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Abstract. Distributed automation system (DAS) architecture gathers
all the hardware and software automation components in order to re-
alize control and monitoring tasks for factory process. To submit and
commercially secure an architecture offer, system integrators must as-
sess the performances of a wide range of candidate architectures, which
enforce functional requirements. Among many available methodologies,
Coloured Petri Nets (CPN) have already proven their capabilities to as-
sess DAS architecture performances. However, performance assessment
using CPN involves a manual definition of the required models which
is time-consumer, when a huge amount of different architectures must
be considered. This paper introduces a practical CPN-based methodol-
ogy to automatically generate the relevant architecture CPN model by
instantiation and parameterization of generic CPN components model.
It allows easily defining, assessing and validating the architecture. This
study is supported by Schneider Electric Company and illustrated with
process automation reference architectures.

Keywords: Coloured Petri Nets, performance assessment, distributed control
architecture, model synthesis.

1 Introduction

A Distributed Automation System (DAS) is composed of several processing de-
vices such as: Supervisory Control and Data Acquisition (SCADA), Program-
mable Logic Controllers (PLC) or I/O devices (actuators, sensors, transmitters)
implementing all required functions for controlling and monitoring an industrial
system. During the pre-sales phase of an automation project, system integrator
(SI) defines DAS proposals that fulfil specifications contained in customer’s call
for tender. This pre-sales phase is characterized by low information about the



project, short time range to submit an offer, and limited financial resources and
manpower.

Available information provided by the customers is generally limited to the
piping and instrumentation diagram (P&ID) which contain the list of actuators,
transmitters and sensors of the process system to be controlled and the process
operating control. This P&ID diagram is associated with the specifications of
the minimal DAS performances in terms of:

– temporal performances gathering all response time of the architecture and
defined by the time from end-to-end delays, latencies and freshness (from
the occurrence of an input and the activation of an output);

– PLC scan time defining the amount of time takes by PLC’s CPU to perform
its entire automation tasks based on the process and external inputs;

– load performance, defining the load rate of components having limited re-
sources and sharing it with other components in order to operate con-
trol/command tasks.

With these limited information, SI in charge of defining and implementing
DAS architecture selects from automation component manufacturer hardware
and software that fulfil the I/O and P&ID requirements. A wide range of DAS
architectures may answer to the functional requirements but only some of them
fulfil the required performances. To achieve performances assessment of candi-
date DAS, SI are currently using 3 solutions. The first one consists in designing
the architecture on the basis of manufacturer’s reference architectures that pro-
vide some guarantee on the theoretical behaviour and performances. The main
advantage of this solution is to reduce the time and the resources for submit-
ting a commercial offer. However, once the architecture is deployed, some gaps
may be noticed between expected and implemented performance that lead to
architecture modifications, cost and penalties for the SI. The second solution is
to oversize architecture through critical components which can lead to perfor-
mance bottlenecks. Even if the performances will be guaranteed, this solution
represents a real commercial risk due to the high cost of the architecture. The
third solution is to test the future architecture or its main parts in a laboratory.
This solution has double guarantees on its performance and on the technical
pertinence of the commercial offer. The main disadvantage of this solution is the
investment in term of financial and manpower without any warranty on winning
the project.

The limits of these solutions inspire Schneider Electric to develop a new
solution able to assess the performance of the DAS architecture during pre-sales,
in order to secure a commercial offer. The objective is to provide a software tool,
which will be able to model, simulate and assess performances of several and
various ICS architectures without engaging huge time, manpower and financial
resources.

Section 2 introduces the main industrial and scientific requirements of the
expected performance assessment software tool. Section 3 presents the related
works. Section 4 details our contribution enabling automatic generation of Colou-
red Petri Nets models to support a fast assessment of several potential architec-
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tures. Section 5 provides a case study based of Schneider Electric DAS architec-
tures. Finally, section 6 concludes and gives direction for future works.

2 Requirements

2.1 Industrial requirements

The main requirement about the expected software tool for DAS performance
assessment is illustrated on the Fig. 1. The Input of the tool is the description of
the DAS architecture through domain specific language (DSL) [16] that will be
provided by the System Integrators. It contains the description of commercial
components which are involved in DAS architecture, the material links between
these components and the main information flows that are exchanged between
them. This description also defines DAS performance that must be assessed.
From it, the tool must provide performance assessment:

– requires building a formal model of the DAS architecture representing the
behaviour of the DAS architecture;

– compute DAS performances from the DAS formal model. If the assessed
performances are not compliant with the specified ones, the tool must allow
a quick modification of the architecture from the DSL.

