
A Preliminary Report on Integrating of Answer Set and
Constraint Solving

Sabrina Baselice1 and Piero Bonatti1 and M. Gelfond2

1 Dipartimento di Scienze Fisiche, Università ”Federico II”
Complesso Universitario di Monte Sant’Angelo

Via Cinthia, Napoli, Italy
{baselice,bonatti }@na.infn.it

2 Texas Tech University
Department of Computer Science

Lubbock, TX, USA
mgelfond,@cs.ttu.edu

Abstract. Despite all efforts on intelligent grounding, state-of-the-art answer set
solvers still have huge memory requirements, because they compute the ground
instantiation of the input program before the actual reasoning starts. This prevents
ASP to be effective on several classes of problems. In this paper we integrate an-
swer set generation and constraint solving to reduce the memory requirements
for a class of multi-sortedlogic programs with cardinality constraints. We prove
some theoretical results, introduce a provably sound and complete algorithm,
and report experimental results showing that our approach can solve problem
instances with significantly larger domains.

1 Introduction

Answer set solvers are proving to be competitive with other reasoners on several bench-
marks [10, 11], and are being used successfully as planners and plan verifiers in the
RCS/USA Advisor system [1, 9], a decision support system for NASA shuttle con-
trollers (http://krlab.cs.ttu.edu/ ∼marcy/RCS/).

Still, state-of-the-art answer set solvers have a major limitation: they use huge
amounts of memory, because the ground instantiation of the input program must be
computed before the actual reasoning starts. This problem is mitigated to some extent
through intelligent grounding techniques that partially evaluate program rules when
possible, thereby deleting some rule instances that are surely not applicable. However,
this technique is not effective enough on some classes of programs, including several
programs for reasoning about actions and change.

In this paper we integrate answer set generation and constraint solving to reduce
the memory requirements for a class of multi-sortedlogic programs with cardinality
constraints[10, 11] whose signature can be partitioned into: (i) a set of so-calledregular
predicatesover domains whose size can be handled by a standard answer set solver; (ii)
a set ofconstrainedpredicates that can be handled by a constraint solver in a way
that does not require grounding (so larger domains can be allowed here); (iii) a set

14 Baselice, Bonatti, and Gelfond

of predicates—calledmixed predicates—that create a “bridge” between the above two
partitions.

Then reasoning can be implemented by having an answer set solver interact with a
constraint solver. A critical aspect is the form that the definitions of mixed predicates
may take. If they were completely general, then that part of the program would be just
as hard to reason with as unrestricted programs because mixed predicates may range
over arbitrary domains. Accordingly, the framework introduced in this paper supports
restricted definitions for mixed predicates, that can be either functions from “regular” to
“large” domains (strong semantics) or slightly weaker mappings where each combina-
tion of “regular” values must be associated to at least one vector of values from “large”
domains (weak semantics).

We study the relationships between strong and weak semantics, and introduce an
algorithm for computing the strong semantics efficiently under the simplifying assump-
tion that mixed predicates do not occur in the scope of negation. Moreover, we report
experimental results providing preliminary evidence that our approach can solve prob-
lem instances with significantly larger domains. In this first paper we focus only on the
comparison with a standard answer set programming approach.

The paper is organized as follows. The next section is devoted to preliminaries.
Then, in Section 3, we introduce the class of programs we deal with, and prove some of
their theoretical properties. The algorithm for reasoning on these programs is described
and proved to be correct and complete in Section 4. Section 6 reports the experiments
and Section 7 concludes the paper with a final discussion and possible directions for
future work.

2 Preliminaries

We adopt a sorted first-order language based on a given signatureΣ. Lettersx, y, z range
over variables,a, b, c range over constant symbols, lettersf , g, h over function symbols,
and lettersp, q, r over predicate symbols. LetS be a finite set ofsorts. And assume a
sort specificationis given, that is, a functionsort mapping:

– each constantc onto a setsort(c) ⊆ S;
– each variablex onto a (single) sortsort(x) ∈ S;
– eachn-ary function symbolf onto a tuplesort(f) = 〈S1, . . . ,Sn+1〉 ∈ S

n+1;
– eachn-ary predicate symbolp onto a tuplesort(p) = 〈S1, . . . ,Sn〉 ∈ S

n.

Note that sorts may overlap because constants may be associated to two or more sorts.

