
Software.zhishi.schema: A Software Programming
Taxonomy Derived from Stackoverflow

Jiangang Zhu1, Haofen Wang2, and Beijun Shen1?

1 School of Software, Shanghai Jiao Tong University, Shanghai, 200240, China
{jszjgtws,bjshen}@sjtu.edu.cn

2 East China University of Science and Technology, Shanghai, 200237, China
whfcarter@ecust.edu.cn

Abstract. In this paper, we are the first to construct a software
programming taxonomy from Stackoverflow. More precisely, we propose
a machine learning based method with novel features to capture
the hierarchical semantic structure of tags in Stackoverflow. A graph
pruning algorithm is applied to eliminate the conflicts by constructing
a Directed Acyclic Graph (DAG). As a result, our dataset, named
Software.zhishi.schema, contains 38,205 concepts together with 36,249
subsumption relations. In order to further test the usability of our
published data, we adopt a similarity computing task of words from
software programming which is one of the most fundamental tasks in the
software repository mining area. The results show that our dataset can
outperform other knowledge bases due to its high coverage with finer-
grained domain concepts.

1 Introduction

Taxonomy is playing a more and more important role in software engineering.
For example, in software maintenance such as measuring quality and predicting
defects, taxonomies can be used to measure the relatedness between documents
and create links between bugs and committed changes. While WordNet is one
of the most widely used taxonomy in the world, it does not play well in
software engineering due to the low coverage of software programming terms.
With the development of Wikipedia, several taxonomies such as Yago Taxonomy
and WikiTaxonomy have been developed and published on the Web. However,
Wikipedia cannot capture the fast changes of techniques in software engineering so
that it always fails to update in time. Also, some fine-grained terms about software
programming cannot be found in these taxonomies. Lack of a real-world useful
software programming taxonomy cramps the development of semantic applications
in software engineering.

Recently, Stackoverflow3 has becoming one of the most popular online QA
Web sites for software programming. A key feature of Stackoverflow is that it
allows users to annotate questions with tags. These tags represent vocabularies

? Corresponding author
3 http://stackoverflow.com/

http://stackoverflow.com/

2 Jiangang Zhu et al.

…

Unlabeled

Tag Pairs

Feature

Extraction

Training Data

Generation

Labeled Tag

Pairs

Lexical Feature

Co-occurrence-

based Features

Topic-based

Features

Semi-supervised

Learning

Tags Questions

Data:

Component:

Wikipedia-based

Features

DAG

Construction
Users

Fig. 1. The approach of constructing taxonomy from Stackoverflow

about software programming. They can also reflect the fast changing nature of
technique terms because they are created on the fly by Web users. So the large
amount of tags provide a promising way to build the taxonomy. In this paper,
we propose a machine learning based approach to construct the taxonomy. To the
best of our knowledge, we are the first to build a software programming taxonomy
from Stackoverflow. Our contributions mainly include: (1) We propose a semi-
supervised learning approach with novel features to detect subsumption relations
between tags from Stackoverflow. (2) The largest public available taxonomy about
software programming has been published with several access mechanisms. (3) An
application study is carried out to show the effectiveness of our dataset.

2 Approach

Features We adopt a classification model to determine the correct subsumption
relation of each tag pair. The details of features we used are as follows: Lexical
Feature LCS: the token-based longest common sub-string asymmetric similarity.
Co-occurrence-based Features CQ: the Normalized Google Distance on the
questions that the tags in the candidate tag pair have ever occurred in. CT:
the Normalized Google Distance on the tags that the tags in the candidate tag
pair have ever occurred with. CW: the Normalized Google Distance on the wiki
descriptions that the tags in the candidate tag pair have ever occurred in. CS:
the Normalized Google Distance on the sentences in all wiki descriptions that the
tags in the candidate tag pair have ever occurred in. CU: the Normalized Google
Distance on the users who have ever annotated the tags in the candidate tag
pair. Topic-based Features TW: the KL-divergence on the topic distributions
of the wiki descriptions of the candidate tag pair. TQ: the KL-divergence on
the topic distributions of the randomly selected questions of the candidate tag
pair. Wikipedia-based Features EW: the cosine similarity on the Wikipedia-
based representations (similar to ESA [1]) of the wiki descriptions of the candidate
tag pair. EQ: the cosine similarity on the Wikipedia-based representations of the
randomly selected questions of the candidate tag pair.

