
A Simple Query Interface for
Interoperable Learning Repositories

Bernd Simon*), David Massart±), Frans van Assche±), Stefaan Ternier+), Erik Duval+),
Stefan Brantner#), Daniel Olmedilla†), Zoltán Miklós*)

*) Vienna University of Economics and Business Administration, Austria, {bsimon, zmiklos}@wu-wien.ac.at

±) European Schoolnet, Belgium, {david.massart, frans.van.assche}@eun.org
+) Katholieke Universiteit Leuven, Belgium, {erik.duval, stefaan.ternier}@cs.kuleuven.ac.be

#) BearingPoint Infonova GmbH, Austria, stefan.brantner@bearingpoint.com
†) Learning Lab Lower Saxony (L3S), Germany, olmedilla@l3s.de

ABSTRACT
In order to achieve interoperability among learning repositories,
implementers require a common communication framework for
querying. This paper proposes a set of methods referred to as
Simple Query Interface (SQI) as a universal interoperability layer
for educational networks. The methods proposed can be used by a
source for configuring and submitting queries to a target system
and retrieving results from it. The SQI interface can be
implemented in a synchronous or an asynchronous manner. SQI
abstracts from query languages and metadata schemas. SQI has
been evaluated by several prototype implementations
demonstrating its universal applicability, and is on the way to
being standardized in the CEN/ISSS Learning Technologies
Workshop. The latest developments of SQI can be followed at
http://www.prolearn-project.org/lori/.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval - Search process, H3.7 [Information Storage and
Retrieval]: Digital Libraries - Systems issues, H.3.5 [Information
Storage and Retrieval]: Online Information Services - Web-based
services

General Terms
Management, Design, Standardization, Languages

Keywords
Interoperability, Application Program Interface, Learning
Repositories, Querying, Web Services

1. INTRODUCTION
The Web puts a huge number of learning resources within reach
of anyone with Internet access. However, many valuable
resources are difficult to find in an efficient manner, because
valuable resources are hidden in the closed and proprietary worlds
of learning (content) management systems, streaming media
servers and online collaboration tools.
Such systems are commonly referred to as learning object
repositories being part of an educational web. Learning object
repositories hold information on learning objects (i.e., metadata),
in order to describe educational artefacts such as courses, online

tutorials, lecture notes, electronic textbooks, tutoring sessions,
quizzes, etc.
In this paper we propose a common query interface as one part of
the solution for exploring the hidden educational web. The notion
‘hidden web’ refers to the web, which is hidden behind
proprietary search interfaces and authentication mechanisms [14].
This proprietary world of interfaces, leads to a lack of
interoperability. Interoperability can be defined as “the ability of
two or more systems or components to exchange information and
to use the information that has been exchanged” [9]. To a user,
the lack of interoperability, for example, means [16]:

 Applications and their data are isolated
 Redundant data entry is required.

In order to achieve interoperability on the educational web a
common semantic model is required. The semantic model – also
referred to as ‘ontology’ – should specify the properties of the
learning resources accessible within the repository [20]. Each
declaration of a learning resource property constitutes an
ontological commitment to use the defined term in interactions
with the repository.
 Additionally, interoperable learning object repositories are based
on common protocols, which define the interactions between
repositories.
To achieve interoperability, different kinds of protocols can be
used. The Learning Object Repository Interoperability
Framework presented in Figure 1 distinguishes between core
services and application services. Core services are needed, for
example, to agree on a common procedure for uniquely
identifying learning objects. Other core services are related with
authenticating users and repositories, or with creating and
managing sessions for interaction between applications.
Typical applications that make learning repositories interoperable
are, for example, the indexing service, the harvesting service or
the query service. The indexing service, as a kind of replication
service, allows repository A to “push” learning object metadata to
repository B. It supports distributed maintenance of metadata
through insert, delete or update operations. The harvesting service
is a service, where repository A “pulls” metadata from a
repository B. The query service allows repository A to search
repository B for suitable learning resources, so the metadata
transferred matches a specific query. A contracting service
assigns access rights to a learning object stored at a remote
repository. The delivery service interacts with the repository

Copyright is held by the author/owner(s).
WWW 2005, May 10–14, 2005, Chiba, Japan.

where the learning resource is stored and delivers an electronic
learning resource to the end user.
Application services make use of core services. For example, the
core service session management might be required for the query
service.

