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Abstract. We present an idea of efficient query answering over an RDF
dataset employing a consumer-grade graphic card for an efficient com-
putation. We consider tree-shaped SPARQL queries and static datasets,
to facilitate data mining over RDF graphs in warehouse-like setups.
Reasons to see the poster: a) presentation of the approach with
examples; b) possibility of discussion about the implementation details.

1 Introduction

In this paper we consider answering a limited subset of SPARQL [9] SELECT
queries over a static RDF dataset with the simple entailment [2]. This task is
an important one from the perspective of semantic data mining systems [5]. We
aim to answer the question if it is feasible to build an RDF store, that would
efficiently use computer resources (esp. resources we tend to forget about, such
as graphic cards) and that could be embedded into a data mining or decision
support system and used directly on a workstation.

To define a class of considered queries, we reefer to a basic intuition how
SPARQL Basic Graph Pattern (BGP) can be represented as a graph, with nodes
corresponding to terms and variables and properties being arcs’ labels. We con-
sider queries with a single variable in the head, with WHERE clause consisting of
a single BGP, whose graph is a tree, every node label is either an URI or a vari-
able and every arc label is an URI. For short, we call such a query a tree-shaped
query. Such queries are posed in high quantities to RDF stores by systems such
as Fr-ONT-Qu [5].

Rest of the paper is organized as follows: in the Section 2 we present a brief
overview of a similar research, in the Section 3 we describe details of our solution
and we sketch future directions of our research in the Section 4.

2 Related work

Different aspects of processing semantic data on a graphics processing units
(GPUs) have been considered over a past few years. In the work [6], the authors
sketch a solution combining GPUs and CPUs to perform a fast aggregation and
a basic reasoning over RDF streams. In [3] a problem of an efficient parallel



RDFS rule-based reasoning is tackled, especially with consideration for dupli-
cated triples caused by multiple ways of inferring the same result. In [10] there
are considered methods for RDF indexing based on B+ trees and optimized for
NVIDIA CUDA platform3. Authors of [11] analyzed parallel join algorithms,
which are used to combine multiple SPARQL triple patterns into a solution for
a query. [8] employs the Rete Match algorithm to perform parallel rule-based
reasoning over RDFS knowledge bases.

There are numerous commercial-grade RDF stores available on the market,
such as GraphDB4, Virtuoso5 or Allegro Graph6, to just name a few. Yet, we
are not aware of any such a store employing computational power of GPUs.

3 Approach

In this section we present a detailed description of our work. For the inter-
ested readers, the implementation is made available in the GitHub repository
https://github.com/jpotoniec/MagicStore.

3.1 Loading phase

As data are loaded once and queried multiple times, we prefer to compute as
much as possible during the loading. This phase consists of two steps: building
dictionaries, when we apply Huffman coding [4] to URIs to fit as many triples as
possible into limited amount of graphics card memory; and building the index,
when the triples are sorted and packed into tight memory structures to allow for
an efficient search.

In the step of building dictionaries, the number of occurrences of every URI
in the data is counted. To obtain shorter codes, the URIs occurring as predicates
are counted separately from those occurring as subjects or objects. The results
are then used to build dictionaries of Huffman codes. As this step employs only
sequential reading and counting, it does not require a lot of memory.

In the step of building the index, the data are read again, and now every
triple is coded as a triple of Huffman codes. The triples are then packed into
a three-level index structure, as depicted in the Figure 1. The upper two levels
consist of consecutive cells, each containing a Huffman code and a pointer to the
next level, and cells in the bottom level contains only Huffman codes. Because
of the characteristics of the queries and the employed search algorithm, the first
level contains predicates, the second objects and the third subjects.

As the codes vary in length, so do the cells in the index. In every cell, the
first two bits of the first byte indicate length of the code in full bytes. Such an
approach wastes small amount of memory, because the codes rarely occupy full
bytes. We tested a scenario, where the pointer starts in the next bit after the

3 http://www.nvidia.com/object/cuda_home_new.html
4 http://ontotext.com/products/ontotext-graphdb/
5 http://virtuoso.openlinksw.com/
6 http://franz.com/agraph/allegrograph/
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Fig. 1. Three level index employed by the system: the first level consists of predicates,
the second level of objects and the third of subjects. Empty rectangles denote pointers
to the next levels. There are 11 triples in this index: 6 with predicate p0, 4 with predicate
p1 and 1 with predicate p2, namely (s10, p2, o5).

code, but it rendered out to be inefficient due to an additional overhead of bit
shifting on GPUs.

To limit memory usage, triples are loaded in batches. During reading, triples
are coded and stored in a vector. After the vector exceeds certain size, it is
sorted, transformed into an index and merged with the index built so far.

3.2 Query answering phase

We employed a fairly simple, bottom-up query answering algorithm, based on
iterating over the index built in the previous section. First, labels in a tree
corresponding to a posed query are coded and then the Algorithm 1 is called for
the root of the tree. Finally, returned values are decoded back to URIs.

Parallel for in the line 12 is realized as multiple calls of an OpenCL kernel [7],
that looks for a particular predicate and object in the index and returns range of
addresses in the third level of the index. This way only the first two levels of the
index are required to be available to the GPU, what takes into account rather
limited amount of memory available to the GPU. Merge in the line 14 is also
implemented in parallel using merge part from the bitonic sort algorithm [1].

4 Conclusions and future work

In this paper, we presented a system for answering tree-shaped SPARQL queries
over a static RDF dataset, a setup useful for semantic data mining. We believe
that the presented system can be put to use as a local RDF store backing seman-
tic data mining or decision support operations. We also think that this approach
could be combined with a typical RDF store to provide a hybrid system, that
uses GPU computations whenever possible.

In the future, we would like to compare it to normal RDF stores to ensure that
this specialized solution really performs better. We also plan to extend supported
SPARQL subset to literals and basic FILTER expressions (e.g. comparisons with
a constant value).
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1 Function Answer(n)
2 p← a predicate labelling an arc leading to n
3 if n has no children then
4 if label of n is an URI then
5 return subjects occurring with a predicate p and an object labelling n
6 else
7 return subjects occurring with a predicate p and any object

8 else
9 O =

⋂
c∈children of n Answer(c)

10 if O = ∅ then return ∅
11 S = ∅
12 for o ∈ O do in parallel
13 S ← S ∪ {subjects occurring with a predicate p and an object o}
14 return merged sets from S

Algorithm 1: The basic query answering algorithm.
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