
Layered Data: a Modular Formal Definition
without Formalisms

Alban Linard12, Benoît Barbot3, Didier Buchs1, Maximilien Colange12,
Clément Démoulins5, Lom Messan Hillah4, and Alexis Martin4

1 Centre Universitaire d’informatique, Computer Science Department,
University of Geneva

2 Inria, LSV, ENS Cachan, Université Paris-Saclay, France
3 LACL, Université Paris Est Créteil, France

4 Univ. Paris Ouest, and Sorbonne Universités, UPMC Univ Paris 06,
CNRS, LIP6 UMR 7606, 4 place Jussieu F-75005 Paris

5 EPITA Research and Development Laboratory (LRDE)

Abstract. Defining formalisms and models in a modular way is a painful
task. Metamodeling tools and languages have usually not been created
with this goal in mind. This article proposes a data structure, called
layered data, that allows defining easily modular abstract syntax for for-
malisms and models. It also shows its use through an exhaustive example.
As a side effect, this article discusses the notion of formalism, and as-
serts that they do not exist as standalone objects, but rather as relations
between models.

Keywords: metamodeling, modularity, formalism

1 Introduction

CosyVerif [2] is a software platform dedicated to the modeling and verification
of complex systems. It allows its users to create models in various formalisms,
such as automata or Petri nets, and run tools on them. It also provides a rarely
found feature : the ability to create new formalisms, either derived from the
already existing ones, or defined from scratch. Formalisms are used in CosyVerif
to generate model parsers and pretty-printers, graphical editors, and to select
what tools are available to the modeller.

This nice feature allows researchers that use CosyVerif to define models, for-
malisms, or parts of formalisms, from “building blocks”, that we will call “mod-
ules” within this article. For instance, one can build the Symmetric Petri nets
formalism from the Petri nets formalism, mixed with a module for color expres-
sions.

These blocks are defined independently by the members of a whole commu-
nity instead of just one researcher. This raises several problems: the expressive-
ness, simplicity and maintainability of such modular definitions. The previous

formalism definition language used in CosyVerif [1] still fails to represent com-
plex modular formalisms, even though it has been designed carefully towards
this goal.

This article presents a new definition language for formalisms and models to
be used within the CosyVerif platform, that seems powerful enough to represent
a wide range of modular formalisms. To do so, we propose another modeling
approach called layered data. It is a data structure representing trees organized
in layers. A flattened view allows walking through the data. We also show how
they can be used to represent the abstract syntax for a complex hierarchy of
formalisms and models. Starting from no predefined formalisms, and using only
a few building mechanisms, we are able to create step-by-step a formalism for
Petri net state spaces.

2 Layered data

Layered data are a representation for finite data, structured as directed rooted
trees with labels on vertices and edges, and organized in layers. It is suitable,
among other things, for configurations (where a user configuration can override
parts of a default one), or for the representation of formalisms and models. We
present the latter use in this article.

We present the notions of layered data through an informal illustration before
the formal definition. The definition itself is given in three steps, each one adding
new notions above its predecessor. Definitions should then be interpreted as
redefinitions of what has been presented before. For the illustration, we choose
an expert in trees: Rahan [15].6 He is a fictional smart prehistoric man, that
travels across the world, learns from people and transmits knowledge to the
others.

One day, Rahan comes to a village with a strange tradition. Every villager
plants and grows a tree in a clearing (the same for all). During his life, he
puts all his knowledge represented as pictures within his own tree, in order to
transmit knowledge to future generations. Trees are organized to help searching:
each branch correspond to a domain, and its ramifications to subdomains, and
is painted with a descriptive symbol. Pictures of knowledge can be put at any
fork or leaf.

In this section, we note:

– B the set of Boolean values;
– P(S) the powerset of S;
– L(S) the lists of elements in S, defined inductively by: the empty list [] ∈
L(S), and ∀s ∈ S,∀l ∈ L(S), s :: l ∈ L(S); and a convenient notation using
square brackets: [e1, ...en] = e1 :: ...en :: [];

– ⊕ a concatenation operator on lists, such that ∀l ∈ L(S), [] ⊕ l = l, and
∀s ∈ S,∀l, l′ ∈ L(S), (s :: l′)⊕ l = s :: (l′ ⊕ l);

6 We are very sorry for Tarzan, who did not pass the casting.

288 PNSE’16 – Petri Nets and Software Engineering

– ⊥ a special value that denotes “no value”; it cannot appear in any list: ⊥ ::
l = l, this implies for instance that [a,⊥, b] = [a, b].

