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Abstract. This paper discusses the background, algorithms and implementation
techniques to support programmers in ‘debugging’ logic programs under the an-
swer set semantics. We first investigate what constitutes an error in such programs
and which classes of errors exist. This is used to motivate techniques and algo-
rithms that respectively eliminate certain classes of errors and explain how an
error occurred and why it occurred. Finally, details of the IDEAS (Interactive De-
velopment and Evaluation tool for Answer Set Semantics) system are given, a
prototype version of which implements all of the techniques described.

1 Introduction

Answer set programming (ASP) is a modern logic programming system, designed for
semantic clarity, efficient implementation and ease of use for knowledge representa-
tion and declarative problem solving. It utilises the answer set semantics[1] defined on
normal logic programs (also referred to asAnsProlog∗[3]). Many of the fundamental
theoretical questions have already been addressed, the semantics of the language are
well defined, the properties of key classes of program are known, algorithms for com-
puting the semantics of programs have been developed as well as a number of robust
implementations. Preliminary results[11, 13] suggest that ASP is already as efficient as
many comparable systems. However, ASP has yet to find widespread use in many ‘real
world’ applications (although there exist a few[5, 14, 15]). These are vital, not only for
the long term future of ASP, but also because they help inform and motivate further
theoretical research. ASP is still a very new technology, a lack of teaching material
and a lack of awareness within the wider community explain some of the problem but
perhaps most critically, large ASP programs are difficult to write. This is a combina-
tion of many factors, but even with reasonably well understood ‘modules’ for encoding
some basic concepts[3, 9], no best practise, methodology or standard techniques ex-
ist for addressing the over all problem. Critically, no real programmer support tools
are available. Programmers using a traditional procedural language such as C have an
extensive toolkit of applications to help them develop programs and then find errors
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in them. Graphical integrated development environments, interactive execution shells
(commonly called debuggers), library and system call tracing tools and memory profil-
ers are but a few examples. For ASP, excluding solvers (the tools that generate answer
sets from a set of rules (program)), there exist a few ‘front ends’[7] but no real analysis
tools.

This paper discusses what it means for an answer set program (only ground normal
logic programs,AnsDatalog⊥ are handled, although the results can easily be gener-
alised) to be incorrect and a number of techniques to minimise the number of errors
and locate the remaining ones. Critically, these do not depend on any property of the
program being debugged. It also discusses a prototype implementation of these tech-
niques in the tool IDEAS[4] (Interactive Development and Evaluation tool for Answer
set Semantics).

2 Classification of Errors

The primary question in the design of any debugging or interactive fault finding system
is what constitutes an error. The academic fields of software engineering and human
computer interaction are awash with classification schemes for errors. Different ap-
proaches categorise errors by what causes them to occur, what allows them to occur,
what they effect and how they do so. This variety of approaches is not just restricted to
the analysis of ‘systems’, it can be found in classification systems of programming er-
rors. Security implications of incorrect programs are categorised by effect (information
leakage, escalation of privileges, denial of service, etc.) while memory use analysers
classify errors by causes (uninitialised memory, unallocated memory, etc.). Here we
shall use a standard[2] classification of errors in a programming language by what level
of the formal specification of the language they appear in.

– Lexical :- errors that occur when a part of the statement in the given language is
not a valid word. For example in the English language, “The cat is fghjk.” contains
a lexical error as the fourth word is not a valid English word. In the case of pro-
gramming languages these can be found by the lexical analysis (or tokeniser) phase
of the language compiler / interpreter.

– Syntactic :- the words in the statement are valid but they do not form a valid sen-
tences. For example “The the is cat mat on.” is made of valid words but not in a
correct order. Again these errors can be found automatically in programming lan-
guages by the compiler.

– Semantic :- the statement is well constructed but does not have a valid meaning.
For example “The cat is gaseous” is syntactically valid but does not mean anything.
Depending on both the language and the error it may be possible to detect these at
compile time or only at run time (if at all).