Learning Object Repository

Core Services

Authentication…

Learning Object Repository
Interoperability

Indexing Query

Delivery

Contracting

Application Services

Session Management

…

Figure 1. Interoperability Framework

Both, core and application services, require a common messaging
infrastructure, which enables repositories to interact. XML RPC,
Java RMI, and WSDL/SOAP are examples of such messaging
services. A messaging service is based on a common network
infrastructure and lower level protocols such as TCP/IP, HTTP,
etc. Figure 2 depicts the various layers of Learning Object
Repository Interoperability as described above.

Messaging Service
(e.g., SOAP, XML RPCs, JRMI)

Core Services
(e.g., Session Management)

Applications
(e.g., Query, Harvesting)

Network Architecture
(e.g., HTTP, SMTP; TCP/IP)

Semantic Model
(e.g., Common Query Schema)

Messaging Service
(e.g., SOAP, XML RPCs, JRMI)

Core Services
(e.g., Session Management)

Applications
(e.g., Query, Harvesting)

Network Architecture
(e.g., HTTP, SMTP; TCP/IP)

Semantic Model
(e.g., Common Query Schema)

Figure 2. Interoperability Stack

Learning Management Systems (LMS), Learning Content
Management Systems (LCMS), Knowledge Pools, or Brokerage
Platforms are the kind of information technology the interfaces
proposed herein are designed for. Within its focus on the query
interface, this paper targets architects of educational networks,
managers of learning resource repositories, stakeholders in
learning object re-use, as well as researches in web services and
system interoperability. However, although we refer to learning
repositories interoperability with a special focus on learning
object metadata, this query interface can also be used within other
domains and application scenarios [12].
The remainder of this paper is structured as follows: While
Section 2 is devoted to specification of the Query Service
including Authentication and Session Management, Section 3
presents implementation of the API. Section 4 reviews related

work. The paper concludes with a discussion of the status quo and
outlines future work on the interface specification.

2. Simple Query Interface
An Application Program Interface (API) for query services needs
to specify a number of methods a repository can make available in
order to receive and answer queries from other applications.
To distinguish the requestor from the answering system in our
scenarios, the term “source” is introduced in order to label a
system which issues a search (the source of the query). The term
“target” labels the system which is queried (the target of the
query). Alternatively, the “source” can also be referred to as
“requestor” and “target” as “provider”.
Metadata can be stored using different means, such as file-based
repositories, (distributed) relational databases, XML repositories,
or RDF tool kits, which use different query languages constituting
a heterogeneous environment. In order to make learning
repositories interoperable, not only a common interface needs to
be defined, but also a common query language together with a
common results format for learning object descriptions needs to
be agreed on. Interoperability aspects such as common query
schema, results format are part of the semantic model of an
educational network (see Figure 2). This research focuses on the
transport mechanisms required for querying, issues related to the
semantic model are not within the scope of this paper.
The query service is used to send a query in the common query
language to the target. Next, the query results, represented in the
common results format, are transported to the source. On the
implementation level, wrappers may need to be built to convert a
query from a common query language X to a local query language
Y and transform the query and the query results from a
proprietary format to a common one and vice-versa.
Figure 3 illustrates an exchange process, where Learning
Repository A (the source) submits a query to Learning Repository
B (the target). It is assumed that both systems have agreed upon a
common query language beforehand. The concepts used in the
query statement are part of a common (query) schema. At
Repository B, the interface component might need to transfer the
query from the common query language to the local one. Also
some mappings from the common to the proprietary schema
might be required before submitting the search. This task is
performed by a wrapper component. Once the search has yielded
results, the results set is forwarded to the source, formatted
according to a common results format.
The collaborative effort of combining highly heterogeneous
repositories has led to the following requirements:

 The API needs to be neutral in terms of results format,
query schema and query language: The repositories
connecting can be of highly heterogeneous nature:
therefore, no assumptions about these components of
interoperability stack can be made.

 The API needs to support synchronous and asyn-
chronous queries in order to allow the application of the
API in heterogeneous use cases.

 The API needs to support, both, a stateful and a stateless
implementation.

 The API shall be based on a session management
concept in order to separate authentication issues from
query management.

Simple Query
Interface

Component

Learning Repository B
(Target)

Learning
Object

Metadata

Common Query
Language and Schema

Results in
Local Format

Results in
Common Format

Local Query
LanguageSimple Query

Interface
Component

Learning
Repository A

(Source)

W
rapper

W
rapper

Simple Query
Interface

Component

Learning Repository B
(Target)

Learning
Object

Metadata

Common Query
Language and Schema

Results in
Local Format

Results in
Common Format

Local Query
LanguageSimple Query

Interface
Component

Learning
Repository A

(Source)

W
rapper

W
rapper

Figure 3. Communication between two Repositories

In addition, the design of the API itself is based on the following
design principles:

 Command-Query Separation Principle,
 Simple Command Set and Extensibility.