Example 1.A sort steps, modelling plan steps, may contain the integer constants in
the interval[0,10], while a sorttime, modelling time points, may contain the integer
constants in[0,600000].

All the other terms have a unique sort. Intuitively, insort(f), Si is the sort of thei-th
argument off (1 ≤ i ≤ n) andSn+1 is the sort of the output. Similarly, insort(p), Si is
the sort of thei-th argument of predicatep (1 ≤ i ≤ n).

Terms and atoms are defined accordingly. Each variablex with sort(x) = S and
each constantc such thatS ∈ sort(c) are terms of sortS. Each expressionf (t1, . . . , tn)

Integrating of Answer Set and Constraint Solving 15

such thatsort(f) = 〈S1, . . . ,Sn,S〉 and eachti is a term of sortSi is a term of sortS.
Nothing else is a term. We writet : s to state that termt belongs to sorts.

All expressionsp(t1, . . . , tn) such thatsort(p) = 〈S1, . . . ,Sn〉 and eachti is a term of
sortSi are atoms. Literals are either atoms (positive literals) or expressions of the form
notA whereA is an atom (negative literals).

A variable substitution over{x1, . . . , xn} is a function mapping each variablexi onto
a term ofsort(xi). The notions of instance and ground instantiation are defined as usual
from the above notion of (typed) substitution. The ground instantiation of a set of ex-
pressionsE will be denoted byground(E).

Given a logic programP consisting ofnormal rulesA← L anddenials← L, where
L is a collection of literals, thestable modelsof P [5] are defined as follows.

We first need a notion of programreductPI , whereI is a set of ground atoms. The
reductPI is obtained fromground(P) by removing:

– all the rules and constraints with a literalnot B in their body, s.t.B ∈ I ;
– all negative literals from the remaining rules and constraints.

Note thatPI is a set of Horn clauses. Therefore, ifPI is consistent, then it has a unique
minimal Herbrand model, that will be denoted bylm(PI).

Now I is astable modelof P if and only if I = lm(PI).
The most popular answer set frameworks are based on the above notions of program

and semantics, and extensions thereof. Answer sets are identified with stable models;
each answer set represents a possible solution to the given problem instance (programs
may have no stable models, as well as multiple stable models). One important extension
consists ofcardinality constraints[10, 11], that in their simplest version are expressions
of the form

l{A}u

whereA is an atom,l andu are integers. Roughly speaking,l{A}u forces the answer
sets of the given program to contain a numbern of instances ofA, such thatl ≤ n ≤
u (u may be omitted in case there is no upper bound). The complete framework is
more general. It allows for cardinality constraints in rule bodies andweight constraints,
that generalize cardinality constraints and allow programmers to express preferences
and optimization criteria on problem solutions. For a general and precise definition
of cardinality and weight constraints, the reader is referred to [10, 11]. They are fully
supported by SMODELS.

3 Constrained Programs

The sorts of constrained programs are partitioned intoregular andconstrainedsorts.
Intuitively, regular sorts are small enough to be handled by standard answer set solvers,
while constrained sorts are large enough to require reasoners that do not instantiate the
corresponding variables.

Variables and constants are calledregular or constrainedaccording to their sorts.
A function f is regular (resp. constrained) if all the sorts insort(f) are regular (resp.
constrained). Functionf is mixed if sort(f) comprises both regular and constrained
sorts. Predicate symbols are classified in a similar way.

16 Baselice, Bonatti, and Gelfond

In this paper we assume that the output sort of all functions is a constrained sort.
The reason is that most answer set solvers do not (yet) support function symbols, while
constraint solvers do (functions are typically standard arithmetic functions).

According to the above classification, signatureΣ is partitioned intoΣr , Σc andΣm,
wherer, c andmstand forregular, constrainedandmixedrespectively.

The atoms overΣr , Σc, andΣm are referred to asr-atoms,c-atoms, andm-atoms
respectively. Similarly for literals. The parameters of anm-atom whose sorts are con-
strained (regular) will be often referred to asc-parameters (r-parameters).

We assume thatc-predicates have a predefined interpretation, and that the equality
predicate is ac-predicate. The intended interpretation ofc-predicates will be repre-
sented by a set of ground atomsMc (the set of all true groundc-atoms).

Regular predicates can be defined with normal programs, as in standard ASP. The
definitions of mixed predicates are restricted, instead. Let an atom befree if its argu-
ments are all pairwise distinct variables. For all free atomsA we writeA(xr , xc) to state
that ther-variables (resp.c-variables) ofA are those inxr (resp.xc). We denote with
A(a, b) the instance ofA such thatxr is replaced bya andxc with b.