Semi-supervised Learning with Constraints The whole workflow of our
approach can be seen in Figure 1. We apply a simple but effective semi-supervised
learning framework - self-training. Moreover, in order to avoid error propagation
to the following iterations, we add two constraints and filter out incorrect or
redundant subsumptions by leveraging the global structure information. We have
identified two general types of constraints in subsumption detection problem: (1)

Software.zhishi.schema 3

Cycle Conflict Constraint: For two tags a and b, if there is a hypernym path from a
to b, then we could constrain the subsumption set to have no hypernym path from
b to a because subsumption relation is asymmetric. (2) Transitive Redundancy
Constraint: Given three tags a, b and c, if a subsumes b, b subsumes c and a
subsumes c, then the subsumption relation between a and c is redundant due to the
transitivity of subsumption. These constraints are quite important to guarantee the
quality of newly-added training data in each iteration. Cycle Conflict Constraint
can avoid introducing error examples. While the Transitive Redundancy Constraint
can remove redundancies in each iteration. This will guide the learner to learn more
fine-grained subsumption relations. To deal with the constraints, in each iteration,
we first construct a weighted direct graph. Then, a pruning algorithm is applied to
find an optimal taxonomy. We use the Support Vector Machine (SVM) algorithm
with RBF kernel to train the binary classifier. As for training data, we propose an
effective rule-based method to create labeled data. Some lexical-syntactic patterns
(similar to Hearst pattern. e.g. NP1 is a/an NP2) on descriptions of tags are
applied to generate candidate subsumption relations.

DAG Construction We introduce a graph-based algorithm that works well
in practice to convert subsumption relation set into an optimal tree-structured
taxonomy. We first construct a weighted directed graph from the subsumption
relation set. The weight of the edge is the confidence generated by SVM
classifier.Then, we apply Edmonds’ algorithm4 to find a maximum optimum
branching of a weighted directed graph. The resulting taxonomy will be optimal
with the sum of the edge weights is maximized.

3 Preliminary Results and Web Access

Subsumption Accuracy Evaluation According to the results, the accuracy
increases consistently when we perform more iterations. In particular, after the
seventh iteration, the learner with constraints achieves the best accuracy of
85.96%± 2.21% (1,000 samples with Wilson interval).

Linked Data Software.zhishi.schema creates URIs for all concepts. The pat-
tern http://seonto.apexlab.org/stackoverflow/tag/[label] comprises of
two parts. http://seonto.apexlab.org/stackoverflow/tag/ is the namespace.
The other part is the tag label. We use rdfs:subClassOf for subclassOf relations.
When Semantic Web agents that accept “application/rdf+xml” content type
access our server, resource descriptions in the RDF format will be returned. Our
dataset is available at http://datahub.io/dataset/software-zhishi-schema.

Lookup Service We provide a lookup service for users to access
Software.zhishi.schema. The service is available at http://seonto.apexlab.org/
lookup. Given a query, all tags whose labels exactly match the query are returned.
We can click on any parent tag or child tag to switch to another page view.
Such an interaction stands for navigation in our taxonomy. As a representative
example shown in Fig. 2, our taxonomy contains a hyponym path like “data
structures”→“tree”→“binary tree”→“binary search tree”→“avl tree”.

4 http://en.wikipedia.org/wiki/Edmonds’_algorithm

http://datahub.io/dataset/software-zhishi-schema
http://seonto.apexlab.org/lookup
http://seonto.apexlab.org/lookup
http://en.wikipedia.org/wiki/Edmonds'_algorithm

4 Jiangang Zhu et al.

Fig. 2. An Example of Software.zhishi.schema

SPARQL Endpoint We also provide a SPARQL endpoint for professional
users at http://seonto.apexlab.org/sparql.

4 Application

In this section, we investigate whether our dataset can outperform others
by constructing a similarity computing experiment on terms from software
programming. It is one of the most fundamental tasks in many research areas in
software engineering. Unfortunately, there is no benchmark data set for semantic
relatedness measuring on terms from software programming. In our experiment,
we make our own data set and offer it as a standard for testing terms semantic
relatedness5. We use the WUP [2] similarity as a semantic relatedness metric on
our dataset. WUP similarity on WordNet and ESA [1] are used as comparison
methods. We leverage Spearman rank correlation ρ as the evaluation measure.
Experimental result shows that our dataset significantly improves the performance
of term semantic relatedness measurement. The results of WUP on WordNet and
ESA are only 0.0238 and 0.2244 respectively while WUP similarity on our dataset
can achieve the spearman correlation of 0.4608.

Acknowledgements This research is supported by 973 Program in China
(Grant No. 2015CB352203), National Natural Science Foundation of China (Grant
No. 61472242, Grant No. 61402173) and the Fundamental Research Funds for the
Central Universities (Grant No: 22A201514045).

References

1. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In: IJCAI. vol. 7, pp. 1606–1611 (2007)

2. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the
32nd annual meeting on Association for Computational Linguistics. pp. 133–138.
Association for Computational Linguistics (1994)

5 The test collection is available at http://seonto.apexlab.org/termsim

http://seonto.apexlab.org/sparql
http://seonto.apexlab.org/termsim

	Software.zhishi.schema: A Software Programming Taxonomy Derived from Stackoverflow
	Introduction
	Approach
	Preliminary Results and Web Access
	Application