Since one design objective of the API is to keep the specification
simple and easy to implement, the API is labeled Simple Query
Interface (SQI).
The following sub-sections describe each of the above mentioned
design principles in more detail.

2.1 Query Language and Results Format
In order to make use of SQI to implement full query functionality,
the API needs to be complemented with agreements about:

 the set of attributes and vocabularies that can be used in
the query,

 the query language and its representation,
 the representation of list of learning objects that satisfy

the query, and
 the representation of individual metadata instances on

learning objects.
SQI is agnostic on these issues: Any agreement between two or
more repositories is valid for SQI. Such agreements can, for
example, be expressed by XML schemas or RDF schemas.
Although SQI does not directly contribute to overcome the
differences of the various paradigms in metadata management
(Z39.50, XML-based approaches, RDF community), it aims to
become an independent specification for all open educational
repositories.

2.2 Synchronous and Asynchronous Queries
SQI can be deployed in two different scenarios: In the
synchronous scenario, the target returns the query results to the
source. Results retrieval is therefore initiated by the source
through the submission of the query and through other methods
allowing the source to access the query results.
In the asynchronous scenario, results transmission is target-
initiated. Whenever a significant amount of matching results is
found, these results are forwarded to the source by the target. To
support this communication the source must implement a results
listener. The source must be able to uniquely identify a query sent
to a particular target (even if the same query is sent to multiple
targets). Otherwise the source is not able to distinguish the search

results retrieved from various targets and/or queries previously
submitted to a target.
Please note that the asynchronous query mode does not require an
asynchronous handling on the messaging layer. It can also be
implemented by two synchronous functions at the source and the
target, respectively.
A query interface operated in synchronous mode can perform
multiple queries per session (even simultaneously). In case of an
asynchronously operated query interface, the source provides a
query ID that allows it to link incoming results to a submitted
query (the source might query many targets and each target might
answer to a query by returning more than one result to the
source). Multiple queries can also be active within a session in
asynchronous query mode.

2.3 Session Management
The application interfaces make abstraction from authentication
and access control issues. However, there is a need to authenticate
the source in order to allow a target, for example, to link query
policies to a source repository. For instance:

 Repository A is allowed to query Repository B without
any limitations,

 Repository C is only allowed to retrieve 1000 query
results per day from Repository D at a maximum.

Ideally, authentication is performed only once for a series of
interactions. To accomplish this, a session token needs to be
returned after successful authentication that can be used to
identify the system in the subsequent communication.
Session management needs to be understood as a higher-layer
management of configuration settings and authentication. The
session ID serves as a mandatory element in the application
interfaces in order to identify the requestor/source in all query
commands.
Therefore, the SQI is based on a simple session management
concept. A session has to be established before any further
communication can take place. This specification separates query
management and processing from authentication (and query
policy management).
In case of a synchronously operated query interface, the source
establishes a session at the target and uses the Session ID, which
it obtained from the target, to identify itself during
communication. Authentication does not need to be based on
credentials, since also anonymous sessions can be created.

The specification introduces an incomplete list of possible means
for establishing a session for the communication between two
systems.
Once a session has been established, the source has the right to
communicate with the target. In order to establish a session, a user
name and password or any other credential may be required. The
identification of a source repository can prevent candidate target
repositories from opening up their systems to unknown partners,
and enables query policies.
A session is valid until it is destroyed. Hence, it continues to be
active after a query has been executed. Alternatively, a session
times out when no communication takes place during e.g. 30
minutes. However, a session might be valid much longer than 30
minutes and sometimes might even require manual destruction.
The specification assumes the use of secure authentication,
authorization, and encryption mechanisms such as those provided
by state-of-the-art technology (e.g., SSL).

2.4 Stateful and Stateless Communication
Stateful and stateless are attributes that describe whether
repositories are designed to keep track of one or more preceding
events in a given sequence of interactions. Stateful means that the
target repository keeps track of the state of interaction, for
example, by storing the results of a previously submitted query in
a cache. Stateless means that there is no record of previous
interactions and that each interaction request can only be handled
on the basis of the information that comes with it. The SQI
specification allows implementers to opt for a stateful or a
stateless approach.