– Conceptual :- the statement is technically correct but not what the user wanted.
For example “The dog is brown.” is valid English but does not say anything useful
about the cat. These are traditionally the hardest type of bugs to find. Software en-
gineering is, in part an attempt to stop this sort of errors by introducing procedures,
such as verification against a specification.
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In the case of answer set programming, the content of these categories is somewhat
different to procedural languages. Object constants, literals and variables are introduced
as they are needed, thus there are comparatively few types of lexical error possible.
Also, the syntax of the language is very simple so the scope for syntactic errors is also
small. Both of these class of error can be found automatically and thus are not of inter-
est. The semantics ofAnsDatalog⊥ are defined for all syntactically valid programs so
in theoretical terms there are no semantic errors. Given that some researchers[3] view
logic programs as specifications, or equivalent to them, this categorisation is not entirely
surprising. This means new divisions are needed to provide a meaningful classification
of errors in answer set programs and that all debugging techniques for answer set pro-
grams are subject to the same problems and vagaries as any attempts at the automatic
location of logical errors.

The classification of errors in answer set programs is further complicated as there is
no clear indication of what is a ‘faulty’ program. Where as a procedural program that
fail to compile, crash with segmentation faults or throws an exception can be reasonably
assumed to be faulty in some way, there is no general, automated way of telling, just by
examining the answer sets produced, whether an answer set program is behaving incor-
rectly or not. Looking for programs that produce only contradictions is not satisfactory
as this will not catch many more subtle bugs. A number of systems exist that analyse
and ‘repair’ inconsistent programs[16, 17]; although powerful, it is felt that they do not
solve the complete problem of debugging.

The impact of this is two fold: firstly, it means that an effect-based classification
system of errors is not a viable option and additionally, it is reasonable to assume that
the user has some idea of what they wanted, and how that is different from what they
have. If they did not they would not be using a debugging tool as they would not realise
there was anything wrong with their program1.

The proposed classification is to divide errors into rule level and program level er-
rors.Rule levelerrors are errors in the answer sets of a program that are caused by a
single incorrect rule. For example, accidentally omitting the head of an rule and turning
it into a constraint or misspelling the name of a literal in the body.Program levelerrors
are errors caused by the interaction of multiple ‘correct’2 rules. For example, a set of
rules that specifies an exclusive choice between a number of alternatives might not re-
quire that one is picked at all, while the programmer intended this to be the case. Clearly
this is a loose and fluid distinction and is intended to be used for intuitive description of
the errors that a technique intends to solve rather than a hard classification.

In summary, debugging answer set programs is more a task of supporting a pro-
grammer in investigating why a program does not behave as expected, rather than a
series of static tests that can be performed. It is also a non-exact process, as it is subject
to the potential differences between what the programmer wrote, what the programmer
meant to write and what the programmer actually meant.

1 This raises some interesting questions about how answer set programs should be used in the
wider context of problem solving.

2 Obviously these rules are not correct in the strict sense, this more a reference to rules that are
expressed as originally intended.
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3 Language Modifications

By altering the language syntax of answer set tools slightly it is possible to eliminate
the possibility of making certain types of lexical and syntactic rule level errors. These,
however do not completely eliminate conceptual errors at the rule level, a user can still
write a ← b. when they meanta ← b, not c. and there is really no way of finding this
automatically.

– Introduce a notation, (<> is suggested) for the symbol⊥ and mandate its use. If
rules with⊥ in the head are notated without a head then any rule in which the pro-
grammer has neglected to fill in a head atom will become a constraint. For example,
there is no way of telling automatically if:- a, b. is notation for⊥ ← a, b. or
c ← a, b. without the head. With an explicit⊥ notation these errors by omission
can be found automatically.

– Introduce a notation for declaring the existence of a literal symbol and create a
syntax error if a literal has been used before it has been defined. This will catch
misspellings and typos in the names of predicates, implementations may also wish
to use technology for spelling checking algorithms to suggest replacement predi-
cates in an interactive context. lparse[12] has an option (-w similar) that flags any
predicates or variables with similar names that is a step towards this functionality.

– Introduce notation for declaring sets of object constants and require that when lit-
erals are declared, the range of each term is specified. As well as making programs
clearer this information can be checked by the grounder to ensure that no unin-
tended ground naf-literals can occur. This would also form the basis of a type sys-
tem which could be used for further static analysis.

– Warning or flagging an error when a predicate is used with different arities will
catch some errors. From a theoretical view, these are not errors, however one of the
conventions of usage of ASP is that a predicate name should only be used once and
have a fixed arity. lparse already implements this feature.