In this paper we deal with two possible semantics of mixed predicates.3 Under the
weak semantics, for all free mixed atomsA(xr , xc) there is an implicit axiom

∀xr∃xc.A(xr , xc) , (1)

that can be expressed by including into the program a cardinality constraint1{A(a, xc)}
for each sequence of ground argumentsa of the appropriate type and length.4

Under thestrong semantics, for all free mixed atomsA(xr , xc) there is an implicit
axiom

∀xr∃!xc.A(xr , xc) , (2)

that can be encoded in a similar way with a suitable set of cardinality constraints like
1{A(a, xc)}1.

Moreover, constrained programs may contain constraints that relate all kinds of
predicates (regular, constrained, and mixed).

Definition 1

1. A regular rule(r-rule) is a rule of the formA ← B or ← B whereA is an r-atom
andB is a collection ofr-literals.

2. A (proper)constraintis a rule of the form← B whereB is a collection of arbitrary
literals, including at least one nonregular literal.

3. Aconstrained program, P, is the union of a set of regular rules,R(P), and a set of
constraints,C(P).

Example 2.In our running example (a planning and scheduling problem) we have two
regular sorts:step(representing plan steps) andaction. We writestep: 0..10to state that
the constantsc with step∈ sort(c) are those in the integer interval[0,10]. Analogously,

3 A more general approach is described in the final discussion.
4 In SMODELS this can be done with a single rule having a cardinality constraint in the head. A

similar remark applies to the encoding of (2). We refer the reader to [10, 11] for more details.

Integrating of Answer Set and Constraint Solving 17

we may writeaction : a1, . . . ,an to enumerate all possible actions. The regular signature
Σr contains only one relationo overaction× step. Intuitively, o(A,S) means that action
A occurs at stepS. The regular partR(P) containsn rules that force at least one action
to be executed at each step. Fori = 1, . . . ,n:

o(ai ,S)← noto(a1,S), . . . , noto(ai−1,S), noto(ai+1,S), . . . , noto(an,S).

Moreover,R(P) contains a denial that forbids concurrent actions:

← o(A1,S),o(A2,S), noteq(A1,A2).

eq(X,X).

The constraint signatureΣc comprises the sorttime : 0..600000with the standard arith-
metic functions:+,−, | | etc., and relations:>,≥, etc.

The mixed signatureΣm comprises a relationtime(S,T) associating each plan step
S to at least one time pointT under the weak semantics (exactly one under the strong
semantics).

The following constraintsC(P) ensure that time is assigned to steps monotonically
and that each step is associated to exactly one time point (the latter is needed only under
the weak semantics);

← time(S1,T1), time(S2,T2),S1 < S2,T1 ≥ T2.

← time(S,T1), time(S,T2),T1 , T2.

Moreover, one can specify a minimal duration for each action, e.g., 3 time units fora1

← o(a1,S1), time(S1,T1),o(A2,S2), time(S2,T2), |T2− T1| < 3 . (3)

Formally, the semantics of constrained programs is a specialization of the stable
model semantics for logic programs with weight constraints, taking into account the
intended interpretationMc of Σc and the implicit semantics of mixed predicates.

We first need a generalization of the programreduct PI , whereP is now a con-
strained program andI a set of ground atoms. The reductPI is obtained fromground(P)
by removing:

– all the rules and constraints with a literalnot B in their body, s.t.B ∈ I ∪ Mc;
– all rules and constraints with ac-atomA in their body, such thatA < Mc;
– all negative literals andc-atoms from the remaining rules and constraints.

Note thatPI is a set of Horn clauses also under the generalized definition. Therefore, if
PI is consistent, then it has a unique minimal Herbrand modellm(PI). Like the standard
notion of reduct,PI results from the evaluation of negative literals againstI . Moreover,
the generalized notion evaluates all the constrained literals w.r.t. their intended seman-
tics Mc .

Definition 1. A weak answer setof a constrained programP is a set of ground atoms
M = Mr ∪ Mm satisfying the following conditions:

18 Baselice, Bonatti, and Gelfond

AS1 Mr is a set ofr-atoms andMm is a set ofm-atoms;
AS2 R(P)Mr is consistent andMr = lm(R(P)Mr);
AS3 each constraint(← L) ∈ ground(C(P)) contains a literalLi false inM;
AS4 for each freem-atomA(xr , xc), and for each vector ofr-constantsa of the appro-

priate length,Mm contains at least one instance ofA(a, xc).