2.5 Command-Query Separation Principle
SQI design is based on the "Command-Query Separation
Principle". This principle states that every method should either
be a command that performs an action, or a query that returns data
to the caller, but not both. More formally, methods should return a
value only if they are referentially transparent and hence cause no
side-effects. This leads to a style of design that produces clearer
and more understandable interfaces.
The Command-Query Separation (CQS) is a principle of object-
oriented computer programming. It was devised by Bertrand
Meyer a part of his work on the Eiffel programming language
[21].

2.6 Simple Command Set and Extensibility
In order to make the interface easily extensible an approach,
minimizing the number of parameters of the various methods
rather than the number of methods is adopted. Variations of the
interface (e.g., a separation between common query schema and
common results format), can easily be introduced by adding a
new function (e.g., setSupportedQuerySchema) while no change
in the already implemented methods is needed. Hereby,
backwards compatibility can be more easily maintained.
As a result, additional methods for setting query parameters like
maximum duration and maximum number of returned search
results were introduced. This design choice leads to simpler
methods, but the number of interdependent methods is higher.
However, default values can be used for many of these query
parameter configuration methods.

2.7 Overview of SQI Methods
Table 1 provides an overview of the various methods that are
described below from a workflow perspective. A detailed
description of the methods is provided in the specification [15].
First, the source needs to create a connection with the target, for
example by using createAnonymousSession. Once a session has
been established, the query interface at the target awaits the
submission of a search request. In addition, a number of methods
allow for the configuration of the interface at the target. Query
parameters such as

 the query language (setQueryLanguage),
 the number of results returned within one results set

(setResultsSetSize),
 the maximum number of query results

(setMaxQueryResults),
 the maximum duration of query execution

(setMaxDuration),
 and the results format (setResultsFormat)

can be set with the respective methods. The parameters set via
these methods remain valid throughout the whole session or until
they are set otherwise. If none of the methods is used before the
first query is submitted, default values are assumed. The
specification provides default values for MaxQueryResults and
MaxDuration, and ResultsSetSize.

Session Management

createSession

createAnonymousSession

destroySession

Query Parameter Configuration

setResultsFormat

setMaxQueryResults

setMaxDuration

Synchronous Query Interface

setResultsSetSize

synchronousQuery

getTotalResultsCount

Asynchronous Query Interface

asynchronousQuery

setSourceLocation

queryResultsListener

Table 1. SQI Methods
Next, the source submits a query, using either the
asynchronousQuery or the synchronousQuery method. The query
is then processed by the target and produces a set of records,
referred to as results set. The query is expressed in a query
language identified through a query parameter. In the query,
reference to a common schema might be made. In synchronous
mode the query results are directly returned by the
synchronousQuery method. The getTotalResultsCount method
returns the total number for matching metadata records found by
the target operating. In case of an asynchronously operated query

interface the queryResultsListener method is called by the target
to forward the query results to the source.
In order to report abnormal situations (e.g., erroneous parameters
or inability to carry out an operation), an SQIFault is provided,
which can be thrown by all the SQI methods. A system of fault
codes permits to document those abnormal situations.

3. Implementations
Since the first stable version of the specification was made
available in March 2004 many learning repositories have taken
advantage of SQI to connect them to the outside world. Under the
auspices of the CEN/ISSS Learning Technologies Workshop the
following projects took advantage of the SQI specification.

3.1 ARIADNE
The core of the ARIADNE Knowledge Pool System (KPS) [5] is
a distributed network of Learning Object Repositories that
replicate both (the publicly available subset of) content and
metadata. On top of this core infrastructure, ARIADNE provides
its members with a set of tools that are loosely coupled with the
KPS [17]. Through these tools, the user community can
transparently manage learning objects.
Currently, each node in this distributed network implements a
relational metadata store, on top of which both a synchronous and
an asynchronous SQI target are provided.
The synchronous target lowers the threshold for integrating a
query API into a third party application that aims to provide
access to the KPS. In this scenario, an application sends queries to
one synchronous target and only downloads additional results
when they are needed.
With the asynchronous target, interoperability with intermediary
services is targeted. As these services usually distribute queries
over a large number of repositories, asynchronous communication
is more fault-tolerant. As all results are collected through one
results listener, it is easier to manage and hence more convenient
in this scenario.
In order to provide ARIADNE members access to other
repositories, a federated search engine [18] has been developed.
This engine offers a synchronous SQI interface to front-end
applications. SILO, the ARIADNE search & indexation tool, uses
this target e.g. to query a set of repositories. In the back-end, the
federated search engine forwards the query to different SQI
enabled repositories. Currently, searches are distributed into the
following repositories: ARIADNE, EdNA Online, EducaNext,
Merlot, Pond, RDN, SMETE, and VOCED. As all these
repositories support different query languages, which do not
always easily map into one another, we started with an approach
where a least common denominator of all query languages was
implemented. In this approach, the query only consists of search
terms which are translated by each repository into a query it can
process.
Currently, ARIADNE requires each partner to return a minimum
of metadata fields, encoded as LOM XML: a URL, an identifier, a
title and an identifier of the originating repository. The URL
should resolve to the learning object. If access to the learning
object is prohibited, the URL resolves to contact information. A
repository identifier is necessary to give credits in a proper way to
repository that yielded the results. Apart from the data elements
mentioned above, all other LOM metadata fields are optional in
the results.

