
LOSM: a SPARQL endpoint to query Open Street Map

Vito Walter Anelli, Tommaso Di Noia, Pasquale Galeone, Francesco Nocera,
Jessica Rosati, Paolo Tomeo, Eugenio Di Sciascio

Polytechnic University of Bari, Via Orabona, 4, 70125 Bari, Italy
{v.anelli,p.galeone,f.nocera}@studenti.poliba.it

{tommaso.dinoia,jessica.rosati,paolo.tomeo,eugenio.disciascio}@poliba.it

Abstract. Geographical data is gaining momentum in scientific and industrial
communities thanks to the high level and quality of information and knowledge
it encodes. The most recent representation of the Linked Open Data cloud shows
GeoNames competing with DBpedia as the largest and most linked dataset
available in the Web. In the “normal” Web, Open Street Map (OSM) has reached,
in the last years, a maturity stage thus allowing the users to exploit its data for a
daily use. We developed LOSM (Linked Open Street Map), a SPARQL endpoint
able to query the data available in OSM by an on-line translation form SPARQL
syntax to a sequence of calls to the overpassAPI. The endpoint comes together
with a Web interface useful to guide the user during the formulation of a query.

1 Introduction

In the current Web of Data we are witnessing the spread of applications that heavily
rely on geographical data. In the “geo-data” arena a primary role is played by the crowd
sourced project Open Street Map [3]. It is a geographical database maintained by Web
users containing a huge amount of data that can also be displayed on a map. Its database
is updated every 15 minutes and as of today it contains 4,742,543,824 GPS points and
2,169,093 users who contribute to the project. All this data is either available via weekly
dumps or it is queryable through an API. In particular, we refer to overpass API
which allows the user to query Open Street Map by means of at least two different
languages: XML or Overpass QL. By means of an overpass query, the API is able
to retrieve nodes within an area, recognize streets or relations. Also, it is possible to
express spatial relationships among nodes through filters such as around, bounding
box and the poly function.
It is easy to see that having such data available in the Linked Open Data cloud would
surely enrich the amount and quality of the information available within the so called
Web of Data. This is the rationale behind the LinkedGeoData1 project [1]. It aims
at triplifying Open Street Map dumps every six months by mapping OSM tags and
sourceKey properties with reference to a publicly available ontology. This is a very
useful resource because it makes available classes that map keys and tags used in Open
Street Map nodes.
Although the big effort and work in developing and maintaining the datasets behind the

1 http://linkedgeodata.org/



project, LinkedGeoData suffers from the misalignment between the data available
via the SPARQL endpoint (based on a dump) and the one available in Open Street Map.
Indeed, the updates made by the users are available as RDF triples only when the dump
is processed and loaded in the LinkedGeoData triple-store.
Based on this observation we developed LOSM (Linked Open Street Map), a service
that works as a SPARQL endpoint on top of OSM. LOSM acts as a translator from
a SPARQL query to a set of overpass API calls. In such a way we are sure that
the data we retrieve is always fresh and up to date. LOSM is available at http://
sisinflab.poliba.it/semanticweb/lod/losm/.

2 LOSM: System description

The scheme in Figure 1 shows an overview of the service architecture. In a few words,
the systems is able to translate a SPARQL query to a sequence of (iterative) overpass
API calls, collect the data and return it to the client. We currently support SPARQL
queries via HTTP GET. The Parser uses a scanner for the recognition of lexemes in
a SPARQL query and creates the data-structures needed by the Query Manager. This
module is in charge of breaking the query into sub-queries according to the remote func-
tions available in the overpassAPI. The Result Manager handles the sub-queries and
the results they generate to create the final Result map. The Result Manager breaks the
graph pattern in the SPARQL query into a set of connected sub-graphs by identifying
their mutual relations. Each sub-query goes through the Translator which is in charge
of creating the overpass calls.

Fig. 1: Overall representation of the system architecture



The system also exposes a Web page with a query form with autocomplete facilities
with respect to the LinkedGeoData ontology.
The SPARQL sublanguage implemented in LOSM. In its current version, LOSM
implements a subset of the full specification of SPARQL 1.1 plus some non-standard
features2 that results very useful when querying geographical data. We currently sup-
port only the SELECT query form and the Jena Spatial3 extension also available in
GeoSPARQL [2]. We support simple graph patterns that we anyway consider represen-
tative of a large number of queries over geographical data. As for the spatial functions
we implement we may list:

– spatial:nearby (latitude longitude radius [units])4 returns
URIs nodes (Open Street Map URIs) within the radius distance of the location of
the specified latitude and longitude.