Fig. 1. DAS performance assessment tool

Taking into account the need to assess a wide range of potential architec-
tures, those two steps (modelling and assessment) must be, as most as possible,
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automatic to be compliant with the limited resources and time pressure during
the pre-sales stage. The opportunity to develop a library of DAS component
behaviour model, based on existing commercial components, is a significant step
towards to the automatic DAS model generation. In other words, DAS behaviour
model is expected to be automatically generated from the topology of the DAS
architecture and by instantiating it library of component behaviour.

2.2 Scientific requirements

The main challenge encountered in the pre-sales context is related to the uncer-
tainty modelling. This uncertainty covers several aspects of the timed behaviour
of the DAS architecture [15][19]:

– the features of the DAS architecture are not precisely known: the behaviour
of the component and the use context of the control system can only be
approximately estimated by the SI (for instance, the processing time of PLC
depends on the execution of embedded software, which can only be approx-
imated at this stage, through a uniform distribution for example);

– the events occurred on the DAS architecture (messages emitted by sensors
and actuators, control actions sent by the human operators, . . . ) have to be
considered as random events in order to model several operating modes; these
random events are spatial (the DAS components exchanging information
are not precisely known) and temporal (the occurrence time when a device
initiate a communication is not known neither).

Consequently, the formalism to be used for performance assessment must
enable the characterization of timed behaviour, including random input param-
eters with probability laws distribution, some of them may be non-exponential
(uniform distribution, Poisson, Weibull, . . . ).

Due to the complexity of industrial process, DAS architectures are structured
into hierarchical levels. Each level gathers components based on the services
they provide, the type, the size and the frequency of exchanged information [8].
These information are exchanged within each level and also between different
levels through communication networks. Moreover, components providing same
services can operate with slight behavioural differences when providing them.
Those points lead to additional requirements:

– formalism has to support a hierarchical representation of the ICS: high level
model representing the ICS topologies, definition of generic models for all
ICS components;

– formalism has to support the modularity, re-usability and parametrization
of the models.

The scientific problem addressed by this paper focus on the generation of
DAS model using a formalism that support the previous requirements in order
to quickly provide models and performance assessments for a wide range of DAS
architectures.
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3 Related works

Performance assessments of DAS architecture have been studied during these
past years. Many methodologies have been developed through two main families:
analytic evaluation and simulation.

Analytical evaluation uses formal calculus to compute the end-to-end delay
for DAS components. Analytic approaches often provide the temporal perfor-
mance in terms of a maximal time delay between components. This is the case of
the network calculus, real time calculus, trajectory approach or (max+) algebra,
which are determinist theories of queuing systems [4][5][1] or the model-checking
which is based on the formal verification of time communication between compo-
nents [3][18]. Usually, these theories assume deterministic knowledge of the traffic
exchanges. Other approaches rely on probabilistic models, such as Markov Chain
theory [7], providing analytically an estimation of the response time. If system
models are homogeneous to a Markov or Semi-Markov processes (mainly while
using only exponential distributions). This limitation, with regard to the prob-
abilistic features of the DAS requirements, makes this method unsuited for this
context.

Simulation consists of an event-driven or real-time execution of the model.
Modelling a DAS architecture basically relies on models from the Discrete Event
System (DES) theory (timed automata, Petri Nets, DEVS, . . . ). In case of proba-
bilistic model, several traces must be executed to compute statistical information
about the performance. It is generally done using Monte-Carlo simulation using
probabilistic state-based models.

Among many methodologies that have been studied, Petri Nets have already
proven their efficiencies on modelling and assessing DAS performance. In particu-
lar, Coloured Petri Nets (CPN) [9][10] have proven their efficiencies of modelling
and assessing performance of DAS. In [12], the models focus on DAS control
devices whereas network performances have been retrieved from experimental
benchmark studies and in [2], the modelling is extended to specific network de-
vices (Ethernet switches).

