
Leveraging Commitments and Goals in Agent
Interaction

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, Roberto Micalizio

Università degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, I-10149 Torino (Italy)
{firstname.lastname}@unito.it

Abstract. Modeling and regulating interactions among agents is a crit-
ical step in the development of Multiagent Systems (MASs). Some re-
cent works assume a normative view, and suggest to model interaction
protocols in terms of obligations. In this paper we propose to model in-
teraction protocols in terms of goals and commitments, and show how
such a formalization promotes a deliberative process inside the agents.
In particular, we take a software engineering perspective, and balance
the use of commitments against obligations inside interaction protocols.
The proposal is implemented via JaCaMo+, an extension to JaCaMo,
in which Jason agents can interact while preserving their deliberative
capabilities by exploiting commitment-based protocols, reified by special
CArtAgO artifacts. The paper shows how practical rules relating goals
and commitments can be almost directly encoded as Jason plans to be
used as building blocks in agent programming.

Keywords: Social Computing, Agent Programming, Commitments and Goals,
Agents & Artifacts, JaCaMo

1 Introduction

Many researchers claim that an effective way to approach the design and devel-
opment of a MAS consists in conceiving it as a structure composed of four main
entities: Agents, Environment, Interactions, and Organization [32,18,19]. Such a
separation of concerns enjoys many advantages from a software engineering point
of view, since it enables a modular development of code that eases code reuse and
maintainability. Currently, there are many frameworks that support designers
and programmers in realizing one of these components (e.g., [8,10,25,11,29]). To
the best of our knowledge, JaCaMo [9] is the the most complete among the well-
established proposals, providing a thorough integration of the three components
agents, environments, and organizations into a single programming framework.
Another work along this direction is [7], which posits that agents and environ-
ments should be linked and interconnected through standard interfaces to fully
leverage each of them.

A recent extension to JaCaMo [32] further enriches the framework by intro-
ducing an interaction component. The interaction component allows regulating

both agent interactions and the interactions between agents and environment.
More precisely, an interaction component encodes –in an automaton-like shape–
a protocol, in which states represent protocol steps, and transitions between
states are associated with (undirected) obligations that can assume three forms:
actions performed by the agents in the environment, messages that an agent
sends to another agent, and events that an agent can perceive (i.e., events emit-
ted from objects in the environment). Such protocols provide a guideline of how
a given organizational goal should be achieved.

Interaction components, as defined in [32], however, present also some draw-
backs. Works such as [15] show the importance, for the agents to be autonomous,
to reason about the social consequences of their actions by exploiting constitutive
norms that link the agents’ actions to their respective social meanings. However,
an interaction component operates as a coordinator that, by relying on obliga-
tions, issues commands about what an agent has to do, and when. This impedes
agents from reasoning on the normative effects of their actions. On the one hand,
the obligations are not constitutive norms while, on the other hand, the social
meaning of such commands is not known to the agents but only implicitly en-
coded within the protocol. Agents lose part of their deliberative power since,
once they join an interaction component, they have no other choice but decid-
ing whether satisfying or not those obligations they are in charge of, while the
rationale behind these obligations remains hidden to them. Consequently, this
approach does not suit those situations where interaction is not subject to an
organizational guideline, such as in the case when interaction is among agents
and each agent decides what is best for itself [31], or when guidelines amount
to declarative, underspecified constraints that still leave agents the freedom to
take strategic decisions on their behavior.

Although we substantially agree with [32] about the importance of explicitly
capturing the agents’ interactions with appropriate abstractions, we also note
that organization-driven guidelines, presented in that work, are but a kind of
interaction; we thus propose a complementary approach which better supports
the deliberative capabilities of the agents. Indeed, when organizational goals are
not associated with corresponding guidelines, agent deliberation is crucial for the
achievement of goals. An agent, in fact, has to act not only upon its own goals,
but also upon what interactions could be necessary for achieving these goals. In
other terms, an agent has to discover how to obtain a goal by interacting with
others, i.e. to establish when to create an engagement, and which (sub)goals
should be achieved first in order to fulfill its engagements. It is important to
underline that when agents can fully exploit their deliberative capabilities, they
can take advantage of opportunities (flexibility), and can find alternative ways
to get their goals despite unexpected situations that may arise (robustness).

We claim that whenever guidelines are missing, the interactions among the
agents should be supported by the very fundamental notions of goal and engage-
ment. For this reason, we propose in this paper to complement the interaction
protocol in [32], and more in general organizational and normative approaches
[17,20,23,16], with an interaction artifact that can be used by the agents as a

common ground. Our interaction artifacts encode the notion of engagement as
social commitment [26]. The choice of commitments stems by the fact that, dif-
ferently from obligations, commitments are taken by an agent as a result of an
internal deliberative process. They can be directly manipulated by the agents,
and they have proved to be very effective in modeling (directed) social rela-
tionships. In addition, a recent work by Telang et al. [28] shows how goals and
commitments are strongly interrelated. Commitments are therefore evidence of
the capacity of an agent to take responsibilities autonomously. Citing Singh [27],
an agent would become a debtor of a commitment based on the agent’s own com-
munications: either by directly saying something or having another agent com-
municate something in conjunction with a prior communication of the debtor.
That is, there is a causal path from the establishment of a commitment to prior
communications by the debtor of that commitment. By contrast, obligations can
result from a deliberative process which is outside the agent; this is the case of
the interaction component in [32]. This is the reason why we believe that the in-
troduction of a deliberative process on constitutive rules that rely on obligations
would not really support the agents’ autonomy.