3.2 CELEBRATE and ICLASS
The iClass adapter is a component of the Intelligent distributed
Cognitive-based Learning System for Schools (iClass) [8]. It
enables the end-users of “non-iClass” systems, such as the
learning management systems and learning content management
systems that are members of the Celebrate federation [19], to
search and access iClass contents (i.e., metadata and learning
objects). In iClass, metadata are stored in a peer-to-peer network
of metadata repositories named “content server” and learning
objects are stored in a peer-to-peer network of learning objects
repositories named “content distribution system”. Usually,
obtaining a learning object is a two-step process:
1. Searching and evaluating metadata: Selecting a learning

object that satisfies user needs on the basis of the description
provided in the metadata;

2. Consuming the learning object: Getting the selected learning
object at the location (usually a URL) provided in the
metadata.

Using a standard and open interface is a strong requirement in
order to enable as many learning systems as possible to search
and access the iClass collections of learning objects. The
simplicity of SQI, its ability to be used in combination with any
query language and results format, and its asynchronous query
mode make it a good candidate interface for searching the iClass
content server.
In iClass, metadata provide an identifier of the learning object
rather than its location. Actually, the adaptive and multimedia
nature of the iClass learning objects combined with the peer-to-
peer nature of the content distribution system makes it difficult to
access learning objects directly. This is why an extra step is
required to resolve the location of a learning object identified in
the metadata. This “resolve-location” step is used to propagate a
request for location from repository to repository until an instance
of the requested learning object is found. The learning object is
then moved to a streaming server close to the location of its
requester and a URL from which the learning object can be
consumed is returned by the content distribution system. Since
this process has potentially a certain duration, the content
distribution system answers to these requests asynchronously in
order to ensure adequate performance of the caller, in this case the
iClass adapter. It is only when a learning object is available at a
given streaming server that its location is known and can be
returned.
Since there does not exist an open interface for performing this
step asynchronously and rather than create an ad hoc interface, it
was decided to use SQI for this task as well by taking advantage
of SQI independence in terms of query languages and results
formats. This is achieved by adding a new “query language” (for
requesting a location) and a new “results format” (for returning a
location) to the list of languages and formats supported by the
iClass adapter [12]. The new query language is named
“ICLASS-LO-ID”. A query in this ad hoc language consists of
the requested learning object's identifier as found in the metadata.
The results format is named “URL”. A result in this format
consists of a URL pointing to the requested learning object.
This solution permits the minimization of the cost of
implementing a “resolve-learning-object-location” step for those
learning object repositories that already use SQI for searching
metadata. It is currently implemented as an extension of the SQI
gateway of Celebrate.

3.3 ELENA’s Smart Spaces for Learning
In order to achieve interoperability among heterogeneous
educational systems, the ELENA project has implemented a novel
infrastructure and software solution using various Semantic Web
technologies. This infrastructure is built on the following corner
stones:

1. A common API for querying, the Simple Query
Interface (SQI) with a web-service based instantiation
of the API,

2. A common semantic model for querying and results
format presentation, instantiated in XML and RDF.

3. Re-usable components for integrating existing systems
with a minimum effort based on query languages, such
as QEL and XQuery.