The trees can be modeled as:

– L the domain of labels (drawings) on edges (branches) or vertices (forks or
leaves);

– L⊥ the domain of labels augmented with a special value ⊥ that means “no
value” (no drawing); L⊥ = L] {⊥};

– V the set of vertices, defined by: 〈label , branches〉 ∈ V for all label ∈ L⊥ and
branches ∈ L → V⊥; we note v.label (respectively v.branches) the value of
the label (respectively branches) part of a vertex v ∈ V;

– V⊥ the set of vertices augmented with a special value ⊥ that means “no
vertex”: V⊥ = V] {⊥}.

– the graph formed by vertices in V and edges given by branches must be a
forest of trees [6], i.e., a set of disjoint directed rooted trees.

A layered data is a vertex in set V with two functions for manipulation: climb
and get . Climbing up a knowledge tree is performed by function climb. It takes
a vertex (or ⊥ for none) and a label as parameters, and returns the vertex (or ⊥
for none) reached by following the edge with the corresponding label. Obtaining
the value of a vertex (a fork or leaf) is performed by function get , that takes a
vertex (or ⊥ for none) and returns its value (or ⊥ for none).

climb : V⊥ × L→ V⊥

climb(⊥, l) = ⊥
climb(v, l) = v.branches(l) if v 6= ⊥

get : V⊥ → L⊥

get(⊥) = ⊥
get(v) = v.label if v 6= ⊥

A medicine man with two apprentices comes to discuss with Rahan. After
his death, both apprentices take his role, and both would like to continue their
master’s knowledge tree. Giving the tree to one of them, or to both, is impossible,
as it could create conflicts between the two apprentices.

Rahan thinks and proposes a solution. Each apprentice will grow his own
tree, but also grow lianas between branches of his trees to branches in their
master’s one. Each liana means that the knowledge can be searched within their
master’s branch, if it it is not found in the apprentice own tree. So, they can
only be followed from the apprentices trees to the master’s one. This solution
allows each apprentice to complete the knowledge of the medicine man, within
their own tree, and even to disagree.

We extend V the set of vertices to represent the lianas:

– V the set of vertices, defined by: 〈label , branches, parents〉 ∈ V for all label ∈
L⊥ and branches ∈ L→ V⊥ and parents ∈ L(V).

A. Linard et al.: Layered Data: a Modular Formal Definition 289

Moreover, as for a single label there may be several paths (one in the current
tree, and others by following the liana), we extend the functions climb and get
to work on a list of vertices (sorted by decreasing priority, given by the position
in the list) instead of a single one:

climb : L(V)× L→ L(V)
climb(⊥, l) = ⊥

climb(v :: vs, l) = v.branches(l) :: climb(v.parents, l)⊕ climb(vs, l)

get : L(V)→ V⊥

get([]) = ⊥
get(h :: t) = h.label if h.label 6= ⊥
get(h :: t) = get(t) otherwise

The picture below illustrates the search within layered data. We are looking
for (Rahan’s hut within the village, Rahan being represented with his
famous necklace). Starting from the left tree, a villager takes the branch labeled
by , then the branch labeled by , but does not find the symbol for Rahan.
The villager looks for a liana, but there is none at this fork. So, he goes backward
to the previous fork, and finds a liana. The villager follows it, to the tree on the
right. There, he start back climbing with the symbol, and finds the symbol
for Rahan in a branch.

forest

hut

village

fire

quarrier

hunter

cook

rahan

Rahan leaves the village in his quest for the sun’s lair, and comes back after
some years. The two former apprentices of the medicine man come to expose
a new problem to Rahan. Their old master’s tree has two trunks: one for the
symptoms and one for the cures. The old man has grown lianas from symptoms
to cures in his own tree. The former apprentices have also grown lianas from
their trees to their master’s branches.

But one of the apprentices has found a better medicine for fractures. Villagers
that start climbing his tree usually end within the deceased man’s one, where
they are then stuck within. They find there only the old cure.

290 PNSE’16 – Petri Nets and Software Engineering

Rahan thinks afresh, and proposes a solution: lianas should not be used
within the same tree, but only to refer to another tree. Instead, villagers should
use reference signs, composed of a notion symbol telling where to start back
climbing, and a sequence of branch symbols to follow on branches.

Notion symbols are put at forks or leaves, not on branches. They should
give information about the notions represented within that part of the tree, for
instance medicine, animals or songs. There can be several notion symbols on one
fork (or leaf), for instance some songs are also medicines.