A strong answer setof a constrained programP is a weak answer setM = Mr ∪Mm

satisfying the following additional condition:

AS5 for each freem-atomA(xr , xc), and for each vector ofr-constantsa of the appro-
priate length,Mm containsat mostone instance ofA(a, xc).

Note that AS2 basically states thatMr is a stable model of the regular part ofP.

Remark 1.We might have alternatively specified the semantics of a constrained pro-
gramP as the stable models of the program obtained by extendingP with Mc and with
the cardinality constraints that encode (1) and (2). Then AS1-AS5 might have been
proved as theorems. This requires an extension of thesplitting set theorem[7]. The
details have been worked out in [2] and are omitted here due to space limitations.

Theorem 2 (Strong vs. Weak semantics).Let P be a constrained program in which
m-atoms never occur in the scope of negation. For each weak answer setM of P, there
exists a strong answer setM′ of P such thatM′ ⊆ M andM \ M′ is a set ofm-atoms.

Note that the assumption on negative m-atoms is satisfied by our running example.

Corollary 1. Under the hypothesis of Theorem 2, the strong answer sets ofP are the
minimal weak answer sets ofP.

Corollary 2. Under the hypothesis of Theorem 2, the strong and weak skeptical seman-
tics ofP (i.e., the intersection of the strong, resp. weak answer sets) coincide.

In the light of the above corollaries, we shall focus on the strong semantics, which is a
way of computing a “representative” class of answer sets.

4 Computing strong answer sets

In this section we introduce a nondeterministic algorithm for computing strong answer
sets. The actual implementation used in the experiments is derived from the nondeter-
ministic algorithm by adding backtracking. The algorithm we introduce can be applied
to constrained programs where mixed predicates have only positive occurrences. More
general approaches require further work (cf. Section 7).

Our algorithm computesstrong kernels, that is, compact representations of a (po-
tentially large) set of strong answer sets.

Definition 2.

1. Astrong completionof a set of ground atomsI is a setI ∪ J such that:
– J is a set of ground m-atoms;

Integrating of Answer Set and Constraint Solving 19

– for each free m-atomA(xr , xc) and each vector of r-constantsa of the appro-
priate length,I ∪ J contains exactly one instance ofA(a, xc).

2. Astrong kernelof a constrained programP is a set of ground atomsK with at least
one strong completion, and such that all the strong completions ofK are strong
answer sets ofP.

In general,K is the intersection of exponentially many strong answer sets ofP. Since
all strong completions ofK are strong answer sets, it is trivial to generate any particular
answer set includingK, givenK itself.

The algorithm that integrates answer set solving and constraint solving is formu-
lated in terms of a generic answer set solver and a generic constraint solver. The for-
mer, called ASGEN, takes as input a regular programP and a set of ground literalsS.
Intuitively, ASGEN is an incremental solver, andS is the previous partial attempt at
constructing an answer set forP. The solver may either fail to further extendS to an
answer set ofP, or it may return a refined attemptS′. So we assume that ASGEN enjoys
of following formal properties:

1. ASGEN(P,S) returns either NULL or a setS′ of ground literals consistent withP.
2. If ASGEN(P,S) returns a setS′ thenS ⊂ S′.
3. If ASGEN(P,S) returns a complete setS′ then S′ is an answer set ofP; here,

by completewe mean that each ground literal occurs inS′, either positively or
negatively.

4. ASGEN is nondeterministically complete, that is for each answer setS of P there
exists an integern ≥ 0 s.t. at least one computation of ASGENn(P, ∅) returnsS.

As usually, when we write ASGENn(P, ∅) we mean:

ASGEN0(P, ∅) = ∅

ASGENn(P, ∅) = ASGEN(P,ASGENn−1(P, ∅)).

Note that this formulation is compatible with virtually any strategy for interleaving the
answer set construction and constraint solving. Note also that as a special case, ASGEN

may immediately return complete sets (upon success) like SMODELS.
The only requirements on the constraint solver are that it should be sound and non-

deterministically complete for each set of c-clausesχ. In other words, all substitutionsσ
returned by the constraint solver should be solutions ofχ (i.e.,χσ should be satisfiable),
and for each solutionσ of χ, there should be a computation that returnsσ.