The goal of this infrastructure is the realization of a Smart Space
for Learning that allows us to integrate heterogeneous educational
nodes in a semantic network and provide ‘smart’ access
technology for it [16]. In combination with process-support for
learning goal definition, personalized search, and feedback tools
the educational semantic network (the ‘space’) plays a crucial role
for supporting corporate personnel development. The broad
variety of learning resource types available allows us to
significantly widen the scope of learning resource choices.
Hereby, potential learners are not stuck with the course offerings
of a particular provider or are restricted to a particular learning
format, for example, a costly classroom-based course, but can
expand their search to several types of learning formats, for
example, books from Amazon, and providers. One driving force
for the development of this feature has been an extensive
requirements analyze, which has lead to the need of integrating
resources of heterogeneous formats, in educational search tools
[6].
For all connected systems we created a mapping to the common
schema, which enabled us to issue queries against this schema.
We expressed the common schema in RDF and used QEL as a
query language.
So far, we have connected several systems to our network that can
all be accessed by the personnel development portal HCD Online
[4]. For all systems we had to create a mapping to establish the
connection between the local metadata representation and our
common schema. This was a challenging task, since these systems
not only use different local schemas, but also differ how they
represent the metadata.
The ULI Campus stores the metadata in RDF files. Academic and
commercial learning (content) management systems (e.g.
EducaNext, CLIX) or course databases (course catalog of the
Vienna Executive Academy) often store the metadata in relational
databases. They again used DBMSs from different vendors, in our
case Oracle, Postgresql, MySQL, and Firebird, which cause
difficulties in the way query results are encoded. Other systems
store their metadata in XML files (Metzingen Continuing
Education Center, EduSource educational network of Canada). A
query translation technique, that translates QEL queries into
corresponding XQuery queries was developed. Based on this
translation technique we were able to integrate also other systems
(LASON, Knowledgebay) using a native XML database (eXist).
Again a different approach was required for integrating the media
store of Amazon. Amazon offers a Web Services interface, so we
had access to their rich metadata, stored in a proprietary format.
We developed a query translation of QEL queries into Amazon

search objects, which enabled a smooth integration of the
available metadata.
We faced different kinds of challenges when integrating entire
P2P networks (Edutella). While other systems usually give
synchronous answers to queries, in case of Edutella we had to
handle asynchronous answers from the network.

4. Related Work
OpenURL [3] as well as the Content Object Repository Discovery
and Resolution Architecture (CORDRA) [2] are initiatives that
investigate the “Identifying” problem. The work on SQI is
“orthogonal” to this, in that queries and results can refer to
identifiers of arbitrary nature.
Z39.50-International: Next Generation (ZING) covers a number
of initiatives by Z39.50 implementers to make Z39.50 [11, 22]
more broadly available and to make Z39.50 more attractive to
information providers, developers, vendors, and users. SRW is the
Search/Retrieve Web Service protocol, which is developed within
ZING and aims to integrate access to various networked
resources, and to promote interoperability between distributed
databases, by providing a common utilization framework. SRW is
a web-service-based protocol [23]. SRW takes advantage of CQL
("Common Query Language"), a powerful query language, which
is a human-readable query.
SRW has many similarities with SQI, but also some differences.
SRW is purely synchronous (source-initiated), i.e. query results
are returned with the response. Additional query results can be
retrieved later from the results set stored at the target for a pre-
defined amount of time. SRU, the Search and Retrieve URL
Service, is a companion service to SRW, the Search and Retrieve
Web Service. Its primary difference is its access mechanism: SRU
is a simple HTTP GET form of the service [1]. SRW encourages
the use of Dublin Core, but is in general schema neutral (like
SQI). SRW packs all the functionalities in a few methods and
does not adhere to the “Command-Query separation principle”.
SRW does not provide hooks for authentication and access
control nor is it based on a session management concept. It
defines an Explain operation, allowing a client to easily discover
the capabilities and facilities available at a particular server. SRW
uses a rich set of XML-encoded application level diagnostics for
reporting errors. SQI uses faults.
The purpose of the IMS Digital Repository Interoperability (DRI)
Specification [10] is to provide recommendations for the
interoperation of the most common repository functions. The DRI
specification presents five core commands, i.e. search/expose,
gather/expose, alert/expose, submit/store, and request/deliver, on
a highly abstract level. The specification leaves many design
choices for implementers. For example, while recommending
Z39.50 (with its own query language) it also recommends XQuery
as a query language. The query service does distinguish between
asynchronous and synchronous query mode.
The EduSource project [7] aims to implement a holistic approach
to building a network for learning repositories. As part of its
communication protocol - referred to as the EduSource
Communication Language (ECL) -, the IMS Digital Repository
Specification was bound and implemented. A gateway for
connecting between EduSource and the NSDL initiative, as well
as a federated search connecting EduSource, EdNA and Smete
serve as a first showcase.