– spatial:withinCircle (latitude longitude radius [units])
computes a circle centered in specified latitude and longitude and given radius and
returns the OSM nodes within the circle.

– spatial:withinBox (latitude min longitude min latitude max
longitude max) calculates a rectangle by specifying the list of coordinates for
the edges that has to follow the order provided in the function.

– spatial:within("POLYGON((Point1 lat Point1 lon,...,PointN lat
PointN lon))") calculates the polygon area expressed by Well Known Text
(WKT) literals and returns OSM nodes available within it.

Regarding the URI of classes and properties used in the graph pattern for LOSM SPARQL
queries we always refer to the LinkedGeoData Ontology vocabulary.

3 Use case

Suppose we want to represent a query to match the following use case: the day is over
in our laboratory and the crew wants to find restaurants nearby (within 200 meters)
together with the cinemas that are within one km from each restaurant. They want to
know the names of restaurants and cinemas together with the URIs of these latter. The
above use case can be modeled by the SPARQL query:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX lgdo: <http://linkedgeodata.org/ontology/>
PREFIX spatial: <http://jena.apache.org/spatial#>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
SELECT ?cinema ?nameC ?nameR
WHERE {

?link rdfs:label "Sisinf Lab" .
?link geo:lat ?lat .
?link geo:long ?lon.
?object spatial:nearby(?lat ?lon 200 ’m’) .
?object a lgdo:Restaurant .
?object rdfs:label ?nameR .
?object geo:lat ?lat2 .

2 Details on the implemented subset is available at http://sisinflab.poliba.it/
semanticweb/lod/losm/losm_grammar.html

3 https://jena.apache.org/documentation/query/spatial-query.html
4 [units] can be meters (’m’ or ’M’), kilometers (’km’ or ’KM’) or miles (’mi’ or ’MI’).



?object geo:long ?lon2.
?cinema spatial:nearby(?lat2 ?lon2 1000 ’m’) .
?cinema a lgdo:Cinema .
?cinema rdfs:label ?nameC .

}

The triples composing the graph pattern are analysed and grouped into the correspond-
ing sub-graphs by looking at their subject.
?link [?link rdfs:label "Sisinf Lab" , ?link geo:lat ?lat ,

?link geo:long ?lon ]
?cinema [?cinema spatial:nearby ?lat2 ?lon2 1000 ’m’ , ?cinema

a lgdo:Cinema , ?cinema rdfs:label ?nameC ]
?object [?object spatial:nearby ?lat ?lon 200 ’m’ , ?object

a lgdo:Restaurant , ?object rdfs:label ?nameR , ?object geo:lat
?lat2 , ?object geo:long ?lon2 ]

Based on the above grouping, the Query Manager selects first the ?link group and
generates the Overpass QL expression
node["name"="Sisinf Lab"];
out body;

the system then executes the overpass query related to the ?object group which is
composed by taking into account the results of the previous one.
node(around:200,41.1095222,16.8778234)
["amenity"="restaurant"]
["name"];
out body;

the final sub-graph represents a set of overpassAPI calls. One for each node returned
by the previous query. As an example we have:
node (around: 1000,41.1085645,16.8768552)
["amenity" = "cinema"]
["name"];
out body;

4 Conclusion and Future Work

We presented LOSM, a service that acts as a SPARQL endpoint on top of Open Street
Map data. Differently from LinkedGeoData, it does not work by using dumps of the
OSM datasets but it queries directly the OSM database by means of a translation from
SPARQL to overpass API calls. The implementation is in beta stage and it currently
works on a subset of the SPARQL language plus the geographical query constructs from
the Jena Spatial extension. We are working to add new features from SPARQL as well
as to implement the whole SPARQL protocol.

References
1. Sören Auer, Jens Lehmann, and Sebastian Hellmann. Linkedgeodata: Adding a spatial dimen-

sion to the web of data. In Proceedings of the 8th International Semantic Web Conference,
ISWC ’09, pages 731–746, 2009.

2. Robert Battle and Dave Kolas. Geosparql: enabling a geospatial semantic web. Semantic Web
Journal, 3(4):355–370, 2011.

3. Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps. Pervasive
Computing, IEEE, 7(4):12–18, 2008.