Practically, the proposal relies on the JaCaMo platform [9], and hence we
dubbed it JaCaMo+: Jason agents engage commitment-based interactions which
are reified as CArtAgO artifacts. CArtAgO is a framework based on the A&A
meta-model [30,24] which extends the agent programming paradigm with the
first-class entity of artifact: a resource that an agent can use, and that models
working environments. It provides a way to define and organize workspaces,
that are logical groups of artifacts, that can be joined by agents at runtime. The
environment is itself programmable and encapsulates services and functionalities,
making it active. JaCaMo+ artifacts represent the interaction social state and
provide the roles agents enact. The use of artifacts enables the implementation
of monitoring functionalities for verifying that the on-going interactions respect
the commitments and for detecting violations and violators.

The paper extends and details the approach introduced in [3], and is or-
ganized as follows. Section 2 introduces some basic notions about goals and
commitments. Section 3 discusses the extensions to JaCaMo that have been in-
troduced in JaCaMo+; Section 4 shows, by exemplifying the FIPA Contract
Net Protocol, how agents can be programmed by means of patterns encoding
the interplay between goals and commitments.

2 Basic Notions

A social commitment models the directed relation between two agents: a debtor
and a creditor, that are both aware of the existence of such a relation and of its
current state: A commitment C(x, y, s, u) captures that agent x (debtor) com-
mits to agent y (creditor) to bring about the consequent condition u when the
antecedent condition s holds. Antecedent and consequent conditions are con-
junctions or disjunctions of events and commitments. Unlike obligations, com-
mitments are manipulated by agents through the standard operations create,

cancel, release, discharge, assign, delegate [26]. A commitment is autonomously
taken by a debtor towards a creditor on its own initiative, instead of dropping
from an organization, like obligations. This preserves the autonomy of the agents
and is fundamental to harmonize deliberation with goal achievement. The agent
does not just react to some obligations, but it rather includes a deliberative
capacity by which it creates engagements towards other agents while it is try-
ing to achieve its goals (or to the aim of achieving its goals). Since debtors are
expected to satisfy their engagements, commitments satisfy the requirement in
[14] of having a normative value, providing social expectations on the agents’
behaviors, as well as obligations. Commitments also satisfy the requirement in
[17] that when parties are autonomous, social relationships cannot but concern
the observable behavior of the agents themselves.

Commitment-based protocols assume that a (notional) social state is avail-
able and inspectable by all the involved agents. The social state traces which
commitments currently exist between any two agents, and the states of these
commitments according to the commitments lifecycle. By relying on the social
state, an agent can deliberate to create further commitments, or to bring about
a condition involved in some existing commitment. Most importantly, commit-
ments can be used by agents in their practical reasoning together with beliefs,
intentions, and goals. In particular, Telang et al. [28] point out that goals and
commitments are one another complementary: A commitment specifies how an
agent relates to another one, and hence describes what an agent is willing to
bring about for another agent. On the other hand, a goal denotes an agent’s
proattitude towards some condition; that is, a state of the world that the agent
should achieve. An agent can create a commitment towards another agent to
achieve one of its goals; but at the same time, an agent determines the goals to
be pursued relying on the commitments it has towards others: A commitment is
satisfied when the related goal is achieved. Note that, similarly to commitments,
goals have their own lifecycle that evolves according to the actions performed
by the agents (leading to the achievement or unfulfillment of goals), but also to
the decisions of the agents to purse, suspend, or drop the goals themselves.

In [28], a goal G is formalized as G(x, p, r, q, s, f), where x is the agent
pursuing G, p is a precondition that must be satisfied before G can become
Active, r is an invariant condition that is true when G becomes Active and
holds until the achievement of G, q is a post-condition (effect) that becomes
true when G is successfully achieved, and finally, s and f are the success and
failure conditions, respectively. In the following sections we will show how such a
formalization can be mapped into Jason plans, and how it turns out to be useful
for the agent programming purpose.

3 JaCaMo+

JaCaMo [9] is a platform integrating Jason (as an agent programming language),
CArtAgO (as a realization of the A&A meta-model [30]), and Moise (as a sup-
port to the realization of organizations). In this section we shortly describe how

JaCaMo+ is obtained by extending the CArtAgO and Jason components of the
standard JaCaMo.

3.1 Extending CArtAgO

Exploiting [1], JaCaMo+ enriches CArtAgO’s artifacts with an explicit repre-
sentation of commitments and of commitment-based protocols. The resulting
class of artifacts reifies the execution of commitment-based protocols, including
the social state of the interaction, and enables Jason agents both to be notified
about the social events and to perform practical reasoning also about the other
agents. This is possible thanks to the social expectations raised by commitments.
Since an artifact is a programmable, active entity, it can act as a monitor of the
in progress interaction. The artifact can therefore detect violations that it can
ascribe to the violator without the need of agent introspection.

Specifically, a JaCaMo+ artifact encodes a commitment protocol, that is
structured into a set of roles. By enacting a role, an agent gains the rights to
perform social actions, whose execution has public social consequences, expressed
in terms of commitments. If an agent tries to perform an action which is not
associated with the role it is enacting, the artifact raises an exception that is
notified to the violator. On the other hand, when an agent performs a protocol
action that pertains to its role, the social state is updated accordingly by adding
new commitments, or by modifying the state of existing commitments.