CPN is a discrete-event modelling language combining the capabilities of
Petri nets with a high-level programming language. Main differences with ordi-
nary PN are:

– colours identifying and characterizing a token with different data types (e.g.
Boolean, integer, string, or more complex data structure);

– hierarchical concept that promotes the modelling of complex CPN by com-
bining several small CPNs; it overcomes the lack of compositionality, that is
one of the main critiques raised against Petri net models;

– CPN may be extended to time concept (deterministic or stochastic delay).

Time is modelled using a time value, also called a time stamp, adding a tag
to the tokens in addition to their colours. When a transition is enabled, it is fired
and changes the time stamps of tokens which are deposited in its output places.
In these places, the tokens remain frozen and can not be used for enabling other
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transitions until the current model time (as given by the global clock) is smaller
than their time stamps. As soon as the time stamp of the tokens is less than
or equal to the current time model, these tokens can enable other transitions
which are instantly fired. In other words, this behaviour matches the formalised
theoretical behaviour of P-timed Petri net operating at its maximum speed tran-
sition. Moreover, timed transitions may be fixed (deterministic) or stochastic,
i.e. which fire after a random enabling time. At last, CPN may combine im-
mediate transition (without time constraints) and stochastic transitions. Such
behaviour is covered by a particular class of Generalized Stochastic Petri Nets
(GSPN) defined in [11]. Regarding the immediate transitions, CPN behaviour
is the same than in GSPN, but unfortunately, the behaviour of the stochastic
transitions differs to the firing of stochastic transition that is in competing. A
mechanism that force a sojourn time in the input place of a stochastic transition
has been proposed by [14] to ensure a behaviour that is compliant with formal
GSPN with enabled memory policy for firing transitions. Main benefit of using
CPN instead of GSPN in our case is that these distributions laws are not limited
to exponential ones, the drawback is that, our models will be limited to the use
Monte-Carlo simulation.

For all these reasons, CPN appears to be an efficient choice for the pre-
sales software tool to be developed. The work is supported by CPN tool [10] for
modelling, simulation and performance assessment. Thereby functions described
below, use the CPN tool formalism through the Standard ML programming lan-
guage [13]. However, it must be noticed that, CPN definition is independent
of the concrete inscription language. It involves that any other language than
CPN ML can be used as long as the selected languages includes data type, vari-
able declaration, expression definition, value bounding and functions definition
is available.

Nevertheless, in the several related works about performance assessment us-
ing CPN, the models have been specifically defined manually for a given DAS
architecture. The objective of this paper is to define a modelling framework that
enable automatic generation of CPN models for performance assessment in the
pre-sales context.

4 Proposal

4.1 Generic DAS architecture modelling

CPN manual modelling of DAS architecture is complex and time consuming due
to the variety of network topologies and also to the number of connected com-
ponents on a topology. However, despite network topologies variety and process
type, DAS architectures involve the same families of components (SCADA, PLC,
I/O devices, network, . . . ). Starting from this statement, a generic modelling ap-
proach can be proposed.
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A generic hierarchical CPN model representing common topology structure
of DAS architecture can be defined. This generic CPN model is able to represent
any type of DAS topology. This hierarchical CPN model is the CPN model holder
during the automatic model generation and will be called CPN holder (Fig. 2).
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Fig. 2. CPN Holder

The CPN holder model is based on defining generic links between several
component families. A family gathers generic components involved in DAS ar-
chitecture (SCADA or PLC for example). A family may embed several different
components through an instantiation process. At last, a family instantiates some
generic CPN models of elementary components. Components having similar be-
haviour and operating mode are modelled using a unique CPN generic model.
Those CPN models are customizable by using a set of parameters defining their
specific features (for example, two PLC of the same family may be able to pro-
cess different amounts of requests per scan). Each component is modelled with a
generic interface (Tx places for outgoing messages from the components and Rx
places for incoming messages) respectively connected to an output buffer and an
input buffer (Fig. 3(a)). Also the specific behaviour of a component has to be
represented inside the substitution transition Functional architecture component
in the Fig. 3(a).

