Specification of Assessment-test Criteria through ASP
Specifications

Giovambattista Ianni, Claudio Panetta, and Francesco Ricca

Departments of Mathematics, Universita della Calabria

Abstract. The EXAM system is a complete on-line exam taking portal. Teachers
and students are assisted in the whole process of assessment test building, exam
taking, and test correction. One of the most interesting features of the portal is
the possibility to automatically generate assessment tests based on user defined
constraints. A teacher is made able to build up an assessment test template using
a simple web-based interface, and then her preferences are translated into a logic
executable specification. In this paper, we describe the assessment test generation
engine of the EXAM portal, then we look at the internal and formal specification
of the problem. A brief system overview is given and, eventually, we discuss
about related works."

1 Introduction

Online exam taking systems have recently seen a big proliferation on the web [6]. Such
systems (see e.g. [7,9,13,16,20-23]) meet the needs of both industries and teaching
institutions to assess the learning level of, respectively, employees and students. Al-
though this aspect of the e-learning field proves to be of great interest for the market,
several related issues deserve more in-depth study. Explicit or implicit assessment of
the learner plays a very important role when the learner profile has to be determined
and when a specific user learning programme has to be (semi) automatically generated
[3], [19], [14]. The above cited commercial systems allow to author a full assessment
test through manual selection of single questions from a given database. This task turns
out to be very annoying, especially if the (usually huge) given question database cannot
be searched in a structured way.

Furthermore, when assessment tests are taken in classrooms, it is often necessary to
propose a different test to each learner, keeping anyway the same difficulty level. This
avoids mutual collaboration between students. For instance, the Gradiance system [20]
allows to generate set of tests containing slight variations (e.g. in the order of possible
answers for each question).

Answer Set Programming is a good candidate technology for approaching the above
mentioned issues. The adoption of an ASP solver engine may allow to quickly specify
in a formal way the combinatorial problem underlying the system; also, the obtained

! This work has been partially funded by the EU research projects IST-2002-33570 (INFOMIX),
and IST-2001-37004 (WASP), and by FWF (Austrian Science Funds) under the project ”An-
swer Set Programming for the Semantic Web” (P17212-N04).

294 Giovambattista Ianni, Claudio Panetta, and Francesco Ricca

specifications are easy to be configured and managed, whereas computation times of
current solvers can be kept reasonable.

Indeed, in recent years, the answer set programming (ASP) paradigm has emerged
as an important tool for declarative knowledge representation and reasoning. This ap-
proach is rooted in semantic notions and is based on methods to compute logical mod-
els.

One of the main reasons for the increasing popularity of both the answer set se-
mantics as well as the stable model semantics is in large part due to the availability of
sophisticated solvers for these languages. On the one hand, the system DLV [17] is a
state-of-the-art implementation for the answer set semantics, and, on the other hand, the
Smodels system [18] implements the stable model semantics.

Furthermore, in view of its inherent expressibility, the answer set semantics is a
suitable tool to serve as a host language for capturing specialized advanced reason-
ing tasks. Consequently, in accordance to the general methodology of the answer set
programming paradigm, ASP solvers can be used as underlying reasoning engines for
evaluating such dedicated tasks. Different such tasks have been implemented, e.g., on
top of the DLV system. In particular, DLV provides front-ends for planning [11] and
diagnostic reasoning [10], as well as computing the semantics of updates of nonmono-
tonic knowledge bases represented as logic programs [12], or the semantics of inheri-
tance programs [4]. Furthermore, the plp front-end [8] to DLV allows the computation
of different preference approaches under the answer set semantics, and extensions of
the core DLV syntax allow the natural formalization of optimization problems, in terms
of the so-called weak constraints [5]. A similar flexibility and applicability applies to
the Smodels system as well, which can also be used as a C++-library called from user
programs, or as a stand-alone program together with suitable front-ends. The increasing
interest in ASP is also documented by the recent establishment of the Working Group
on Answer Set Programming (WASP) which is supported by the European Commission
(IST-2001-37004).

Also, the DLV system has already been exploited in [1], where we proposed a sys-
tem capable of building, in a semi-automatic way, personalized learning paths.