The constraint solver is applied to a partially evaluated version of the constraints.
To specify the partial evaluation procedure we need some auxiliary notation.

For each constraintc =← B, we denote byreg(c), con(c), andmix(c), respectively,
the collections of regular, constrained and mixed literals belonging toB.

We say that a substitutionγ is r-grounding iff γ replaces eachr-variable with a
groundr-term and leaves the other variables unchanged.

Definition 3. The partial r-evaluationof a set of constraintsC w.r.t. a set of ground
literals S, denoted byPE(C,S), is defined by

PE(C,S) = {(← mix(c), con(c))γ | c ∈ C, γ r-grounding, andreg(c)γ ⊆ S} .

20 Baselice, Bonatti, and Gelfond

Note that the members ofPE(C,S) contain nor-atoms and nor-variables, because the
former have been simplified away and the latter have been replaced withr-constants.
Note also that in this process some constraints may disappear, asreg(c) may match no
literals inS. Intuitively, S is to be provided by the answer set solver.

The constraint processing algorithm applies to anormalizedversion ofPE(C,S),
denoted byPEn(C,S), satisfying the following properties:

N1 No m-literal occurring inPEn(C,S) contains two or more occurrences of the same
variable;

Moreover, for all freem-atomsA(xr , xc),

N2 If both A(a, yc) andA(a, zc) occur inPEn(C,S), thenyc = zc.
N3 If both A(a, yc) andA(b, zc) occur inPEn(C,S) anda , b, thenyc andzc have no

variables in common.

Note that condition N2 is the opposite of the classic standardization apart approach. N2
and N3 together require the vectors ofc-variables to be in one-to-one correspondence
with the vectors of regular arguments. Condition N1 can be fulfilled by introducing
equationsxi = x j in con(c) when needed. Condition N2 and N3 can be fulfilled by
variable renaming.

Example 3.In the running example, wheneverS contains the pairo(a1,1), o(ai ,2),
constraint (3) yields the partially evaluated constraint

← time(1,T1), time(2,T2), |T2− T1| < 3.

After normalization, and assuming this particular constraint has not been modified, for
all the atomstime(1, x) occurring inPEn(C(P),S), we havex = T1. In this way—
roughly speaking—any solution to the constraints is forced to fulfil the property (2) of
strong semantics.

We are now ready to prove soundness and completeness for Algorithm 1.

Theorem 3. If a non-failed run of Algorithm 1 returns a set of literalsK, thenK is a
strong kernel ofP.

Theorem 4. For each strong answer setM of P there exists a run of Algorithm 1 that
returns a strong kernelK ⊆ M.

5 The CASP prototype

The CASP prototype is a simplified implementation of Algorithm 1, based on the an-
swer set solver SMODELS [8]. CASP is meant to be an exploratory prototype, built with
off-the-shelf components. While this strategy accelerated prototype deployment, it pre-
vented us from exploiting the potential interleaving of answer set solving and constraint
solving, supported by Algorithm 1. In this first prototype, the answer set solver always
returns a complete answer set, so the loop in Algorithm 1 makes always one iteration.

Integrating of Answer Set and Constraint Solving 21

Algorithm 1
CASPSOLVER (P)
1: Inputs: P = R(P) ∪C(P): a constrained program with no negativem-literals.
2: Outputs: either a strong kernel ofP or FAIL
3: begin
4: S := ∅;
5: loop
6: S := ASGEN(R(P),S);
7: if S =NULL then
8: FAIL;
9: else

10: C := PEn(C(P),S);
11: if

∧
c∈C ¬con(c) has no solutionthen

12: FAIL;
13: else ifS is completethen
14: choosea solutionσ of

∧
c∈C ¬con(c);

15: LetM(C) be the set of mixed literals inC;
16: return S ∪ M(C)σ;
17: end

Let P be the input program. WhenP has a strong answer set, CASP returns a strong
kernel forP, plus auxiliary information useful for analyzing the behavior of the system
including the number of atoms, conjunctions, disjunctions, and variables occurring in∧

c∈C ¬con(c).
CASP consists of a script CASPSCRIPT that first runs the answer set solver onR(P).

Then for each answer setS of R(P), CASPSCRIPT calls a GNU Prolog constraint logic
program with finite domains, that implements steps 10-16 of Algorithm 1. In case of
failure (step 12), CASPSCRIPT does not always fail; ifR(P) has more stable models,
CASPSCRIPT feeds the next one to the Prolog module.