OKI (Open Knowledge Initiative) is a development project for a
flexible and open system to support on-line training on Internet
[13]. OKI has issued specifications for a system architecture
adapted to learning management functions. One of the main
characteristics of the project is its commitment to the open source
approach for software component development. OKI supplies
specifications for a model of functional architecture and an API
called Open Service Interface Definition (OSID). OKI OSID main
aspects are:

 To supply specifications for a flexible and open source
model of functional architecture

 Service Interface Definitions (SIDs) organize a
hierarchy of packages, classes and agents and propose
Java versions of these SIDs for use in Java-based
systems and also as models for other object-oriented
and service-based implementations.

 Components developed by OKI are compliant with
specifications issued by IMS and ADL SCORM.

5. Limitations and Discussion
This paper presented the specification of the Simple Query
Interface and the rationale behind its development. Although the
effectiveness of the specification has been proven by several
implementations, some issues still need to be further investigated.
Status Management: Methods supporting search status
management could be added, for example, for cancellation of
search, or query status reporting. This would allow a user at a
source to cancel a search processed by a target. Similarly, query
status reporting would enable a user at a source to be informed
about the progress of a search processed by a target.
Explain Method and/or Capabilities Schema: No method for
retrieving the capabilities of an SQI node is provided. One option
here is an “explain” method. Such a method would return an SQI
Profile Record that holds information on the query languages and
results formats supported. Alternatively, a set of methods such as
getSupportedQueryMode, getSupportedQueryLanguages,
getSupportedResultsFormats, could be provided. Still another
alternative is to use the SQI API itself to retrieve descriptions of
the capabilities of a target (similar to the way that system tables
can be queried in SQL databases). Hereby, the API could be used
to answer questions like: Which query languages are supported?
Which schemas are supported? Which query modes are
supported? How many learning resources are available? In which
format are results available? A schema describing these
capabilities would be needed.
In order to be able to set all SQI parameters (queryLanguage,
maxQueryResults, maxDuration, resultsFormat etc.) at once,
without having to call the various individual methods separately,
an additional setQueryParameters method could be introduced
SQI can be used for exchanging other things than learning
resource metadata such as (language versions of) vocabularies, or
evaluation data about training service providers, etc.
It would be important to find means for controlling ranking
mechanisms when it comes to querying a set of targets. This
would reduce the amount of data transfer, since metadata that is
probably not of high user interest would not be transferred. At the
same time, the quality of the results of such search would be
significantly improved. Ranking mechanisms also need to be

discussed in the light of privacy regulations and the capabilities of
the query / retrieval semantics used on top of SQI.

6. Concluding Remarks
In order to achieve interoperability among learning repositories,
implementers require a common communication framework for
querying. This paper proposes a set of methods referred to as SQI
as a universal interoperability layer for educational networks. At
the time of writing 15 educational systems were registered at a
preliminary SQI registry available at http://www.prolearn-
project.org/lori/ and new implementations are ongoing.
The SQI case also shows how a standardization effort can go hand
in hand with implementation work. While implementation
feedback influences the standard development, only the umbrella
of a standardization project can catalyze interoperability
initiatives.

7. Acknowledgements
The SQI specification has been developed and financially
supported under the auspices of the CEN/ISSS Workshop on
Learning Technologies. This work is supported by European
Commission via the IST projects CELEBRATE
(http://celebrate.eun.org/), ELENA (http://www.elena-
project.org/), ICLASS (http://www.iclass.info/) and PROLEARN
(http://www.prolearn-project.org/). We acknowledge
contributions and comments to the SQI specification from
Christian Werner (Learning Lab Lower Saxony), Dan Rehak
(Carnegie Mellon University), Griff Richards (Simon Fraser
University), Gerhard Müller (IMC), Julien Tane (Universität
Karlsruhe), Marek Hatala (Simon Fraser University), Matthew J.
Dovey (Oxford University), Michel Arnaud (Université de Paris
X Nanterre), Nikos Papazis (NCSR), Peter Dolog (Learning Lab
Lower Saxony), Sascha Markus (IMC), Stefano Ceri (Politecnico
Milano), Simos Retalis (University of Piraeus), and Teo van Veen
(Koninklijke Bibliotheek).