In CArtAgO, the Java annotation1 @OPERATION marks a public oper-
ation that agents can invoke on the artifact. In JaCaMo+, a method tagged
with @OPERATION corresponds to a protocol action. We also add the anno-
tation @ROLE to specify which roles are enabled to use that particular action.
Another extension is an explicit representation of the social state, which is main-
tained within the artifact. By focusing on an artifact, an agent registers to be
notified of events that are generated inside the artifact. Note that all events
that amount to the execution of protocol actions/messages are recorded as facts
in the social state. This is done for the sake of a greater degree of decoupling
between actions/events/messages and their effects [5,6]. In particular, when the
social state is updated, the JaCaMo+ artifact provides such information to the
focusing JaCaMo+ agents by exploiting proper observable properties. Agents are,
thus, constantly aligned with the social state.

3.2 Extending Jason

Jason [10] implements in Java, and extends, the agent programming language
AgentSpeak(L). Jason agents have a BDI architecture. Each has a belief base,
and a plan library. It is possible to specify achievement (operator ‘!’) and test
(operator ‘?’) goals. Each plan has a triggering event (causing its activation),

1 Annotations, a form of metadata, provide data about a program that is not
part of the program itself. See https://docs.oracle.com/javase/tutorial/java/

annotations/

https://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/tutorial/java/annotations/

which can be either the addition or the deletion of some belief or goal. The syntax
is inherently declarative. In JaCaMo, the beliefs of Jason agents can also change
due to operations performed by other agents on the CArtAgO environment,
whose consequences are automatically propagated. We extend the Jason com-
ponent of JaCaMo by allowing the specification of plans whose triggering events
involve commitments. JaCaMo+ represents a commitment as a term cc(debtor,
creditor, antecedent, consequent, status) where debtor and creditor identify
the involved agents (or agent roles), while antecedent and consequent are the
commitment conditions. Status is the commitment state (the set being defined
in the commitments life cycle [21]). Commitments operations (e.g. create, see
Section 2) are realized as internal operations of the new class of artifacts we
added to CArtAgO. Thus, commitment operations cannot be invoked directly
by the agents, but the protocol actions will use them as primitives to modify the
social state.

A Jason plan is specified as:

triggering event : 〈context〉 ← 〈body〉

where the triggering event denotes the events the plan handles, the context spec-
ifies the circumstances when the plan could be used, the body is the course of
action that should be taken. In a Jason plan specification, commitments can be
used wherever beliefs can be used. Otherwise than beliefs, their assertion/dele-
tion can only occur through the artifact, in consequence to a social state change.
The following template shows a Jason plan triggered by the addition of a com-
mitment in the social state:

+cc(debtor, creditor, antecedent, consequent, status) : 〈context〉 ← 〈body〉.

More precisely, the plan is triggered when a commitment, that unifies with the
one in the plan head, appears in the social state. The syntax is the standard for
Jason plans. Debtor and creditor are to be substituted by the proper roles. The
plan may be devised so as to change the commitment status (e.g. the debtor will
try to satisfy the comment), or it may be devised so as to allow the agent to react
to the commitment presence (e.g., collecting information). Similar schemas can
be used for commitment deletion and for the addition/deletion of social facts.
Further, commitments can also be used in contexts and in plans as test goals
(?cc(. . .)), or achievement goals (!cc(. . .)). Addition or deletion of such goals
can, as well, be managed by plans; for example:

+!cc(debtor, creditor, antecedent, consequent, status) : 〈context〉 ← 〈body〉.

The plan is triggered when the agent creates an achievement goal concerning a
commitment. Consequently, the agent will act upon the artifact so as to create
the desired social relationship. After the execution of the plan, the commitment
cc(debtor, creditor, antecedent, consequent, status) will hold in the social state,
and will be projected onto the belief bases of all agents focusing on the artifact.

4 Programming in JaCaMo+

In this section we show how Jason agents can be easily programmed by consid-
ering a commitment-based protocol as a guideline for the programmer: We first
present a programming approach which exploits the practical rules by Telang
et al. [28], and then we exemplify the approach implementing the initiator and
participant agents of the well-known Contract-Net Protocol (CNP).

4.1 Practical Rules as Programming Code-Blocks

For both goals and commitments, [28] defines lifecycles, and operations through
which the state of a goal, or a commitment, evolves over time. The relationship
between goals and commitments is formalized in terms of practical rules, which
capture patterns of pragmatic reasoning. They include: (1) rules from goals to
commitments to capture how commitments evolve when the state of some goals
change; and (2) rules from commitments to goals to capture how a goal evolves
when the corresponding commitment changes in the social state. These rules
can be easily encoded in JaCaMo+, and used by a programmer as templates for
implementing Jason agents. In the following we discuss four examples of rules
that will be used in the CNP scenario.

Goal rules. This JaCaMo+ template tackles the case when a goal G =
G(x, p, r, q, s, f) appears in the knowledge base of agent x; namely, x wants to
achieve the success condition s, and hence an appropriate plan is triggered:

1 +!G : p
2 <−?r
3 〈body〉 /* plan ach i ev ing cond i t i on s*/
4 ?q .