In this paper we introduce a more sophisticated approach in order to address the task
of building an assessment test. The user of the EXAM portal is made able to generate
groups of assessment tests through the design of a test template. An automatic genera-
tion engine is then run; such an engine computes and outputs tests compliant with the
input template. This job is performed extracting suitable items from a given question
database.

In order to achieve this goal, the internal system features several, significant charac-
teristics: first of all, each question put in the system database is annotated with seman-
tic information extending the IMS-QTTI specification for question items [15]. Second,
teacher desiderata can be specified through a visual interface and then converted in
a formal specification. Such formal, logic, specification is executable through the DLV
system [17]. The output of such an execution is a set of candidate assessment tests, built
through the extraction of items from the question database. The generated assessments
are IMS-QTI standard and fully interchangeable.

Specification of Assessment-test Criteria through ASP Specifications 295

ITEM
DATABASE

COURSE ITEM ASSESSMENT EXAM
HANDLING :> AUTHORING :> AUTHORING :> TAKING
“ ﬁ
A
USER - .| RESPONSE
DATABASE | PROCESSING

Fig. 1. EXAM Architecture.

ASSESSMENT
DATABASE

Y

The structure of the paper is as follows: we give a system overview in the next
section; then in Section 3 it is discussed the relationship between the EXAM system
and the IMS-QTI standard; Section 4 discusses about the internal implementation of the
Assessment Generation engine, whereas Section 5 describes the Assessment Authoring
interface. Eventually we briefly discuss about related work in Section 6 and we draw
conclusions in Section 7.

2 System Overview

The EXAM portal is a system conceived in order to ease the student assessment proce-
dure, in all the steps of the corresponding life-cycle, such as question and test editing,
exam taking, and outcome evaluation. EXAM adopts the IMS-QTTI [15] standard as
internal information storage format.

The overall architecture of EXAM is shown in Figure 1. The system is constituted
of five different modules:

Course Handling Module;

Item Authoring Module;

- Assessment Authoring Module;
Exam Taking Module;

- Response Processing Module;

The Course Handling Module makes automatic the practical organization of an as-
sessment session. It allows to create a new course, to indict a new assessment session
for a given course, and to manage student booking and grouping;

The module is conceived for handling large amounts of students. Exams can be
taken either in classrooms or from the web; in the former case the system features
automatic test assignment, automatic grouping and session timetabling.

The Item Authoring Module make the teacher able to manage a question database
(a question is called “item” in the IMS-QTI specification). Items are built by using
a simple graphical interface. The interface supports the most common IMS-QTT item

296 Giovambattista Ianni, Claudio Panetta, and Francesco Ricca

types such as True/False, Multiple choice, Fill-in-Blank, Multiple Fill-in-Blank, Multi-
ple choice with Images, Standard with Text-Area, Order with images.

Moreover, the module implements a non standard kind of item named “Question
with File”. Teachers can embed inside this kind of item a generic file and the student
can upload her answer by using a generic file as well. The Item Authoring Module also
implements an item versioning system, allowing teachers to update/rearrange questions,
and a simple access policy conceived in order to share items among teachers.

The Assessment Authoring module is the EXAM core module. This module has a
graphical interface that allows a teacher to specify an assessment schema. An assess-
ment schema is an assessment specification (i.e. an assessment test template), contain-
ing constraints about the quality and quantity of items to be put in a candidate test.
Given an assessment schema, the Assessment Builder Module generates an executable
specification written in the DLV language [17]. The execution of such a specification
outputs a set of assessment tests fulfilling the user desiderata. A teacher can also build,
partially or entirely, assessment tests without taking advantage of the automatic assess-
ment building procedure. In this case the teacher manually selects items by herself.
Assessments built by the Assessment Authoring module are fully IMS-QTI compliant.
Moreover, the Assessment Authoring module implements a versioning system which
allows a teacher to update/rearrange previously defined assessment schemas.

The Exam Taking module allows to handle one or more assessment sessions. Teach-
ers can enable students or groups of students to start their assessment session and answer
questions.