4 Algorithm Based Debugging

The naive approach to creating tools that catch program level errors is to adapt the
concepts used in Prolog and procedural interactive debugging tools (such as the GNU
Debugger (GDB)[8]) to work with the existing solver algorithms. By adding explicit
points of control into the algorithm (for example, between the expand and branch steps
of the algorithm, or after each step of the inference function) the user can be given
control of how many and what type of steps can be taken, in much the same way that
trace andspy are used in Prolog. Commands to these systems would be broken into
two categories, control commands that would allow the computation to continue until
a specified point was reached or condition occurred and display commands that would
allow the user to query the status of atoms and rules within the current context. The
noMoRe system[6] implements this functionality, although with a less conventional
interface.
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This approach is simple to implement, additions of small amounts of control code
can add this functionality to any implementation of an answer set computation algo-
rithm. It provides a conceptual similar interface for programmers who are familiar with
Prolog or traditional procedural debugging tools. Beyond debugging, this approach pro-
vides the only realistic approach to assessing the efficiency of encoding a problem with
particular constructs. Without this sort of technique working out why one program takes
longer to compute the solutions to a problem than another is very difficult. If the heuris-
tics of the solver are configurable, this could be used to tune the solver to a particular
program. Thus this type of application has scope beyond debugging and provides a
useful tools.

However, as simply a debugging tool it has a number of drawbacks. Firstly, it in-
creases the cognitive load on the programmer considerably, as it is very difficult in the
general case to work out what information the programmer is not interested in when
using this technique. Blocks of rules and atoms could be marked as ‘not of interest’,
but this requires intervention from the programmer and introduces the possibility of
undershooting (adding time to the debugging process) or overshooting (rendering the
results useless). Even if the marking of blocks (similar to the choice of what predicates
to spy upon) is correct, this will take time. Once the computation process is running
it is difficult to ‘go backwards’ without storing large amounts of state within the appli-
cation, which in turn impacts the efficiency of the solver. The implementation is solver
specific and more importantly requires the user to understand the solver algorithm. At
the current state of development this is not an unreasonable assumption however with
increasingly sophisticated solver algorithms and as ASP reaches a wider, non specialist
audience, this becomes increasingly less tenable. Finally, this approach makes little use
of the dependencies between literals, information that is very easily extracted from ASP
programs and very little use of the formal semantics. It prioritises the computation algo-
rithm over the semantics - ASP becomes a configuration for a search algorithm rather
than a formal, logical language. In essence this approach answers the question ‘how
did this error occur?’ rather than the (related) question the programmer actually wants
answering; ’why did this error occur?’.

5 Query based debugging

This section presents two techniques for answering simple questions about the answer
sets of a program and describes how to use these to build a debugging system based
around explaining why particular behaviour has occurred.

Given that the programmer has computed the answer sets of the program and found
a discrepancy between what they expected and what they received, there are a num-
ber of possible scenarios. Each answer set may contain additional, unexpected atoms
or may not contain expected atoms. Alternatively, there may be one or more answer
sets missing or combinations of atoms not present in any answer set. The first set of
questions are restricted to one answer set and can be answered by asking “Why is set
S contained in answer setA” where bothA andS are sets containing both positive and
negative literals (i.e. for every literall in the Herbrand Base eitherl ∈ A or not l ∈ S).
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The second scenario asks questions about the whole computation process and can be
resolved with the question “Why is set S not contained in any answer set”.

In the examples and pseudo code given, output (the explanations) is given as text.
This is clearly only one option, a graphical system of some sort may prove more intu-
itive and more efficient to use. There are a large number of options from diagrams using
showing the relations between the text to entirely graph based approaches to animated
illustration of the input program.

5.1 Why is SetS Contained in Answer SetA?

The most obvious question a programmer is likely to ask when faced with an unex-
pected result3 is “Why is atoma in the answer set?”. The answer is remarkably simple
and (crucially) recursive.a is in an answer set if there is a rule that supports it,not a is
in an answer set (equivalentlya is not in an answer set) if there are no rules to support
it. Given the bodies of the rules that support (or fail to support) a given atom are sets
of literals, the question may be asked recursively, tracing back the justification of an
atom back to facts and unsupported atoms. If the recursion is automated in any fashion,
care must be taken to avoid creating chains of explanations with circular justifications.
Clearly providing a ‘because ... ’ answer to this type of question will naturally lead to
the programmer responding “but what if setT was in the answer set”, which can be
resolved using the second algorithm.