The finite domain (FD) constraint solver of GNU Prolog is an instance of the Con-
straint Logic Programming scheme introduced by Jaffar and Lassez in 1987 [6] and
is based on theCLP(FD) framework [4]. Constraints are defined on FD variables and
solved by means of arc-consistency (AC) techniques [12]. Arc consistency is not a com-
plete inference mechanism; it ensures only that all solutions (if any) are in the current
variable domains. In general, some variable assignments over the current domains are
not solutions. Therefore, a final solution generation and checking phase is needed. In
many cases, though, the domains produced by arc consistency are tight enough to speed
up significantly the computation of solutions.

6 Experimental Results

We experimented with a few variants of the constrained program illustrated in the exam-
ples. Of course, this can only be regarded as a preliminary evaluation. Still, the example
we choose is of significant interest. Programs similar to our running example have been
used in the USA Advisor project, related to NASA missions [1, 9], and for protocol
verification [3]. In both cases memory requirements happened to cause problems.

22 Baselice, Bonatti, and Gelfond

We did not insist much on the performance of the answer set solver, because there
exists a rich body of literature on experimental evaluations and benchmarking of SMOD-
ELS. We focused on the performance of the constraint solver as

∧
c∈C ¬con(c) and the

number of disjunctions occurring in it grow.
The tests have been run on a Pentium(R) M processor 1.5GHz, with 1Mb cache and

512Mb core memory.

Fig. 1. SMODELS program

Regular part :

step(0..1).

action(1..2).

1{o(A, S) : action(A)}1 D step(S).

Costrained part :

time(0..600000).

1{time(S, T) : time(T)}1 D step(S).

D o(A1, S1), time(S1, T1), o(A2, S2), time(S2, T2), abs(T1 − T2) < 3, neq(S1, S2),

time(T1), time(T2), step(S1), step(S2), action(A1), action(A2).

D time(S1, T1), time(S2, T2), S1 < S2, T1 >= T2, time(T1), time(T2), step(S1), step(S2).

D time(S, T1), time(S, T2), neq(T1, T2), time(T1), time(T2), step(S).

Recall that the example has two regular sorts,actionandstep, and one constrained
sort time. We started by encoding the planning and scheduling problem as the SMOD-
ELS program with weight constraints [10, 11] in Figure 1. In particular, the implicit
semantics of mixed predicates has been encoded with the weight constraint

1{time(S, T) : time(T)}1 D step(S) . (4)

This constraint says that for all stepsS there exists exactly one time pointT satisfying
time(S,T).

Sort time is the interval of integers[0 − 600000]. These values are determined by
the following requirement: scheduling should cover plans at least one week long with
the granularity of seconds.

With 2 actions and 2 steps, the front-end of SMODELS (lparse), responsible of the
ground instantiation of the program and its simplification, did not terminate within 95
minutes and was killed (the main reasoning process was never reached). On the same
program (without weight constraints, which are implicit in the strong semantics) CASP
solves up to 10 steps in about 30 seconds. If the time domain is increased to 6 mil-
lion points, thenlparsecrashes (probably because of exceeding memory needs), while
CASP solves up to 10 steps in less than 2 minutes.

Integrating of Answer Set and Constraint Solving 23

The details of the experiment with 6 million time points are given in Figure 2.
Columnsteprepresents the corresponding regular sort, the fieldsatoms, var, conj, and
disj, respectively, show the number of atoms, variables, conjunctions and disjunctions
of the formula

∧
c∈C ¬con(c) fed to the constraint solver. Fieldattemptsis related to

the number of backtracks; it counts the number of stable models of the regular part fed
into the Prolog module before the first strong kernel is found. Finally, columnSmodels
reports the time needed by Smodels to compute the stable models of the regular part,
and columntimeshows the overall time needed to produce the first strong kernel.

Fig. 2. test-1 results

The results with600,000 time points are reported in Figure 3. In this experiment
constraints are trivial. Basically, they only assign a minimal length to each action exe-
cution, so they are always satisfiable, for all action sequences chosen by the answer set
solver, and without any backtracking.

Now, if we make constraints more difficult by posing upper bounds on the entire
plan execution (so that constraints cannot be trivially satisfied and some backtracking
is needed), we obtain the results illustrated in Figure 4. The time needed for constraint
solving significantly increases. In future work, it will be interesting to explore different
constraint solution strategies on a wider selection of examples.

