
RinsMatch: a suggestion-based instance
matching system in RDF Graphs

Mehmet Aydar and Austin Melton

Kent State University, Department of Computer Science, USA
{maydar,amelton}@kent.edu

Introduction. In this paper, we present RinsMatch (RDF Instance Match), a
suggestion-based instance matching tool for RDF graphs. RinsMatch utilizes a
graph node similarity algorithm and returns to the user the subject node pairs
that have similarities higher than a defined threshold. If the user approves the
matching of a node pair, the nodes are merged. Then more instance matching
candidate pairs are generated and presented to the user based on the common
predicates and neighbors of the already matched nodes. RinsMatch then reruns
the similarity algorithm with the merged RDF node pairs. This process contin-
ues until there is no more feedback from the user and the similarity algorithm
suggests no new matching candidate pairs.

In our previous study [1], we proposed an algorithm for computation of entity
similarities of an RDF graph using graph locality, neighborhood similarity, and
the Jaccard measure. In the current study we use the proposed RDF entities
similarity algorithm for pairing entities which may be merged if approved by the
user. We make a similar assumption like the similarity flooding (SF) algorithm
proposed in [2], that elements of two graphs are similar when their adjacent
elements are similar. Comparing to SF, our technique requires more user inter-
actions and more iterations for computation of entity similarity, but each time
the similarity algorithm runs, it produces more accurate results assuming the
user provided accurate feedback. Also, merging the RDF nodes reduces the size
of the input data graph that the algorithm operates on, yielding less complexity
each time.

Fig. 1. Instance matching
process

User Interaction. RinsMatch presents the subject node pairs that have simi-
larities higher than a defined threshold to the user for possible instance matching.
The threshold is a configurable parameter and may be determined by the user. If
s1 and s2 are two subject nodes which have similarity higher than the threshold,
then we denote this pair by (s1,s2). If the user approves the matching of the
subject node pair (s1,s2), then RinsMatch merges the two subjects into a single



subject node which we denote by [s1,s2], and then all the predicates from both
merged subjects are retained by the newly created subject [s1,s2]. RinsMatch
then checks the common neighbors and predicates of s1 and s2 and generates
more instance matching candidate pairs by pairing the predicates p1 and p2 to
get (p1,p2) if p1 and p2 are connected to a common object from both s1 and s2. It
also pairs the object nodes (o1,o2) which are connected with a common predicate
by s1 and s2. RinsMatch then presents the generated matching candidate pairs
to the user and merges the pairs to get [p1,p2] and [o1,o2] if the user approves
that they match. RinsMatch then reruns the RDF node similarity algorithm on
the new RDF graph formed by merging matching entities. The steps above are
repeated until there is no more feedback from the user and no new matching
pairs suggested by the matching algorithm. Figure 1 shows an example of the
instance matching and merging process. As shown in the figure, based on the
similarities found from the similarity iterations, at phase 1 RinsMatch suggests
matching the subject nodes (v1,v5), and they are merged to get [v1,v5] with the
approval of the user. On phase 2, the algorithm checks the common predicates
of the new node [v1,v5]. Seeing that it connects to the neighbor nodes v4 and v6
with the common predicate p3, RinsMatch merges the nodes v4 and v6 to get
[v4,v6] once the user approves. On phase 3, the common neighbors of the new
node [v1,v5] are checked. Seeing that [v1,v5] is connected to a common neighbor
v2 with the predicates p1 and p4, then RinsMatch presents the pair (p1,p4) to
the user, and they are merged upon approval by the user to get [p1,p4]. The
output graph of phase 3 is input to phase 1, and the similarity iterations are
repeated until the optimum similarities and instance matching pairs are found.

Evaluation. We conducted preliminary experiments based on a subset of DBpe-
dia and a subset of SemanticDB, a Semantic Web content repository for Clinical
Research and Quality Reporting. For verification, we duplicated the original
dataset and changed the names of the nodes in the duplicated dataset by fol-
lowing a specific naming pattern. We used the original dataset as the source,
and the duplicated dataset as the target for the instance matching process, and
we leveraged the node naming pattern for verification. To summarize our ex-
periments: for the DBpedia, the source dataset had 90 triples with 60 distinct
subject and predicate nodes. 100% of the nodes were matched to a target graph
node semi-automatically. The algorithm generated 20 instance matching candi-
dates with 85% accuracy. For SemanticDB, the source dataset had 2500 triples
with 520 distinct subject and predicate nodes. 86% of the nodes were matched to
a target graph node semi-automatically. The algorithm generated 310 instance
matching candidates with 95% accuracy.

References

1. Mehmet Aydar, Serkan Ayvaz, and Austin C Melton. Automatic weight generation
and class predicate stability in rdf summary graphs. In Workshop on Intelligent
Exploration of Semantic Data (IESD2015), co-located with ISWC2015, 2015.

2. Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A
versatile graph matching algorithm and its application to schema matching. In Data
Engineering, 2002. Proceedings. 18th International Conference on, pages 117–128.
IEEE, 2002.