When they encounter a reference sign, villagers must go back to their initial
tree, by following lianas in the reverse order. They must then search the fork
corresponding to the notion symbol, by going back from the current branch to
the trunk. This route ensures that they stay in the most specific use of the notion
for the knowledge they search.

When the notion symbol is found, villagers must start again to climb up by
following first the sequence of branch symbols given by the sign, and continue
by following the symbols they were initially following.

This solution is a bit complex, but after some training, all villagers are able to
understand and follow the rules.7 One difficulty is that villagers must also follow
lianas when looking for notion symbols, as they would do for branch symbols.
It creates sometimes lengthy journeys in the trees, that luckily provide fruits to
take a break.

The climb function now has to remember where it started from, and what
labels have been followed. We note:

– R a set of notion symbols; and R⊥ the set of notion symbols or ⊥ for none;
– Vr = V⊥] R vertices augmented with references;
– 〈origin, labels〉 ∈ P for all origin ∈ V and labels ∈ L(L), paths starting from

a specific vertex and following labels;
– branches ∈ L → Vr the branches function in vertices is modified to allow

returning references.

We extend V the set of vertices to represent the references:

– V the set of vertices, defined by: 〈label , branches, parents, reference〉 ∈ V for
all label ∈ L⊥, branches ∈ L→ Vr, parents ∈ L(V) and reference ∈ R⊥.

The final definition of climb is given below. build is a utility function that
rebuilds recursively all possible vertices from an initial vertex and a list of labels.

climb : P× L(V)× L→ P× L(V)
climb(p,⊥, l) = 〈p,⊥〉

climb(p, v :: vs, l) = 〈〈p.origin, l :: p.labels〉, dereference(p, v.branches(l)) :: vs1 ⊕ vs2〉
where climb(p, v.parents, l) = 〈p1, vs1〉
and climb(p, vs, l) = 〈p2, vs2〉

7 In this story, Rahan discovered algorithms, and is thus the first computer scientist!

A. Linard et al.: Layered Data: a Modular Formal Definition 291

dereference : P× Vr → L(V)
dereference(p,⊥) = ⊥ :: []

dereference(p, v ∈ V) = v :: []

dereference(p, r ∈ R) =

{
〈p, vs1 ⊕ vs2〉 if ∃v∈vs1 , v.reference = r

〈p, vs2〉 otherwise

where p.labels = l :: ls

and build(〈p.origin, []〉, [p.origin], ls) = vs

and climb(p, vs, l) = 〈p1, vs1〉
and climb(dereference(p, vs), l) = 〈p2, vs2〉

build : P× L(V)× L(L)→ P× L(V)
build(p, vs, l :: ls) = climb(build(p, vs, ls), l)

build(p, vs, []) = vs

climb can perform a lot of operations. Its worst case is the search of a non-
existing data, as it has to walk through branches and all their parents to detect
absence. This article does not provide an analysis of the theoretical complexity.
However, implementation is usually quite fast using caching or optimizations
such as flattening several layers into one.

A few thousand years later, we are still facing the same problem as Rahan
for (meta) modeling systems: knowledge trees have simply been replaced by
formalisms or models.

3 What are Formalisms and Models?

Rahan chose simplicity: there were only trees, and then he added the minimal
notions required by the needs of the villagers: lianas and reference signs. We
can ask ourselves the same question. What are the minimal notions required to
represent formalisms and models in a modular way? But also, is it mandatory
to have formalisms and models? What is the precise definition of each one?

Papers on formal methods usually make use of the terms “formalism” and
“model” without defining them. From their use, and from a small survey around
us8, we inferred the following definition:

A formalism is a mathematical description for a class of models, like a
type or grammar, with semantic constraints. It can be specialized into
other formalisms, and instantiated into models. A model is an instance
of a formalism, that respects the semantic constraints. It cannot be spe-
cialized into a formalism, nor instantiated again.

8 Thanks to Étienne André, Béatrice Bérard, Fabrice Kordon and anonymous others
for their answers.

292 PNSE’16 – Petri Nets and Software Engineering

Strangely enough, answers never cite a reference definition. They all agree on
the type/instance difference, and on semantic constraints, but only one among
them has added the “specialization” sentence. However, it defines an important
property: semantic constraints must be general enough to be applied to any sub
formalism, or used by generic algorithms. For instance counting the number of
nodes or detecting cycles in graphs can also be applied to automata or Petri nets
as they are specific kinds of graphs.