7 Conclusions

Preliminary experimental results show that the integration of answer set programming
and constraint solving techniques may significantly enhance the applicability range
of ASP. A simple planning and scheduling problem can be naturally formulated and
solved, while one of the most powerful state-of-the-art answer set solvers cannot even
reach the main reasoning phase. Our method shares with constraint logic programming
frameworks the ability of returning answers that may be compact representations of

24 Baselice, Bonatti, and Gelfond

Fig. 3. test-2 results

Fig. 4. test-3 results

Integrating of Answer Set and Constraint Solving 25

exponentially many distinct problem solutions, each of which can be easily extracted
from the answer.

This work can be extended along several directions. First of all we are looking for
more classes of examples of practical interest to extend our experimentation.

A second line of research concerns the interplay of the two solvers. A tighter integra-
tion of answer set generation and constraint solving may anticipate inconsistency detec-
tion, thereby improving failure handling. It would be interesting to explore dependency-
directed forms of backtracking. Such a refined system should be compared through
benchmarking to planners and schedulers based on different logics and reasoning meth-
ods (for a collection of pointers to such approaches, seehttp://www.aaai.org/
AITopics/html/planning.html).

We mentioned that constrained programs are basically a subclass of weight con-
straint programs. It may be possible to extend the class of weight constraints supported
by our approach, e.g., by using different bounds (e.g., mixing weak and strong se-
mantics), and by dropping the requirement that for all freem-atomsA and all vector
of r-constantsa, answer sets must contain at least one instance ofA(a, xc). Many of
our results can be adapted under the assumption that for all distinct weight constraints
l1{A1}u1 andl2{A2}u2 in a program,A1 andA2 are not unifiable.

Moreover, it would be nice to support negative mixed literals. Unfortunately, our
approach cannot be easily adapted; the solutions we have explored so far require blind
grounding over constrained domains, which is exactly what should be avoided.

Acknowledgments Work partially supported by the EU working group WASP (5FP),
IST-2001-37004 and ARDA contract.

References

1. M. Balduccini, M. Gelfond, R. Watson, and M. Nogueira. The USA-Advisor: A case study in
answer set planning. InLogic Programming and Nonmonotonic Reasoning, 6th International
Conference, LPNMR 2001, volume 2173 ofLecture Notes in Computer Science, pages 439–
442. Springer, 2001.

2. S. Baselice. Integrazione di tecniche di Answer Set Programming e Constraint Solving. Tesi
di laurea, Universit̀a degli studi di Napoli Federico II, Naples, Italy, October 2004.

3. L. Carlucci Aiello and F. Massacci. Verifying security protocols as planning in logic pro-
gramming.ACM Trans. Comput. Logic, 2(4):542–580, 2001.

4. P. Codognet and D. Diaz. Compiling constraints in clp(FD).Journal of Logic Programming,
27(3):185–226, 1996.

5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. InProc.
of the 5th ICLP, pages 1070–1080. MIT Press, 1988.

6. J. Jaffar and M. J. Maher. Constraint logic programming: A survey.Journal of Logic Pro-
gramming, 19/20:503–582, May/July 1994.

7. V. Lifschitz and H. Turner. Splitting a Logic Program. InProceedings of the 12th In-
ternational Conference on Logic Programming, Kanagawa 1995, MIT Press Series Logic
Program, pages 581–595. MIT Press, 1995.

8. I. Niemel̈a and P. Simons. Smodels — an implementation of the stable model and well-
founded semantics for normal lp. InLogic Programming and Nonmonotonic Reasoning, 4th

26 Baselice, Bonatti, and Gelfond

International Conference, LPNMR’97, Proceedings, volume 1265 ofLNCS, pages 421–430.
Springer, 1997.

9. M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog decision
support system for the Space Shuttle. InPractical Aspects of Declarative Languages, Third
International Symposium, PADL 2001, volume 1990 ofLecture Notes in Computer Science,
pages 169–183. Springer, 2001.

10. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model se-
mantics.Artif. Intell., 138(1-2):181–234, 2002.

11. T. Syrj̈anen. Cardinality constraint programs. InJELIA, pages 187–199, 2004.
12. C. Teng, P. Van Hentenryck, and Y. Deville. A generic arc-consistency algorithm and its

specializations, June 11 1992.