The Fig. 3(b) provides more details about component internal behaviour.
One more time, the internal structure is generic: the component is dotted with
a packet generator (representing the fact that any components can be spon-
taneously the emitting source of a message) and with an observer transition
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Fig. 3. CPN component generic model

(assessment transition) holding all monitors related to performances of this com-
ponent family. Note that the ML function that is triggered when firing the packet
generator transition is specific for each component and depends on the way the
component is initialized. The components may sent periodic messages (modelled
by deterministic durations using a timed function associated to an output arc of
packet generator transition), or non periodic messages (modelled as a random
emission thanks to a distribution law associated to another output arc of packet
generator transition). For example, SCADA sends messages described by a Pois-
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son law when it corresponds to user request and by a uniform distribution when
it corresponds to a refresh request. At last, the substitution transition “compo-
nent behaviour” contains the specific internal behaviour of each component.

Generic components on the CPN holder are connected to a sub transition
called Network. Different protocols might be used in DAS. Since a large set
of modern protocols is based on switched Ethernet (especially those used in
Schneider Electric solutions), we consider here only the modelling of low layers
(Ethernet). The proposed work could be then extended by taking care to ap-
plication layer protocols like Modbus/TCP, Profinet or Ethernet/IP. It would
require to model parameters like frame format and communication model (like
slipstreaming effect or master/slaves) into the generic components. An exhaus-
tive model would have to take into account the different network protocol states
and it would lead hence for protocol like TCP to a huge amount of places and
arcs in each component. In this paper, the related sub transition represents an
Ethernet switch with multiple ports for each network. It will enabled to tackle
the delay and packet loss that may happened on such device. As shown on the
Fig. 4, the generic model of this switch is composed with a port for each generic
component model. This port connects generic model of a component through the
TX and RX place and has a unique ID. This ID is static value fixed while defin-
ing the CPN holder through generic component families. Add to these ports,
there is a buffer storing and forwarding the tokens between ports based on the
arrival order. Finally, there is the switching table place holding the architecture
switching table that must be parametrized.

Txi Rxi

Switch 
BUFFER

TxJRxJ

Switching 
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Port component iPort component i

Port_j

Port component jPort component j

init_Parameters ()

Fig. 4. Swicth model
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The tokens that are involved in CPN holder, family and components models
represent a message, which is exchanged across the network between some of
those components. This communication token must have at least two colours
set which are the source of the token and the destination of the token. The
value of source colour set will be the ID of the component generating the token.
The values of the destination will be the ID of the component receiving the
token. Parametrization of the model and instantiation of components used in
the families, as well as families used in the DAS architecture, are done through
the token and colour set declaration. The basic idea is to define a generic and
hierarchic CPN structure using substitution transition, which is customizable
for a given DAS thanks to the initial marking.

4.2 Parametrization and instantiation

Automatic CPNmodel generation is done through three mains steps. Component
(for example Component i_1 in the Fig. 2 may contain several devices of the
same kind; the token within the place component embeds the identification of
components that are present in a given DAS architecture and their parameters.
If components have different behaviours or different operating modes, different
CPN models are used for their description (this is the case in Fig. 2 for component
i_1 and component i_2 ). Family is a generic class of components (SCADA,
PLC, I/O devices, network); the token within the place family in the Fig. 2
contains the instantiation parameters of the family. For example, tokens in the
place switching table are coloured by the product of two colours set: the unique ID
of all instantiated components of the Architecture representing for the switching
table the MAC address of the component and the unique ID of the port on which
the component is physically connected. Thereby, there are as many as switching
table tokens than instantiated automation and networks (switches) components.

The global DAS architecture may (or not) involve the whole identified fami-
lies; the token within the place Architecture contains information for instantiat-
ing these families to give rise to the DAS architecture.

The definition of the tokens colours within these three parametrizations and
instantiations places (component, family, architecture) is based on the definition
of ML functions. The initial marking within the place start must be automat-
ically generated from a Standard Generalized Markup Language (SGML) [6]
describing the DAS architecture.