/* Global Variables */
P // The program
A // An answer set of P

/* Arguments */
S // A non empty set of positive and negative literals contained in A

/* Local Variables */
justified // A variable used to check if a particular conclusion has been

// justified

/* Functions */
subset(A,B) // Returns true if A is a subset of B
contains(atom,set) // Returns true if atom is in set
support(atom,program) // Returns the set of rules in the program that have

// atom as their head
applied(rule,answerset)// Returns true if rule is applied with respect to

// answerset

/* Start of query algorithm */

/* For every element of S */
for s in S {

/* Need to look at the rules that support s */
R = support(s,P);

if (s.positive == true) {
/* If it is positive */
print(‘‘s is in A as’’);

/* Find which of the supporting rules is applied */
justified = false;

3 This technique also allows unexpected but correct results to be explained.
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for r in R {
if (applied(r,A) == true) {

print(‘‘r is applied with respect to it’’);
justified = true;

}
}

/* If no justification has been found there is an inconsistancy */
if (justified == false) {

print(‘‘error - s is unsupported’’);
}

} else {
/* If it is negative */
print(‘‘s is not in A as’’);

/* Work throught the supporting rules and say *
* why they are not supported */

if (R.size == 0) {
print(‘‘there are no rules supporting s’’);
continue;

}

for r in R {
print(‘‘r supports s but’’);
justified = false;

/* See which body literals are not supported */
for b in R.body {

if ((b.positive == true) && (contians(b,A) == false)) {
print(‘‘b is not in the answer set’’);
justified = true;

} else if ((b.positive == false) && (contians(b,A) == true)) {
print(‘‘b is in the answer set’’);
justified = true;

}
}

if (justified == false) {
print(‘‘error - A incomplete’’);

}

}
}

}
/* End of query algorithm */

For example given the program:

a← b.
c← not d, a.
d← not c, a.

b.

asking4 “Why is {a,not d} contained in answer set{a, b, c}?” will produce the follow-
ing:

a is in {a, b, c} asa ← b. is applied with respect to it.d is not in{a, b, c} as
only d← not c, a. supportsd but c is not in the answer set.

4 The user is assumed to have requested the computation of the answer sets of the program
before asking this.
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5.2 Why is SetS not Contained in any Answer Set?

The corresponding question is somewhat harder to answer as there are a number of pos-
sible ways in which a given set of atoms might not occur in an answer set. They could
lead to a contradiction, not be supported or require mutually inconsistent conditions
to be supported. This algorithm essential extends the set one step in ‘both directions’,
adding in the immediate consequences as well as the literals required to support the set.
It produces a set of possible situations, each of which is a superset ofS representing
one of the possible scenarios in which everything inS is consistently supported. The
process can then be repeated with each of the scenarios until no possible scenarios are
output.

One further complication is the need to build a directed acyclic graph representing
how the literals in the set support each other. Without this it is difficult to deal with pro-
grams that contain positive justification loops (i.e.a← b.b← a.). When the algorithm
is first used this set will be empty. There is one node in the graph for every literal in the
Herbrand Base as well as nodes for> and⊥ and links are either positive or negative.
Adding a rule to the graph attempts to creates links from each element of the body to
the head, it fails if this would introduce a loop or requires adding a negative link from a
node that already has positive links to others (or vice versa).

/* Global Variables */
P // The program
Ans // The set of answer sets of P

/* Arguments */
S // A non empty set of positive and negative literals
G // A directed, acyclic graph with nodes for each literals

/* Local Variables */
Imp // If S was in an answer set then so would everything in Imp
Sit // A set of sets, each is a possible supporting situation
oldSit // Used as a temporary variable
tmp // A temporary set of literals

/* Functions */
subset(A,B) // Returns true if A is a subset of B
contains(atom,set) // Returns true if atom is in set
support(atom,program) // Returns the set of rules in the program

// that have atom as their head
applied(rule,answerset) // Returns true if rule is applied with respect to

// answerset
inconsistent(set) // Returns true if set contains an atom and it’s negation
supported(graph) // Returns all of the atoms supported in the graph
unsupported(graph) // Returns all of the atoms unsupported in the graph

/* Start of query algorithm */

/* Check that S is not inconsistent */
for s in S {

if ((s.positive == true) && contains(-s,S)) {
print(‘‘S is inconsistent’’);
return;

}
}

/* Check that it is not in any answer sets */
for A in Ans {

if (subset(S,A) == true) {
print(‘‘S is a subset of A’’);
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return;
}