8. References
[1] SRU: Search and Retrieve URL Service, vol. 2005:

http://www.loc.gov/z3950/agency/zing/srw/sru.html.
[2] CORDRA: Technical Introduction and Overview:

http://www.lsal.cmu.edu/lsal/expertise/projects/cordra/i
ntro/intro-v1p00.html, 2004.

[3] OpenURL: http://library.caltech.edu/openurl/, 2004.
[4] S. Aguirre, S. Brantner, G. Huber, S. Markus, Z.

Miklós, A. Mozo, D. Olmedilla, J. Salvachua, B.
Simon, S. Sobernig, and T. Zillinger, “Corner Stones of
Semantic Interoperability Demonstrated in a Smart
Space for Learning,” in Poster Proceedings of the
European Semantic Web Conference 2005, S. Decker
and H. Stuckenschmidt, Eds. Heraklion, Greece, 2005.

[5] E. Duval, E. Forte, K. Cardinaels, B. Verhoeven, R.
Van Durm, K. Hendrikx, M. Wentland Forte, N. Ebel,
M. Macowicz, K. Warkentyne, and F. Haenni, “The
Ariadne Knowledge Pool System,” Communications of
the ACM, vol. 44, pp. 72-78, 2001.

[6] S. Gunnarsdottir, B. Kieslinger, T. Küchler, and B.
Simon, “From e-Learning to Learning Management:
Results of an International Survey,” in Proceedings of
4th International Conference on Knowledge
Management. Graz, Austria, 2004.

[7] M. Hatala, G. Richards, T. Eap, and J. Willms, “The
Interoperability of Learning Object Repositories and

Services: Standards, Implementations and Lessons
Learned,” in Proceedings of the 13th World Wide Web
Conference. New York City, USA, 2004.

[8] iClass, Intelligent Cognitive-based Learning System for
Schools: http://www.iclass.info/, 2004.

[9] IEEE, IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries.
New York, NY: IEEE, 1990.

[10] IMS, IMS Digital Repositories Interoperability - Core
Functions Information Model:
http://www.imsglobal.org/digitalrepositories/driv1p0/im
sdri_infov1p0.html, 2003.

[11] C. A. Lynch, “The Z39.50 Information Retrieval
Standard - Part I: A Strategic View of Its Past, Present
and Future,” D-Lib Magazine, 1997.

[12] D. Massart, “Accessing Learning Contents Using a
Simple Query Interface Adapter,” in Proceedings of the
ProLearn-iClass Thematic Workshop on Learning
Objects in Context. Louvain, Belgium, 2005.

[13] OKI, Open Knowledge Initiative:
http://web.mit.edu/oki/, 2004.

[14] S. Raghavan and H. Garcia-Molina, “Crawling the
Hidden Web,” in Proceedings of the Twenty-seventh
International Conference on Very Large Databases,
2001.

[15] Simple Query Interface Specification.
http://www.prolearn-project.org/lori/, Version 1.0 Beta,
2004-04-13, 2005.

[16] B. Simon, S. Retalis, and S. Brantner, “Building
Interoperability among Learning Content Management

Systems,” in Proceedings of the 12th World Wide Web
Conference. Budapest, 2003.

[17] S. Ternier and E. Duval, “Web services for the
ARIADNE Knowledge Pool System,” in Proceedings of
3rd Annual Ariadne Conference. Leuven, Belgium,
2003.

[18] S. Ternier, D. Olmedilla, and E. Duval, “Peer-to-Peer
versus Federated Search: Towards more Interoperable
Learning Object Repositories,” in Proceedings of ED-
MEDIA 2005, 2005.

[19] F. van Assche and D. Massart, “Federation and
brokerage of learning objects and their metadata,” in
Proceedings of the 4th IEEE International Conference
on Advanced Learning Technologies, Kinshuk, C. K.
Looi, E. Sultinen, D. Sampson, I. Aedo, L. Uden, and E.
Kähkönen, Eds. Joensuu, Finland: IEEE Computer
Society, 2004, pp. 316-320.

[20] G. Wiederhold, P. Wegner, and S. Ceri, “Toward
Megaprogramming,” Communications of the ACM, vol.
35, pp. 89-99, 1992.

[21] wordIQ.com, Definition of Command-Query
Separation:
http://www.wordiq.com/definition/Command-
Query_Separation, 2005.

[22] Z39.50, “Z39.50: Part 1 - An Overview,” Biblio Tech
Review, 2001.

[23] ZING, Search/Retrieve Web Service (SRW):
http://lcweb.loc.gov/z3950/agency/zing/srw/, 2004.