Colour sets are created based on the parameters of the components. That
means each DAS architecture components has specific parameters, and for each
parameters a colour set must be declared. The colour set defining a component
is done by associating all parameters colour set. With CPN ML, this association
can be done with the declaration type record. Once all colour set related to
parameters for each component are defined, then associated to the colour set of
the component, the configuration colour set can be created. This configuration
colour set is a union (CPN ML union) of all components colour set in order
to create an entity representing a CPN model in terms of colours set of a DAS
architecture.
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To illustrate these colours sets declaration, let’s consider four component
families (Client, SCADA, PLC and I/O Device). Let’s consider Client has three
parameters which are Cp1, Cp2 and Cp3. The two first parameters represent an
integer values and the last one represent a string value. SCADA has two param-
eters both are integer type and called Sp1, Sp2. PLC has one integer parameter
called PLCp1. Finally, I/O devices have one integer parameter called Dp1. First
of all, colour set corresponding to the parameter type of each component must
be declared. In CPN ML the declaration is done as follow:

Component parametrization
colset Cp1 = INT; colset Cp2 = INT ; colset Cp3 = STRING;
colset Sp1 = INT; colset Sp2 = INT ;
colset PLCp1 = INT; colset Dp1 = STRING;

Then the colour set parameters are associated to a component in order to
create the component family colour set. For that a variable holding the value of
the colour set parameters is associated to the colour set previously defined.

Family parametrization
colset Client = record cp1:Cp1 * cp2:Cp2 * cp3:Cp3;
colset SCADA = record sp1:Sp1 * sp2:Sp2;
colset PLC = record plcp1 : PLCp1; colset Device = record dp1 : Dp1;

Finally, the architecture colour set is defined by combining all component
colour set. This is done by association the component colour set to a variable
holding the component instantiation and configuration.

Architecture parametrization
Colset Architecture = union Client:ClientFamilly + Scada:ScadaFamilly
+ PLC:ControllerFamilly + Device:DeviceFamilly

Based on this initial marking, the ML functions init_archi(), init_family()
and init_component() successively instantiate the family and components in-
volved in the DAS architecture. For example, a token will be generated to in-
stantiate a family model within a given DAS architecture only if this family is
involved in it. The same rationale is applied for instantiating components that
are used by a family instance. Note that we assume that the network family
will be always instantiated. Once these instantiations have been processed, the
init_parameters() function will parametrize the instantiated components based
on their specifications (specific internal features such as periodic time scan, pa-
rameters of the probability distribution, . . . ).

4.3 Automatic generation of CPN model

Based on the rationales for modelling, instantiation and parametrization that
are presented in the two previous sections, the Fig. 5 provides an overview of
the DAS model generation. It summarizes and schedules the different tasks to
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Fig. 5. Overview of DAS CPN model generation

perform the transformation of an informal description of DAS architecture into
a CPN model as required for its performance assessment.

Thereby with these coloured tokens, instantiation and parametrization ML
function, the CPN model of the architecture is generated automatically without
manually defining the desired model. Only parametrization functions have to be
written regardless the architecture to define. Then by using monitors on defined
transition, performance can be assessed.

5 Application

This section illustrates the automatic model generation through instantiation
and parametrization tokens. It shows how fast and easy is the generation of
CPN model of any DAS architecture regardless it size, complexity or topology.
However, we warn the reader about the fact that the CPN DAS model generation
is based on the DAS unformal description but also on the CPN holder and a
library of CPN component models that have been previously defined by a CPN
expert and that are specific for each DAS supplier company.
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5.1 Case study

Two case studies have been selected to illustrate the generation of DAS models.
The first one is the (Fig. 6) representing an example of small DAS archi-

tecture, using Schneider Electric component for water treatment in small size
cities. This architecture is based on a linear full-segmented network where all
automation components are connected to a switch. The three hierarchical levels
(operation, control and device) of DAS architecture are here interconnected by
Ethernet-based protocols.

Fig. 6. Small DAS architecture dedicated for water treatment plan

The second DAS architecture (Fig. 7) represents a mid-size architecture for
cement plant. This architecture is separated into three communication layers:
the operation network, the control network and the device network. All these
networks are based on the Ethernet protocol. Each communication layers corre-
sponds to a DAS structure level.

5.2 Automatic generation of the CPN model

In order to illustrate the automatic model generation, a CPN holder has been
defined (Fig. 8) to meet the structure of any Schneider DAS architecture. This
model shows 4 families of components. The client family gathering all the oper-
ator and engineering workstation, batch server etc. The SCADA family repre-
senting the monitoring and acquisition system PLC & PAC family gathering all
controllers and Devices family gathering end devices for task execution.