A set of policy restrictions can be customized in order to prevent unauthorized ac-
cess and establish the author identity: (IP filtering) A student can start an assessment
session only if its machine is registered in the system; (IP binding) After starting an
assessment session a student cannot change its machine without teacher consensus;
(Filtering) Teachers can enable/disable student connection to the system.

The last module (the Response Processing module), allows to evaluate and to statis-
tically analyze “students responses”. The Response Processing module performs, when-
ever it is possible, an automatic scoring of student answers and it allows, through the
user interface, to check and assign manually the remaining students scores. The sys-
tem can automatically process almost every standard kind of item. For instance Stan-
dard True-False or Multiple-Choice items are scored without human intervention, but
Fill-in-Blank or “With file” items need explicit teacher supervision. The Response Pro-
cessing module also helps the teacher to modify the overall scores, either individually or
globally, and to perform statistical analysis. Users (administrator, teachers and students)
connect to the system by only using a web-browser. No platform-specific software is
needed.

User requests are handled by a web application that manipulates relational data
through JDBC, whereas XML data are processed through DOM and XSLT. In partic-
ular, DOM is used to create and modify IMS-QTI objects and XSLT is used to obtain
a corresponding HTML graphic representation. The DLV system is called to perform
reasoning during the assessment generation stage. Data about users (User Database in
Figure 1) and assessment schemas are stored in standard relational database format.

Specification of Assessment-test Criteria through ASP Specifications 297

Data about assessments and questions (Item and Assessment Database in Figure
1) are stored in a hybrid way, combining XML files and relational database tables.
In particular, XML files (IMS-QTI compliant) representing items are stored as blob
attributes in relational database tables. Such tables also store some extra information
about items in relational database format in order to improve system efficiency. Data
about assessments is stored in a standard relational database format which can be easily
translated in XML format (IMS-QTI compliant). User files and extra information are
stored directly in the file system.

3 Exam and the IMS-QTI Specification

The Instructional Management System Question and Test Interoperability (IMS-QTI)
specification describes a basic structure for the representation of question (item) and
test (assessment) data and their corresponding results reports [15].

Moreover, the specification allows representation (and sharing) of this resources
inside (and between) Learning Management Systems, authors and libraries.

IMS adopted the XML language [24], the industry standard markup language used
to encode data models and store data, in order to promote the widest adoption of the the
QTI specification.

Like all IMS specifications, the IMS-QTT specification provide no specification for
user interfaces or pedagogical paradigms. This way the IMS-QTT specification can be
easily supported or integrated in commercial Learning Management System or simple
e-learning applications.

The technical structure of the IMS-QTI specification is based upon two components:

- The ASI components (describe evaluation objects: Assessment, Section, Item);
- The results reporting objects (contain the results to be reported for an evaluation).

The QTI ASI specification formally define and details in terms of their elements,
sub-elements and attributes the important concepts of Assessment, Section and Item.

The Item entity is defined in order to represent question types (e.g. multiple choice,
fill in the blank etc.). The Item is the smallest independent unit that can be exchanged
using IMS-QTTI. Consequently, an Item cannot be composed of other Items. An Assess-
ment is an instance of a test that can be assembled from blocks of Items, also defined
Sections. A Section can contain any combination of Sections and/or Items, and one or
more Sections can be contained within a QTI-XML instance. Sections are used to sup-
port grouping constructs defined by an educational paradigm and/or control the ways in
which different sequences of items may be constructed. The section is merely a group-
ing construct and what a section means in an assessment depends on the author inten-
tions. As previously pointed out, an assessment is composed of one or more Sections
which themselves are composed of Items, or of more Sections. Assessment, Section
and Item data objects are referred to as ASI (Assessment, Section, Item) structures.

The QTT ASI structures instances are stored by using XML documents. The QTI
ASI Information Model document describes the XML metadata that can be used to
catalog Items, Sections, and Assessments. A description of such metadata, rich of im-
plementation details, is outside the scope of this section and is omitted. The interested
reader can refer to [15].