Differently from [28], in JaCaMo+ we explicitly mention a plan of actions (the
body) to achieve the success condition s. When x can satisfy G autonomously
(no interaction is needed), conditions s and q coincide. Instead, when x cannot
satisfy G (or it is not convenient for x to achieve G autonomously), the body will
involve an interaction with another agent and, as we will see, conditions q and
s will differ. Note that, in JaCaMo+ we can also specify a plan to be triggered
when the failure condition is reached:

1 −!G : f
2 <−
3 〈body〉 . /* plan handl ing f a i l u r e cond i t i on f */

The following three templates reflect namesake rules in [28].
Entice. Agent x can achieve G with the help of agent y: x creates an offer

to agent y such that, if y brings about s (success condition of G), then x will
engage into achieving a condition u of interest for y. Such an offer is naturally
modeled as the commitment C(x, y, s, u). The JaCaMo+ template is:

1 +!G : p
2 <−?r
3 s o c i a l a c t i o n ;
4 ?cc(x, y, s, u, CONDITIONAL) .

The body of the rule consists of a social action; namely, a protocol action offered
by the artifact x is focused on, and whose meaning is the creation of a commit-
ment C = cc(x, y, s, u, CONDITIONAL). This commitment will push agent y
to bring about the success condition s associated with G, thus this is a special
case of goal activation. Note that the post condition of this rule corresponds to
a test on the existence of the commitment C; agent x can verify, by inspecting
the social state, that the commitment really exists.

Deliver. If commitment C(x, y, s, u) becomes detached, then debtor x acti-
vates a goal G1 = G(x, p, r, q, u, f) to bring about the consequent. In JaCaMo+:

1 +cc(x, y, s, u,DETACHED) : context
2 <− !G1 ;
3 ?cc(x, y, s, u, SATISFIED) .

It is worth noting the test goal at the end of the rule: It allows x to verify that
after the achievement of G1, its corresponding commitment is now satisfied.

Detach. When a conditional commitment C1(y, x, s′, t), appears in the social
state, the creditor x activates a goal G2 = G(x, p′, r′, q′, s′, f ′) to bring about
the commitment antecedent. The JaCaMo+ template is:

1 +cc(y, x, s′, t, CONDITIONAL) : context
2 <− !G2 ;

3 ?cc(y, x, s′, t, DETACHED) .

Note that, as in the previous case, agent x can verify that, after the satisfaction
of goal G2, the corresponding commitment is now detached.

4.2 JaCaMo+ Contract Net Protocol

As in [32], we assume that agents are assigned with institutional goals, defined in
the Moise layer, to be achieved via the well-known Contract Net Protocol (CNP)
protocol. We show how CNP can be implemented in JaCaMo+ by exploiting the
templates introduced above. CNP (see Table 1) involves two roles: initiator (i)
and participant (p). An agent playing the initiator role calls for proposals from
agents playing the participant role. A participant makes a proposal if interested.
Proposals can be accepted or rejected by initiator. Accept, done, and failure do
not amount to commitment operations, but impact on the progression of com-
mitment states, e.g., accept causes the satisfaction of the commitment created
by cfp. Listing 1.1 reports an excerpt of the JaCaMo+ CNP protocol artifact

Table 1. CNP: actions and their social meaning.

initiator (i): participant (p):

cfp: create(C(i, p, propose, accept ∨ reject)) propose: create(C(p, i, accept, done ∨ failure))
reject: release(C(p, i, accept, done ∨ failure)) refuse: release(C(i, p, propose, accept ∨ reject))

accept: “commitment progression” done: “commitment progression”
failure: “commitment progression”

implementation.

1 @OPERATION
2 @ROLE(name=" initiator ")
3 public void c fp (St r ing task) {
4 RoleId i n i t i a t o r =
5 getRoleIdByPlayerName (getOpUserName ()) ;
6 this . def ineObsProperty (" task " , task ,
7 i n i t i a t o r . getCanonicalName ()) ;
8 RoleId dest = new RoleId (" participant ") ;
9 createAllCommitments (new Commitment(i n i t i a t o r ,

10 dest , " propose " , " accept OR reject ")) ;
11 a s s e r tFac t (new Fact (" cfp " , i n i t i a t o r , task)) ;
12 }
13 @OPERATION
14 @ROLE(name=" participant ")
15 public void propose (St r ing prop , int cost , S t r ing i n i t) {
16 Proposal p = new Proposal (prop , co s t) ;
17 // . . .
18 def ineObsProperty (" proposal " ,
19 p . getProposalContent () , p . getCost () ,
20 p a r t i c i p a n t . getCanonicalName ()) ;
21 createCommitment (new Commitment(pa r t i c i pant ,
22 i n i t i a t o r , " accept " , " done OR failure ")) ;
23 a s s e r tFac t (new Fact (" propose " , pa r t i c i pant , prop)) ;
24 ac tua lProposa l s++;
25 i f (ac tua lProposa l s == numberMaxProposals) {
26 // . . .
27 createCommitment (new Commitment(i n i t i a t o r ,
28 groupPart ic ipant , " true " , " accept OR reject ")) ;
29 }

Listing 1.1. The CNP artifact in JaCaMo+.

cfp (line 3) is a protocol action, realized as a CArtAgO operation (CArtAgO
Java annotation @OPERATION, line 1). It can be executed only by an initiator
(JaCaMo+ Java annotation @ROLE(name=“initiator”), line 2). It publishes the
task for the interaction session as an observable property of the artifact (line 6).
All agents focusing on the artifact will have this information added to their
belief bases. The social effect of cfp is the creation (line 9) of as many com-
mitments as participants to the interaction, and of a social fact (line 11), that
tracks the call made by the initiator. These effects will be broadcast to all fo-
cusing agents. Accept pertains to the initiator. It asserts a social fact, accept,
which causes the satisfaction of one of the commitments created at line 9 to-
wards a specific participant. Propose counts the received proposals and, when
their number is sufficient, signals this fact to the initiator by the creation of a
commitment (line 21) towards the group of participants. Below, the JaCaMo+
initiator program:

1 /* I n i t i a l goa l s */
2 ! startCNP .
3 /* Plans */
4 +!startCNP : true
5 <− makeArt i fact (" cnp " , " cnp . Cnp " , [] ,C) ;
6 f o cus (C) ;
7 enact (" initiator ") .
8 +enacted (Id , " initiator " , Ro le Id)
9 <− +enactment id (Role Id) ;

10 ! so lveTask (" task - one ") .
11 +! solveTask (Task) /*ENTICE*/
12 : enactment id (My Role Id)
13 <− +task (Task) ;
14 c fp (Task) ;
15 ? cc (My Role Id , Part Role Id , " propose " ,

16 "(accept or reject)" , " CONDITIONAL ") .
17 +cc (My Role Id , " participant " , " true " , /*DELIVER*/
18 "(accept OR reject)" , " DETACHED ")
19 : enactment id (My Role Id)
20 <−!acceptORreject ;
21 ? cc (My Role Id , , " true " ,
22 "(accept OR reject)" , " SATISFIED ") .
23 +! acceptORreject
24 : not eva luated
25 <− +evaluated ;
26 . f inda l l (proposa l (Content , Cost , Id) ,
27 proposa l (Content , Cost , Id) , Proposa l s) ;
28 . count (proposa l (Content , Cost , Id) ,
29 ProposalsNumb) ;
30 . min (Proposals ,
31 proposa l (Proposal , Cost , Winner Role Id)) ;
32 +winner (Winner Role Id) ;
33 accept (Winner Role Id) ;
34 ? cc (My Role Id , Winner Role Id ,
35 " true " , "(accept OR reject)" , " DETACHED ") .
36 %. . . a c t i on ’ r e j e c t ’ f o r a l l other proposa l s . . .
37 +done (P a r t i c i p a n t r o l e i d , Result)
38 : winner (P a r t i c i p a n t r o l e i d) ;
39 <− . print (" Task resolved : " , Result) .
40 +f a i l u r e (P a r t i c i p a n t r o l e i d)
41 : winner (P a r t i c i p a n t r o l e i d) ;
42 <− . print (" Task failed by " , P a r t i c i p a n t r o l e i d) .

Listing 1.2. The initiator agent code in JaCaMo+.

The first ten lines are about the setting up of the environment. In this im-
plementation, the initiator agent first creates the Cnp artifact (line 5), and then
enact the initiator role (line 7). In general, however, the artifact could already
be available, and an agent could just focus on it, and enact the initiator role.
Note that the artifact notifies the agent the success of the enactment by as-
serting an enacted belief in the social state; note also that the agent receives a
unique identifier, Role Id, that will be used within the social state throughout
the subsequent interactions (i.e., commitments will mention such an identifier).

After these preliminary steps, the initiator tries to reach the goal of having
task-one performed: solveTask(”task-one”)2. This situation maps with the EN-
TICE rule from [28]; we, thus, follow the JaCaMo+ template associated with
such a rule: see lines 11 - 16. The initiator, driven by its goal, performs the social
action cfp, and thereby creates a commitment towards any participant that is
focusing (or will focus) on that specific artifact. The execution of such action
(which is performed by the initiator by its own initiative) modifies the social
state; consequently, this modification is notified to the other focussing agents
who will be in condition of taking this new social relationship into account in
their own deliberative activity. The test goal concluding the rule allows the ini-
tiator to verify that at least one commitment has actually been created; namely,
the entice has changed the social state.

Since the initiator has created a commitment, it must be ready to bring about
the consequent of such a commitment whenever the antecedent will become true.
The initiator must therefore contain a DELIVER-template plan; see lines 17-22

2 To improve the readability of the code, we have simplified the notation in the Jason
program by abstracting goals with simple labels.

in which the initiator, activated by the detachment of the commitment previously
created with the cfp social action, starts a plan that will satisfy the commitment
itself. The plan, acceptORreject (lines 23-33), first selects the best proposal, and
then performs a social action accept towards the winner agent, and a social
action reject towards any other participant that has not been selected.

The two last plans, done (line 37) and failure (line 40), are used by the initiator
to monitor the actual completion of the task with either success or failure.

Let us now consider the participant side.

1 /* I n i t i a l goa l s */
2 ! p a r t i c i p a t e .
3 /* Plans */
4 +! p a r t i c i p a t e : true
5 <− focusWhenAvailable (" cnp ") ;
6 enact (" participant ") .
7 +enacted (Id , " participant " , My Role Id)
8 <− +enactment id (My Role Id) .
9 +cc (I n i t i a t o r R o l e I d , My Role Id , /*DETACH*/