All these families are connected to the network family representing the model
of a network switch. Inside each family, components are described by the CPN
generic structure of Fig. 3. Component interface consists in a monitor transition
and two places RX and TX for the communication as well as a token generator
for initiating a communication. Specific behaviours of the components are stored
in a library that has previously been built by component and CPN experts. For
confidentiality matters, the CPN model of Schneider components are not shown.
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Fig. 7. Mid-size DAS architecture dedicated for cement plant

The CPN holder model is manually defined once by the expert on Petri
nets modelling as well as the CPN component library. Performance model are
automatically generated from the CPN holder and component library thanks to
initializing tokens. This initialization is done by firstly generating an SGML file
(through an XML file for instance) from the informal DAS description using DSL,
including the parameters specification (number of components, input parameters
etc..). Secondly, this SGML file is processed using a parser algorithm [17] in order
to extract values. Finally, the extracted values are assigned as colour set to the
ML functions of each component family (refer to section 4.2).

To illustrate the initialization process for architectures of Fig. 6 and Fig. 7,
the client, SCADA and PLC value declaration is presented. Same rationale is
used for the I/O devices components but their large number does not allow a
presentation of parametrization tokens within this paper (Fig. 6 involves 2 client
workstations, 1 PLC and 14 devices while Fig. 7 involves 6 client workstations,
3 PLC, 1 SCADA and 40 devices.). Let’s consider V alinteger as an integer value
and V alstring as a string value. Considering that all values of these variables
can be automatically obtained by parsing the XML file that describes the DAS
architecture, parametrization is given by Table 1.
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When the transition init architecture is fired, the functions are initialized
based on the values previously assigned, and then tokens are generated for each
instantiated family. If a family is not instantiated (for instance the SCADA
family in Fig. 6), no token will be generated due to the fact that the values of
the SCADA will be null. The number of tokens corresponds to the number of
components that are initialized. It means that two tokens are generated in the
place client Family for the model of the Fig. 6. For the DAS of the Fig. 7, 6 tokens
are generated. Colours of each generated tokens are defined by the parameters
values that are extracted using the function InitClient(). The same rational is
used for the other components.

In other words, system integrators have to identify on the DAS architectures
performances which have to be assessed and define their parameters. This step
does not require to be a CPN expert. This result is captured with a dedicated
tool using DSL. This description is exported to generate a formal description of
the defined architecture using SGML such as XML file. This file is then parsed
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Table 1. DAS parametrization

Fig. 6 DAS structure declaration
Val Client = ref [Client (cp1 = V alinteger , cp2= V alinteger; , cp3 = V alstring),
Client (cp1 = V alinteger, cp2= V alinteger , cp3 = V alstring) ];
Fun InitClient ( ) = (!Client);
Val PLC = ref [PLC (plcp1 = V alinteger)]; Fun InitPLC ( ) = (!PLC)
Val SCADA = ref []; Fun InitScada ( ) = (!SCADA)

Fig. 7 DAS structure declaration
Val Client = ref [Client (cp1 = V alinteger , cp2= V alinteger; , cp3 = V alstring),
Client (cp1 = V alinteger, cp2= V alinteger , cp3 = V alstring) ]
Client (cp1 = V alinteger, cp2= V alinteger , cp3 = V alstring) ]
Client (cp1 = V alinteger, cp2= V alinteger , cp3 = V alstring) ]
Client (cp1 = V alinteger, cp2= V alinteger , cp3 = V alstring) ]
Client (cp1 = V alinteger, cp2= V alinteger , cp3 = V alstring) ];
Fun InitClient ( ) = (!Client);
Val PLC = ref [PLC (plcp1 = V alinteger), PLC (plcp1 = V alinteger),
PLC (plcp1 = V alinteger)]; Fun InitPLC ( ) = (!PLC)
Val SCADA = ref [SCADA(sp1 = V alinteger , sp2 = V alinteger) ];
Fun InitScada ( ) = (!SCADA)

to provide the CPN parametrization and instantiation functions with the re-
quired values. Consequently, the generation of a formal CPN model from a DAS
description can be considered as hidden for the system integrators and does not
required any expertise about CPN modelling.