}

/* Check that S does not directly imply a contradiction */
tmp = S U supported(G)
for r in P {

if (subset(r.body,tmp) == true) {
if (r.type == CONSTRAINT) {

print(‘‘S is not in any answer set as r is
applicable with respect to S’’);

return;
} else {

if (addRule(r,G) == false) {
print(‘‘S is not in any answer set as r is applicable but

causes a contradiction.’’);
return;

}
}

}
}

/* Check there are consistant ways of supporting atoms in S */
Sit.add((emptyset,G));
for s in S {

if (s.positive == true) {

/* Find which rules support s */
R = support(s,P);

if (R.size == 0) {
print(‘‘S is not in an answer set as s is unsupported.’’);
return;

}
oldSit = Sit;
Sit = emptySet;

/* For every rule that can support s */
for r in R {

/* And every situation */
for Z in oldSit {

/* Create a new situation with r supporting s */
if (inconsistent(Z.S U supported(Z.G) U r.body) == false) {

addRule(r,Z.G);
Sit.add((Z.S U unsupported(Z.G),Z.G));

}
}

}

} else {
/* If s is negated in S */
/* Find which rules support s */
R = support(s,P);

if (R.size == 0) {
continue;

}

/* Extend each situation so that not rule supporting s is applicable */
for r in R {

oldSit = Sit;
Sit = emptySet;

for Z in oldSit {
tmp = r.body \ (Z.S U supported(Z.G));

if (tmp == emptyset) {
print(‘‘s is supported by r.’’);
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return;
} else {

for a in tmp {
Sit.add((Z.S U {a}, Z.G));

}
}

}
}

}

/* If there are no situations in which this atoms *
* is supported, S cannot be an answer set */

if (Sit == emptySet) {
print(‘‘No situations in which s is supported

that are consistant with the proceeding
atoms’’);

return;
}

}

if (Sit.size == 1) {
print(‘‘S is a partial evaluation, guessing random atom.’’);
oldSit = Sit;
Sit = emptyset;
Sit.add((oldSit[0].S U chooseAtom(), oldSit[0].G));
Sit.add((oldSit[0].S U -chooseAtom(), oldSit[0].G));

}

output Sit;
/* End of query algorithm */

Actual implementations may wish to display the set of possible situations (Sit ) after
each atom inS has been justified or annotate the atoms in each set inSit with how it is
derived and thus provide a list of which rules clash.

This algorithm can also be used to explain the behaviour of inconsistent programs
by starting with S as a set of literals each supported by a fact and querying the resulting
set until a contradiction is reached.

5.3 Using these Algorithms

Clearly the answers given by by these algorithms allow the questions to be asked recur-
sively. To use these algorithms effectively, the system designer must allow the program-
mer to control this recursion directly. When justifying why a set of atoms appears in an
answer set, only some of the responses will be of interest and there is no automatic way
of knowing which without requiring more information from the programmer.

There are a number of possible ways of controlling the recursion. The simplest
approach is to implement the algorithms as they are presented and let the programmer
handle the recursion at a command level. Any system that has a graphical interface to
these algorithms way also provide support for recursive queries (displaying the results
in an expanding tree in a similar fashion to graphical file managers is one option).
Allowing the programmer to specify a ‘recursion depth’ or a set of atoms which they
are confident belong to the answer set (and thus the recursion stops when it reaches one)
are other options.
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6 Implementation

The techniques outlined in this paper have been implemented in the latest development
version of IDEAS (Interactive Development & Evaluation tool for Answer Set pro-
grams), an interactive command line based tool for developing and analysing answer
set programs. It is licensed under the GNU General Public License (GPL)[10].

7 Conclusions and Future Research

This paper presents techniques and algorithms that provide the first comprehensive de-
bugging support for answer set programs. These can locate many simple errors and
support the programmer in working out why a program displays erroneous behaviour.
Without more extensive studies into how programmers use ASP, there are further ques-
tions to be answered.

However, there are numerous related questions which remain unanswered. Firstly,
there is the issue of how to implement these techniques in a programmer friendly, effi-
cient and elegant manner. Extending the algorithms to handle frequently used structures
such as sets and lists in an intuitive fashion would be very useful, especially if it could
be integrated with ‘front end’ tools that generate them. There are also a number of
questions that overlap into the areas of software engineering and human computer in-
teraction, how do programmers use ASP tools, how do they work from a description of
a problem to a logical model of it and what tools are needed to support this, such as
how should large amounts of logically structured information be presented to the user
and how can formally based technologies such as ASP be made ‘more accessible’ to
non experts.
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