10 " propose " , "(accept OR reject)" , " CONDITIONAL ")
11 : enactment id (My Role Id)
12 & task (Task , I n i t i a t o r R o l e I d)
13 <− ! s e tup proposa l (Task , I n i t i a t o r R o l e I d) ;
14 ? cc (I n i t i a t o r R o l e I d , My Role Id ,
15 " true " , "(accept OR reject)" , " DETACHED ") .
16 +! se tup proposa l (Task , I n i t i a t o r R o l e I d)
17 : enactment id (My Role Id)
18 <− ! p r epa r e proposa l (Task , Prop , Cost) ;
19 propose (Prop , Cost , I n i t i a t o r R o l e I d) ;
20 +my proposal (Prop , Cost , I n i t i a t o r R o l e I d) ;
21 ? cc (My Role Id , I n i t i a t o r R o l e I d , " accept " ,
22 "(done OR failure)" , " CONDITIONAL ") .
23 +cc (My Role Id , I n i t i a t o r R o l e I d , /*DELIVER*/
24 " true " , "(done OR failure)" , " DETACHED ")
25 : enactment id (My Role Id) &
26 accept (My Role Id)
27 <− ? my proposal (Prop , Cost , I n i t i a t o r R o l e I d) ;
28 ! doneORfai lure (Prop , Cost , I n i t i a t o r R o l e I d) .
29 ? cc (My Role Id , I n i t i a t o r R o l e I d ,
30 " true " , "(done OR failure)" , " SATISFIED ") .
31 +! doneORfai lure (Prop , Cost , I n i t i a t o r R o l e I d)
32 <− ! compute resu l t (Prop , Cost , Result) ;
33 i f (Result == " fail "){
34 f a i l u r e (I n i t i a t o r R o l e I d) ;
35 }
36 e l s e {
37 done (Result , I n i t i a t o r R o l e I d) ;
38 } .
39 +! compute resu l t (Prop , Cost , Result)
40 <− 〈plan computing the r e s u l t 〉 .

Listing 1.3. The participant agent code in JaCaMo+.

A participant waits for calls for proposal by means of the CArtAgO basic
operation focusWhenAvailable (line 5). A participant, thus, must be able to re-
act whenever a new commitment of the form cc(initiator, participant, propose,
accept ∨ reject) pops up in the social state. This behavior corresponds to the
DETACH template, that is encoded in the JaCaMo+ plan in lines 9-15. In
particular, the participant triggers a plan, setup proposal that will satisfy the an-
tecedent of the commitment. Such a plan, in fact, will include the social action
propose (line 19). Note that the effect of action propose is twofold: (1) it as-
serts a fact ”propose” in the social state, and hence satisfies the antecedent of

the triggering commitment; and (2) it also creates a new commitment from the
participant to the initiator (see the protocol definition in Table 1), of the form
cc(p, i, accept, done ∨ failure). This second commitment states that the partici-
pant is committed to carry out the task in case the initiator accepts its proposal.
Thus, since the participant creates a commitment, it must also be ready to bring
about the consequent of that commitment when the antecedent holds, and hence
also the participant has a DELIVER-template plan in its program: see lines 23-
30. In the specific case, the participant will activate a plan, doneORfailure, whose
body will include the computation of a solution for the task at hand, and also the
social actions done or failure depending on the, respectively, positive or negative
result of the computation.

4.3 Final Remarks

One of the strongest points of JaCaMo+ is the decoupling between the design
of the agents and the design of the interaction – that builds on the decoupling
between computation and coordination done by coordination models like tuple
spaces. Agent behavior is built upon agent goals and on its engagements with
other agents, which are both the result of its deliberative process. For instance,
in CNP the initiator becomes active when the commitments that involve it as a
debtor, and which bind it to accept or reject the proposals, are detached. It is
not necessary to specify nor to manage, inside the agent, such things as deadlines
or counting the received proposals: the artifact is in charge of these aspects.

The decoupling allows us to change the definition of the artifact without
the need of changing the agents’ implementation. The Cnp class in Listing 1.1
detaches the commitments when a certain number of proposals is received. We
can substitute such a class with class CnpTimer, which detaches commitments
when a given deadline expires. This modification does not have any impact on
the agents, whose programs remain unchanged, but for the line in which an agent
focuses on (or creates) an artifact; e.g., for the initiator, the only change occurs
in line 5 (see the following listing), in which the initiator creates a different type
of artifact reifing the CNP protocol (the participant case is similar).

1 /* I n i t i a l goa l s */
2 ! startCNP .
3 /* Plans */
4 +!startCNP : true
5 <− makeArt i fact (" cnp " , " cnp . CnpTimer " , [] ,C) ;
6 f o cus (C) ;
7 enact (" initiator ") .

Listing 1.4. The initiator code, using CnpTimer.

Table 2 compares JaCaMo (with interaction [32]), with JaCaMo+ along some
important characteristics that a MAS should feature. Let us discuss these dimen-
sions, with a particular attention to those where the two platforms differ from
one another. JaCaMo and JaCaMo+ do not equally support autonomy, in the
sense that an agent can autonomously selects its own duties. JaCaMo with inter-
action just offers an agent to follow a predetermined path (a guideline) through
which the agent has to fulfill a precise pattern of obligations. JaCaMo+, instead,

JaCaMo with Interaction JaCaMo+

Autonomous selection of obligations X X

Maintainability X X

Monitoring Support X X

Modular Definition of Protocols X X

Flexibility X X

Robustness X X

Interaction not spread across the agents code X X

Table 2. Comparison among JaCaMo with interaction and JaCaMo+.

offers an agent a tool, the interaction artifact, through which it can communi-
cate with other agents and act together with others. The choice, however, of
how and when been involved into an interaction remains within the scope of the
agents. The adoption of commitments, in fact, assures that an agent assumes the
responsibility for a task only when, by its own choice, performs a specific action
on the interaction artifact. This has an impact on the property of flexibility and
robustness. An interaction that is structured based on obligations only hinders
agents when they need to adapt to unforeseen conditions (flexibility) or when
they need to react to unwanted situations (robustness). The agent, in fact, is
not free to delegate obligations, schedule them differently, etc. All the agent can
do is to perform the actions that, instructed by the interaction protocol, resolve
its obligations.