5.3 Performance assessment

The aim of this automatic model generation is to assess the performances of
DAS architecture using CPN methodology. In order to evaluate its efficiency,
an experimental reference has been deployed in laboratory (DAS architecture of
the Fig. 6) in which performances have been measured. Experimentation focuses
on the end-to-end delay, i.e. the time for the message to go from the client to a
device through the PLC. This performance is monitored thanks to:

– a time stamp that is assigned to the tokens leaving the output buffer of a
client; it requires the definition of an additional colour that records the time
stamp value;

– a monitor is triggered when the transitions representing the reception inter-
face of a component are fired. This monitor will compute the difference time
between the current time of the simulation and the time stamp of the emit-
ted token. Each device has its own monitors in the same transition before
“input buffer” place. The link between emitted tokens and received tokens is
made thanks to the unique IDs defined for each instantiated component.
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The architecture is split into four groups of devices; each group has a different
scan rate. The operator workstation and engineering workstation send periodi-
cally requests to the PLC in order to get information retrieved by the PLC from
the devices. These workstations also send non periodic requests to the devices
through the PLC according to user’s actions. All these actions are modelled
using packet generator transition (deterministic laws produces a P-temporised
behaviour while non periodic requests follow a Poisson process with a rate λ, i.e.
duration between two successive requests is given by an exponential law with
rate λ). The performance to be assessed are the end-to-end delay (emission of a
request by the client and reception of an answer by the client, i.e. the sequence
client-PLC-devices-PLC-client). The Table 2 shows the configuration of the ar-
chitecture, values are in milliseconds. Note that the processing time of some
components (PLC, network switch, ...) is randomly distributed on an interval
according to a uniform distribution law; this stochastic feature is embedded in
the CPN component library and is not parametrizable.

Table 2. Architecture configurations

Type Value
Device Group 1 scan time 25ms
Device Group 2 scan time 50ms
Device Group 3 scan time 75ms
Device Group 4 scan time 100ms

PLC cycle time 50ms
request period 100ms

Client 1 (operator workstation)
aperiodic request exponential law (1/λ =100ms)
request period 150ms

Client 2 (engineering workstation)
aperiodic request exponential law (1/λ =100ms)

The Table 3 shows the performance results of the deployed architecture and
the performances assessed by the simulation tool. All time are in millisecond,
the performances are measured in terms or minimal, average and maximum time
values. Confidence interval (CI) is given by half length for 95%. Time unit of the
CPN model is the millisecond, the length of one simulation run is 20 minutes
and 15 replications have been performed. The performances assessed by the
simulation tool are close to the results retrieved from the laboratory. However,
the maximum values are a little bit more important for the experimental run; it
is mainly due to the firmware load on the PLC which is basically modelled as
distribution law and to the limitation of our CPN model of the network.

6 Conclusion

This paper has demonstrated firstly that CPN is a relevant choice for modelling
and assessing the performance of DAS architecture. Face to the pre-sales con-
text constraints, the paper presents a relevant solution based on the automatic
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Table 3. Performance assessment results

Devices group 1 Devices group 2 Devices group 3 Devices group 4
Laboratory results Min Avrg Max - Min Avrg Max - Min Avrg Max - Min Avrg Max -

Client1 78 129 180 - 103 116 205 - 128 179 230 - 153 204 255 -
Client2 81 154 228 - 106 167 253 - 131 205 278 - 156 230 303 -

Simulation results Min Avrg Max CI Min Avrg Max CI Min Avrg Max CI Min Avrg Max CI
Client1 76 127 178 1,9 104 115 203 2,2 124 178 229 2,7 151 203 256 3,3
Client2 79 153 226 2,5 107 169 251 2,9 131 204 280 3 152 228 307 3,8

generation of a CPN model. This automatic generation has 3 mains advantages:
the CPN model holder and the library of CPN component models are done only
once, a user without experience on CPN modelling can easily with parametriza-
tion generate CPN models through SGML description and finally, our approach
allows testing a wide range of architectures without spending time on the mod-
elling phase. Thereby this automatic model generation is a huge step forward for
industrial companies to use CPN as model definition and simulation. However,
paving the way towards a real industrial use of our approach requires further
works:

– to face the large size of the parametrization and instantiation token for
industrial application; indeed, this size may have a negative impact on the
simulation time;

– to enrich the modelling of the network family which is currently limited to
the modelling of switches with several ports.
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