298 Giovambattista Ianni, Claudio Panetta, and Francesco Ricca
4 Assessment automatic generation internals

Following the ASI model, an assessment schema is a template for an ASI structure. It is
constituted of a set of template sections (possibly nested) and template items. Template
sections (resp. template items) are associated to a set of constraints; each constraint
specifies some requirement an actual section (resp. item) should have in order to ful-
fill the schema prerequisites. Constraints may be either strong or weak. In order to be
accepted, an ASI instance must respect all the specified strong constraints. Weak con-
straints express only weak preferences and are satisfied only if possible. A quality order
is anyway established between ASI instances (assessments having a greater number of
satisfied weak constraints are preferred with respect to instances having more violated
weak constraints).

In particular, it is possible to select items in terms of: topic; type; minimum and
maximum duration; minimum and maximum difficulty level; version and author of the
item; age (date a question was last used in a different assessment by the same teacher).
Moreover, a template section can be constrained in terms of: overall minimum and
maximum time for completion of the section; overall minimum and maximum score of
the section.

As an example, imagine we want to design an assessment schema containing two
template sections A and B. The section A might contain two strong constraints pre-
scribing i) that A must contain five items; i) that the topic of each item in A must be
“Computer Science”;

In the second template section, we may specify a strong constraint about the number
of items (e.g. we might require at least three items to be put in B) and, about the topic
(e.g. we might need to have items about “Computer Networks” only). Furthermore, we
might introduce a weak constraint telling that the difficulty level of the items inside B
should be above 3 out of a maximum level of 5.

After the automatic generation engine is triggered the assessment schema at hand is
converted in an executable specification written in the DLV language.

4.1 Problem specification in ASP

In formal terms, the assessment building generation task is a combinatorial problem
that can be easily proven to be NP-hard. Roughly speaking, it is given an assessment
schema coupled with a database of questions and it is asked to find some assessment
matching the given assessment schema.

As previously pointed out, in order to specify the assessment building problem, we
used the DLV language, taking advantage of the ASP semantics enriched with weak
constraints and aggregate functions.

The database of questions has been modeled through the logic predicate

item(co,ar,ty,te,du, sc,ve),where co is the item code, ar is the topic of
the item, #y is its type, te the item question, du the item duration, sc the item score and
ve the item version.

The assessment schema is modeled by using a set of logic predicates. In particular,
let AS be an assessment schema, we assert:

Specification of Assessment-test Criteria through ASP Specifications 299

the fact section (as) to encode the assessment;
a fact section(s) for each section s in AS;

afact contains (i, j) for each couple of sections i and j s.t. i contains j in AS;
afact manuallySelectedItem(s, i) for each manually selected item i con-
tained in section s.

The search space is specified by the following rules:

inSection(S,I) v notinSection(S,I) :- section(S), S<>as,
item(I, , , , , ,), not manuallySelectedItem(S,I).

inSection(S,I) :- manuallySelectedItem(S,I).

A strong constraint selects solutions which contain the same item only once:
:— inSection(S1,I), inSection(S2,I), S1!=S2.

Section properties are encoded by using the following auxiliary predicates:

enclosedIn(S,I) :- inSection(S,I).

enclosedIn(S,I) :- inSection(S1l,I), containsClosure(S,S1).

containsClosure(S,S1l) :- contains(S,S1l).

containsClosure(S,S2) :- contains(S,S1l),
containsClosure(S1,S2).

where containsClosure(s, i) computes all the items directly and indirectly en-
closed in a given section.

Finally, for each different kind of section property, a suitable couple of constraints
(one weak and one strong) is specified. As an example, the encoding of a constraint on
the minimum number of items in a given section is reported below;

:—#count{I: enclosedIn(S,I)}<NumMin,
minNumberItemsSection(S,NumMin,strong).

: “#count{I: enclosedIn(S,I)}<NumMin,
minNumberItemsSection(S,NumMin,weak).

Notice that the specified constraints are the strong and the weak version of the same
property, and only one will be activated, depending on the user choice. Any other sec-
tion property can be encoded in a similar way.