Protocols in [32] aim at defining guidelines to the use of resources in an orga-
nization. This, however, limits the modularity of interaction protocols because
protocols depend on operations that are defined in the organization and there
is no explicit association of which actions pertain to which roles. Thus, for in-
stance, a participant may execute a cfp and the interaction artifact would allow
it to do so. JaCaMo+ interaction protocols, instead, include the definitions of
the needed operations, and specify which of them will empower the various role
players. For both proposals the interaction logic is captured by the artifact and
is not spread across the agent codes. Both include functionalities for monitoring
the on-going interaction. In [32] the normative structure is leveraged to this aim,
while in JaCaMo+ this can be done inside each of the protocol artifacts.

5 Conclusions

In this paper we presented JaCaMo+, and extension to JaCaMo that enables
social behaviors into its agents. We started from the interaction protocols based
on obligations proposed in [32]. These protocols are suitable for modeling inter-
actions among different elements of a MAS (i.e., not only interactions between
agents, but also between agents and objects). However, obligation-based proto-
cols reduce agent interactions to messages that an agent is obliged to send to
another agent; that is, social relationships among agents are not handled di-
rectly. In other words, an obligation-based protocol can be adopted only in an

organization that gives guidelines about how interactions should be carried on,
but it is not applicable in those organizations where similar guidelines are not
available.

To cope with these more challenging situations, our intuition is to define an
interaction in terms of goals and commitments. Commitments, in fact, are at
the right level of abstraction for modeling directed relationships between agents.
Moreover, since commitments have a normative power, they enable the agents
to reason about the behavior of others; a commitment creates expectations in
the creditor about the behavior that the debtor will assume in the near future.

Note that our view is also backed up by the practical rules discussed in
[28], which highlight how goals and commitments are each other related. In
particular, in this paper we have proposed to use the same rules as a sort of
methodology for programming the Jason agents. An initial implementation of
our proposal is provided by the JaCaMo+ platform. The tests (which involve
from 5 to 100 agents) show that it scales up quite well, despite the introduction
of commitments, but a more thorough testing will be performed in the near
future.

The shift from obligations to commitments is beneficial in many respects.
First of all, the autonomy of the agents is better supported because, although
charged with goals to be achieved, they are free in deciding how to fulfill their
goals. It follows that agents are deliberative, and this paves the way to self-* ap-
plications, including the ability to autonomously take advantage from opportuni-
ties, and the ability of properly reacting to unexpected events (self-adaptation).
For instance, by finding a way for accomplishing an organizational goal taking
into account the current state of the MAS, which is hardly foreseeable at de-
sign time. Moreover, the interplay between goals and commitments opens the
way to the integration of self-governance mechanisms into organizational con-
texts. Thus, our concluding claim is that directly addressing social relationships
increases the robustness of the whole MAS.

In the future, we intend to investigate how agents can leverage on their
deliberative capabilities, and use it not only to program interactions, but to
plan social interactions. Moreover, the modular nature of the implementation
facilitates the development of extensions for tackling richer, data-aware contexts
[12,22,13]. We are also interested in tackling, in the implementation, a more
sophisticate notion of social context and of enactment of a protocol in a social
context [4], as well as to introduce a typing system along the line of [2].

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments,
which helped improving the paper.

References

1. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. Social computing
in JaCaMo. In Proc. of ECAI, volume 263 of Frontiers in Artificial Intelligence

and Applications, pages 959–960. IOS Press, 2014.
2. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. Typing Multi-Agent

Systems via Commitments. In F. Dalpiaz, J. Dix, and M. B. van Riemsdijk,
editors, Post-Proc. of the 2nd International Workshop on Engineering Multi-Agent
Systems, EMAS 2014, Revised Selected and Invited Papers, number 8758 in LNAI,
pages 388–405. Springer, 2014.

3. Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.
Programming with Commitments and Goals in JaCaMo+ (Extended Abstract).
In Proc. of 14th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2015, July 4th-8th 2015.

4. Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, and Munindar P. Singh. Com-
posing and Verifying Commitment-Based Multiagent Protocols. In M. Wooldridge
and Q. Yang, editors, Proc. of 24th International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25th-31th 2015.

5. Matteo Baldoni, Cristina Baroglio, Elisa Marengo, and Viviana Patti. Constitutive
and Regulative Specifications of Commitment Protocols: a Decoupled Approach.
ACM Trans. on Intelligent Sys. and Tech., Special Issue on Agent Communication,
4(2):22:1–22:25, March 2013.

6. Matteo Baldoni, Cristina Baroglio, Viviana Patti, and Elisa Marengo. Constitutive
and Regulative Specifications of Commitment Protocols: a Decoupled Approach
(Extended Abstract). In M. Wooldridge and Q. Yang, editors, Proc. of 24th In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25th-31th 2015.

7. Tristan M. Behrens, Koen V. Hindriks, and Jürgen Dix. Towards an environ-
ment interface standard for agent platforms. Annals of Mathematics and Artificial
Intelligence, 61(4):261–295, 2011.

8. Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing Multi-
Agent Systems with JADE. John Wiley & Sons, 2007.

9. Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with JaCaMo. Science of Computer
Programming, 78(6):747 – 761, 2013.

10. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons, 2007.

11. Frances M. T. Brazier, Barbara M. Dunin-Keplicz, Nick R. Jennings, and Jan
Treur. Desire: Modelling Multi-Agent Systems in a Compositional Formal Frame-
work. Int. J. of Cooperative Information Systems, 06(01):67–94, March 1997.

12. Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. Representing
and monitoring social commitments using the event calculus. Autonomous Agents
and Multi-Agent Systems, 27(1):85–130, 2013.

13. Amit K. Chopra and Munindar P. Singh. Cupid: Commitments in relational alge-
bra. In Proc. of the 29th AAAI Conf, pages 2052–2059. AAAI Press, 2015.

14. Rosaria Conte, Cristiano Castelfranchi, and Frank Dignum. Autonomous Norm
Acceptance. In ATAL, volume 1555 of LNCS, pages 99–112. Springer, 1998.

15. Natalia Criado, Estefania Argente, Pablo Noriega, and Vicent Botti. Reasoning
about constitutive norms in BDI agents. Logic Journal of IGPL, 22(1):66–93, 2014.

16. Natalia Criado, Estefania Argente, Pablo Noriega, and Vicent Botti. Reasoning
about norms under uncertainty in dynamic environments. International Journal
of Approximate Reasoning, 2014.

17. Mehdi Dastani, Davide Grossi, John-Jules Ch. Meyer, and Nick A. M. Tinnemeier.
Normative Multi-agent Programs and Their Logics. In KRAMAS, volume 5605 of
LNCS, pages 16–31. Springer, 2008.

18. Yves Demazeau. From interactions to collective behaviour in agent-based systems.
In In: Proceedings of the 1st. European Conference on Cognitive Science. Saint-
Malo, 1995.

19. Frodi Hammer, Alireza Derakhshan, Yves Demazeau, and Henrik Hautop Lund. A
multi-agent approach to social human behaviour in children’s play. In Proceedings
of the IEEE/WIC/ACM international conference on Intelligent Agent Technology,
pages 403–406. IEEE Computer Society, 2006.

20. Felipe Meneguzzi and Michael Luck. Norm-based behaviour modification in BDI
agents. In AAMAS (1), pages 177–184. IFAAMAS, 2009.

21. Felipe Meneguzzi, Pankaj R. Telang, and Munindar P. Singh. A first-order formal-
ization of commitments and goals for planning. In AAAI. AAAI Press, 2013.

22. Marco Montali, Diego Calvanese, and Giuseppe De Giacomo. Verification of data-
aware commitment-based multiagent system. In Proc. of AAMAS, pages 157–164.
IFAAMAS/ACM, 2014.

23. Daniel Okouya, Nicoletta Fornara, and Marco Colombetti. An infrastructure
for the design and development of open interaction systems. In M. Cossentino,
A. El Fallah Seghrouchni, and M. Winikoff, editors, Post-Proc. of the 2nd In-
ternational Workshop on Engineering Multi-Agent Systems, EMAS 2014, Revised
Selected and Invited Papers, number 8245 in LNAI, pages 215–234. Springer, 2013.

24. Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the a&a meta-
model for multi-agent systems. JAAMAS, 17(3):432–456, 2008.

25. Andrea Omicini and Franco Zambonelli. TuCSoN: a coordination model for mobile
information agents. In Proc. of IIIS, pages 177–187. IDI – NTNU, Trondheim
(Norway), 8–9 June 1998.

26. Munindar P. Singh. An ontology for commitments in multiagent systems. Artif.
Intell. Law, 7(1):97–113, 1999.

27. Munindar P. Singh. Commitments in multiagent systems some controversies, some
prospects. In Fabio Paglieri, Luca Tummolini, Rino Falcone, and Maria Miceli,
editors, The Goals of Cognition. Essays in Honor of Cristiano Castelfranchi, chap-
ter 31, pages 601–626. College Publications, London, 2011.

28. Pankaj R. Telang, Neil Yorke-Smith, and Munindar P. Singh. Relating Goal and
Commitment Semantics. In Proc. of ProMAS, volume 7212 of LNCS, pages 22–37.
Springer, 2012.

29. Alexander Thiele, Thomas Konnerth, Silvan Kaiser, Jan Keiser, and Benjamin
Hirsch. Applying JIAC V to Real World Problems: The MAMS Case. In MATES,
volume 5774 of LNCS, pages 268–277. Springer, 2009.

30. Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class
abstraction in multiagent systems. JAAMAS, 14(1):5–30, 2007.

31. Pinar Yolum and Munindar P. Singh. Commitment Machines. In Intelligent Agents
VIII, 8th Int. WS, ATAL 2001, volume 2333 of LNCS, pages 235–247. Springer,
2002.

32. Maicon R. Zatelli and Jomi F. Hübner. The Interaction as an Integration Compo-
nent for the JaCaMo Platform. In F. Dalpiaz, J. Dix, and M. B. van Riemsdijk,
editors, Post-Proc. of the 2nd International Workshop on Engineering Multi-Agent
Systems, EMAS 2014, Revised Selected and Invited Papers, number 8758 in LNAI,
pages 431–450. Springer, 2014.

	Leveraging Commitments and Goals in Agent Interaction

