 13 35 56 82 113 149 190 236 287
SORT: action={ 1,2} - time={0,...,6.000.000 } atoms

The results with600 000 time points are reported in Figure 3. In this experiment
constraints are trivial. Basically, they only assign a minimal length to each action exe-
cution, so they are always satisfiable, for all action sequences chosen by the answer set
solver, and without any backtracking.

Now, if we make constraints more difficult by posing upper bounds on the entire
plan execution (so that constraints cannot be trivially satisfied and some backtracking
is needed), we obtain the results illustrated in Figure 4. The time needed for constraint
solving significantly increases. In future work, it will be interesting to explore different
constraint solution strategies on a wider selection of examples.

7 Conclusions

Preliminary experimental results show that the integration of answer set programming
and constraint solving techniques may significantly enhance the applicability range
of ASP. A simple planning and scheduling problem can be naturally formulated and
solved, while one of the most powerful state-of-the-art answer set solvers cannot even
reach the main reasoning phase. Our method shares with constraint logic programming
frameworks the ability of returning answers that may be compact representations of

24 Baselice, Bonatti, and Gelfond

Fig. 3. test-2 results

step atoms | var |conj |disf | attempts | Smodels | time

(0,1} 12| 2| 9| 2 1| 0.011s|0.306s 323_:

{0,...,2} 281 3] 21 6 1| 0.019s|0.579s 30

{0,...3} 510 4| 38| 12 1| 0.009s|1.157s 22:

{0,...,4} 81 5| 60| 20 1| 0.012s{1.654s | _ 225

{0.....5}) 118| 6| 87| 30 1| 0.020s[3416s | T jae

[0....6] 162 7| 19| 42 1| 0.039s|6.184s E 15

{0,...,7} 213 B| 156] 56 1| 0.166s|10.175s 121:

{0....8} 271 9| 198| 72 1| 0.364s|15.811s 73

{0,...,9} 336| 10| 245| %0 1| 0.461s{23.151s 2_:

{0,...,10} 408| 11| 297|110 1| 1.308s|32.949s "12 2'1’8 5?1 E:rl e T o o1 ek e

SORT: action={1,2} -- time={0....,600.000} atoms

Fig. 4.test-3 results
step atoms | var |conj | disj | attempts | Smodels time

{0,1} o] 2 8 1 1| 0m0.097s| 0m0.2 168
10,...2 22 3 18 3 11 0m0.053s| 0m0.117s
{0,...3} 9| 4| 32| 6 1{0m0.057s| 0m0.131s
10,....4} 61 5| 50 10 1{0mO0.070s| 0mO.181s
10.....5} 88| 6| 72| 15 11 0m0.098s| 0m0.209s
{0,....6} 120 7| 98| 21 110m0.203s| 0m0.245s
10,...,7} 157 8| 128 28 2{0m0.171s| 0m45.349s
10,....8} 199 9| 162 36 3| 0m0.364s| 3m54.919s
10,...9} 246| 10| 200 45 B 0m0.556s|35m11.777s
SORT: action={ 1.2} -- time={0,...,600.000 }

Integrating of Answer Set and Constraint Solving 25

exponentially many distinct problem solutions, each of which can be easily extracted
from the answer.

This work can be extended along several directions. First of all we are looking for
more classes of examples of practical interest to extend our experimentation.

A second line of research concerns the interplay of the two solvers. A tighter integra-
tion of answer set generation and constraint solving may anticipate inconsistency detec-
tion, thereby improving failure handling. It would be interesting to explore dependency-
directed forms of backtracking. Such a refined system should be compared through
benchmarking to planners and schedulers based on different logics and reasoning meth-
ods (for a collection of pointers to such approaches hsge//www.aaai.org/
AlTopics/html/planning.html).

We mentioned that constrained programs are basically a subclass of weight con-
straint programs. It may be possible to extend the class of weight constraints supported
by our approach, e.g., by using different bounds (e.g., mixing weak and strong se-
mantics), and by dropping the requirement that for all freatomsA and all vector
of r-constantsa, answer sets must contain at least one instano®afx.). Many of
our results can be adapted under the assumption that for all distinct weight constraints
I1{A1}u; andl {Az}u, in a programA; andA; are not unifiable.

Moreover, it would be nice to support negative mixed literals. Unfortunately, our
approach cannot be easily adapted; the solutions we have explored so far require blind
grounding over constrained domains, which is exactly what should be avoided.

Acknowledgments Work partially supported by the EU working group WASP (5FP),
IST-2001-37004 and ARDA contract.

References

1. M. Balduccini, M. Gelfond, R. Watson, and M. Nogueira. The USA-Advisor: A case study in
answer set planning. lnogic Programming and Nonmonotonic Reasoning, 6th International
Conference, LPNMR 200%olume 2173 ot.ecture Notes in Computer Scienpages 439—
442. Springer, 2001.

2. S. Baselice. Integrazione di tecniche di Answer Set Programming e Constraint Solving. Tesi
di laurea, Universit degli studi di Napoli Federico Il, Naples, Italy, October 2004.

3. L. Carlucci Aiello and F. Massacci. Verifying security protocols as planning in logic pro-
gramming.ACM Trans. Comput. Logj@(4):542-580, 2001.

4. P. Codognet and D. Diaz. Compiling constraints in clp(RIBurnal of Logic Programming
27(3):185-226, 1996.

5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programmin@rda.
of the 5th ICLP pages 1070-1080. MIT Press, 1988.

6. J. Jaffar and M. J. Maher. Constraint logic programming: A surdewyrnal of Logic Pro-
gramming 19/20:503-582, May/July 1994.

7. V. Lifschitz and H. Turner. Splitting a Logic Program. Rroceedings of the 12th In-
ternational Conference on Logic Programming, Kanagawa 1998 Press Series Logic
Program, pages 581-595. MIT Press, 1995.

8. I. Niemeh and P. Simons. Smodels — an implementation of the stable model and well-
founded semantics for normal Ip. Logic Programming and Nonmonotonic Reasoning, 4th

26

10.

11.
12.

Baselice, Bonatti, and Gelfond

International Conference, LPNMR’97, Proceedingslume 1265 of NCS pages 421-430.
Springer, 1997.

. M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog decision

support system for the Space Shuttle Phactical Aspects of Declarative Languages, Third
International Symposium, PADL 200dolume 1990 ot ecture Notes in Computer Science
pages 169-183. Springer, 2001.

P. Simons, I. Niemal and T. Soininen. Extending and implementing the stable model se-
mantics.Artif. Intell., 138(1-2):181-234, 2002.

T. Syranen. Cardinality constraint programs.JBLIA, pages 187-199, 2004.

C. Teng, P. Van Hentenryck, and Y. Deville. A generic arc-consistency algorithm and its
specializations, June 11 1992.