It is worth pointing out that, although the formal specification of the program is
given in terms of a non-ground program, such a program is instance independent. The
grounded version of the program is polynomially larger only with respect to the origi-
nating program. Furthermore in the presence of a large question databases, usually only
a small portion of data is selected and taken into account.

300 Giovambattista Ianni, Claudio Panetta, and Francesco Ricca

00 me Docente

Hor
[« > J{ ¢ | [+] @ hup://exam:8080/gianni/logincor ntejsp O &(Q- Googl

71 ELENCO TELEFONICO Apple Mac Amazon eBay Yahoo! Notiziev Java Docsv Variev PDFv MASELv.

Home Docente =

SCHEMA: schema =0
&
Lt
SECTION: 1 3850
‘ITEM: i1 a8

| =
[SECTION: 12 5253

-l

Fig.2. The Assessment editing interface and the property editing page.

5 A web based interface to build assessments

We describe in this section the EXAM Assessment Authoring interface.

Assessment schemes can be built either manually or automatically by using a com-
mon interface.

Some screen-shots of the assessment schema editing tool are shown in Figure 2.
New sections and items can be added or removed to/from the schema, by operating on
the visual interface. Each section template has a property form, from which it is possible
to operate on the list of the available constraints.

This way the teacher can deal with the large number of options available, in order
to control the assessment creation process (see Figure 2).

It is important to note that the automatic generation process can be partially over-
ridden by choosing manually from the item database. This feature can be very useful if
a teacher definitely want to put a specific item in all generated assessments complying
with the schema.

Assessments created by using this interface are stored in the assessment data base
in order to be used by the exam taking module.

Once the assessment schema editing stage is complete, it is possible to activate the
automatic generation engine.

6 Related Works

At the moment of writing, there are several electronic assessment systems available on
the market, such as:

Knowledge Presenter (Deakin KM) [16], Exam Engine (Platte Canyon Multimedia
Corp) [7], Rapid Exam (XStream Software) [21], Testcraft (Ingenious Group) [22],
Lumenix ExamBuilder (ExamBuilder) [13], ForceTen EEDO Knowledgeware (EEDO)
[9], TRA (automatic e-Learning) [23] Gradiance (Gradiance Corporation)[20].

Specification of Assessment-test Criteria through ASP Specifications 301

All of them make the author able to edit new items (questions), to put them in a
repository; They support the author during the item selection phase by search tools and
classification tools; but no automatic assessment generation tool is supported.

In the literature there are examples of systems allowing a sort of automated assess-
ment generation by using a random selection and item shuffling features. This kind of
automatization allows to obtain several equivalent assessments producing a permutation
of the given set of questions. This effort allows to decrease the possibility of cheating
but does not offer support to the author during the assessment authoring phase. A bet-
ter support can be given to the assessment building phase by specialized tools that can
automatically build questions and assessments for a given (well supported) subject, like
Mathematics [2]. But this kind of specialization limit the use of this techniques in a
general context. Objective tests and quizzes are among the most widely used and well-
developed tools in higher education; for a most comprehensive survey (updated to 1999)
please refer to [3].

7 Conclusive Remarks

At the moment of writing, the EXAM system is undergoing a thorough extensive beta
testing by teachers and students of the Computer Science Curriculum at Universita della
Calabria. Experimental results will be published in an extended version of this paper.

References

1. F Ricca A. Garro, N. Leone. Logic-Based Agents for E-Learning. In Workshop on Knowl-
edge Representation and Automated Reasoning for E-Learning Systems, IJCAI 2003 (Eigh-
teenth International Joint Conference on Artificail Intelligence), Acapulco Mexico, pp. 36-
45,2003.

2. Franco Bagnoli, Fabio Franci, Francesco Mugelli, and Adrea Sterbini. WebTeach in Practice:
The Entrance Test to the Engineering Faculty in Florence. In Proceedings of the IASTED
International Conference WEB-BASED Education (WBE2004) February 16-18, Austria ,
pages 274-275. ACTA Press, 2004.

3. Peter Brusilovsky and Philip Miller. Web-based Testing for Distance Education. In Proceed-
ings of WebNet 99 - World Conference on the WWW and Internet, Honolulu, Hawaii, USA,
October 24-30, pages 149-155. in P. De Bra, John J. Leggett (Eds.), 1999.

4. Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunctive Logic Programs with
Inheritance. Journal of the Theory and Practice of Logic Programming, 2(3), May 2002.

5. Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing Disjunctive Datalog by
Constraints. I[EEE Transactions on Knowledge and Data Engineering, 12(5):845-860, 2000.

6. Training Web Conference. Atlanta usa, 2004.

7. Platte Canyon Multimedia Corp. Exam Engine. <URL:http://www.vbtrain.net/
examengine.aspx>.

8. Jim Delgrande, Torsten Schaub, and Hans Tompits. plp: A Generic Compiler for Ordered
Logic Programs. In Thomas Eiter, Wolfgang Faber, and Mirostaw Truszczyriski, editors,
Proceedings of the 6th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-01), number 2173 in LNCS, pages 411-415. Springer, 2001.

9. EEDO. Forceten. <URL:http://www.eedo.com/english/products/
forceten.html>.

302

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.
22.

23.
24.

Giovambattista Ianni, Claudio Panetta, and Francesco Ricca

Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The Diagnosis Frontend
of the d1v System. Al Communications — The European Journal on Artificial Intelligence,
12(1-2):99-111, 1999.

Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. System
Description: The DLV* Planning System. In Thomas Eiter, Wolfgang Faber, and Mirostaw
Truszezynski, editors, Logic Programming and Nonmonotonic Reasoning — 6th Interna-
tional Conference, LPNMR’01, Vienna, Austria, September 2001, Proceedings, number 2173
in Lecture Notes in AI (LNAI), pages 413—-416. Springer Verlag, September 2001.

Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. An Update Front-
End for Extended Logic Programs. In Thomas Eiter, Wolfgang Faber, and Mirostaw
Truszezynski, editors, Proceedings of the 6th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR-01), number 2173 in LNCS, pages 397-401.
Springer, 2001. System Description (abstract).

ExamBuilder. Exam Builder e-learning solutions for professionals. <URL:http://www.
exambuilder.com>.

William Fone. A Topology and Framework to Aid the Design of Automated Assessment.
In Proceedings of the The 3rd IEEE International Conference on Advanced Learning Tech-
nologies (ICALT-03), pages 274-275. IEEE Computer Society, 2003.

IMS. IMS Question and Test Interoperability v2.0 Public Draft. - IMS Global Learning
Consortium, inc., 2003. <URL:http://www.imsglobal.org/question/index.
cfm>.

Deakin KM. Knowledge presenter. <URL:http://www.deakinkm.com>.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Christoph
Koch, Cristinel Mateis, Simona Perri, and Francesco Scarcello. The DLV System for Knowl-
edge Representation and Reasoning. Technical Report INFSYS RR-1843-02-14, Institut fiir
Informationssysteme, Technische Universitit Wien, A-1040 Vienna, Austria, October 2002.
Ilkka Niemeld, Patrik Simons, and Tommi Syrjanen. Smodels: A System for Answer Set Pro-
gramming. In Chitta Baral and Mirostaw Truszczyriski, editors, Proceedings of the 8th In-
ternational Workshop on Non-Monotonic Reasoning (NMR’2000), Breckenridge, Colorado,
USA, April 2000.

Leonid Pesin. Knowledge Testing and Evaluation in the Integrated Web-Based Authoring
and Learning Environment. In Proceedings of the The 3rd IEEE International Conference
on Advanced Learning Technologies (ICALT-03), pages 268-269. IEEE Computer Society,
2003.

Gradiance Education-Support Services. The Gradiance system. <URL:http://
gradiance.com>.

XSTream Software. Rapid exam. <http://www.xstreamsoftware.com>.
TestCraft. TestCraft. - Testcraft Assessment Software. <URL:http://http://
testcraft.com>.

TRA. TRA E-Learning. <URL:http://www.tra.com>.

W3C. The xml markup language specification. <URL:http://www.w3.0orqg/XML>.