Let us observe a usage example of modular formalisms: representing the state
space of a particular instance of the Philosophers problem, and computing its
place bounds. The model is represented as a Place/Transition net. We do not
use the Petri net of the Model Checking Contest [14], because its modeling does
not show some characteristics of our approach. Instead, we use a version where
the number of places and transitions depend on the parameter, as shown in [19].

Let us distinguish the various models and formalisms used in this example.
They are depicted in Figure 3. “Petri net philosophers” is a formalism for all
instances of the Philosophers problem modeled using the chosen representation.
“Petri net state space” is a formalism for state spaces of Petri nets. The repre-
sentation uses the following notations:

– double-lined boxes are formalisms;
– single-lined ones are models;
– inheritance arrows mean that a formalism or model extends or specializes

another one;
– instance arrows mean that a model is an instance of a formalism;
– reference arrows mean that a formalism makes reference to another one,

or to a model, they are similar to UML “association arrows”.

Dashed formalisms are usually not considered as formalisms. But given the
informal definition of formalisms, they clearly belong to this notion: they describe
subclasses of models described by their parent formalism.

Two parts of Figure 3 are of particular interest. First, the “with Bounds”
model is just the same as its ancestor, with bound annotations. It is a case where
the “Petri net 5 philosophers” model is also a description for the class of models
“. . . with bounds”. Second, the reference arrow between formalism “Petri net 5
philosophers state space” and the model “Petri net 5 philosophers” means that
the formalism is defined using a model as parameter. These two examples show
that is it difficult to make a clear and uncrossable boundary between models and
formalisms. Instead, they seem to be part of a same continuum.

Rahan used only trees and did not distinguish between conifers and hardwood
trees. We will follow his path by using layered data to represent both formalisms
and models. As there is no intrinsic difference between a formalism and a model,
we can thus reduce the notions to the ones of layered data: models (trees, or
any boxes in Figure 3), inheritance (lianas, or inheritance and instance arrows
in Figure 3) and references (reference signs, or reference arrows in Figure 3).

A. Linard et al.: Layered Data: a Modular Formal Definition 293

Graph

Automaton

State space

Petri net

Petri net
state space

Petri net
philosophers

Petri net
5 philosophers

Petri net
5 philosophers
with Bounds

Petri net
philosophers
state space

Petri net
5 philosophers
state space

Result

Fig. 1. A hierarchy of formalisms and models

3.1 Consistency

As in class-based systems, models must ensure properties defined by their par-
ent(s). We denote this constraint as the |=⊆ M ×M relation (M being a set of
formalisms and models). Its first operand is the “formalism”, whereas the second
one is the “model”.

Contrary to class-based systems, the |= relation must be transitive in modular
formalisms, i.e., a |= b ∧ b |= c =⇒ a |= c, as we would like any graph-based
formalism to ensure graph constraints, or all Petri nets variants to ensure Petri
nets constraints.

Layered data are only a representation for data; they do not provide a way
to ensure the transitivity of |=, as one can redefine almost anything anywhere.
For instance, a formalism deriving from the Petri nets could remove the bipartite
graph constraints set by the Petri net formalism. Future works should study how
to guarantee the transitivity of |=. Our current intuition is that forbidding to
redefine an existing value could be sufficient in most of the cases.

4 A Full Hierarchy of Formalisms

In order to show the power of layered data, we present in this section a full
hierarchy of formalisms. The chosen formalisms are taken from another problem
that Rahan and the villagers encountered.

294 PNSE’16 – Petri Nets and Software Engineering

In the beginning of winter, the villagers have stored wood, animal pelts, and
other resources, and they would like to craft their needs for the next year. Their
problem is that they cannot allow each craftsperson to use everything they would
like, as this behavior can cause resource exhaustion and unnecessary crafts.

Rahan proposes them to draw a representation of the attics and the craftsper-
son, to allow villagers to discuss resource usage. Each attic should be filled with
stones to count available resources. The result is depicted in the picture below9.

Villagers discuss a long time, playing with the stones. But they cannot decide
what to craft, because they always think about a more optimal resource usage.
They end up trying all possible combinations10, choose the most interesting one,
and start crafting for the winter.

We will now take inspiration from Rahan and the villagers, and define the full
hierarchy of formalisms they needed, starting from scratch and ending with the
state space of a particular Petri net. We will use the previously defined layered
data to define everything.

Note that layered data are closer to prototype inheritance than to class-based
inheritance: types and instances are not differenciated. Creating a subtype or in-
stantiating a type use the same operation: refining. Types can define mandatory
fields, but instances are free to add any other ones.

All steps are presented in this section, using a YAML [21] syntax for read-
ability. The real implementation is Lua [16] code that looks very similar, and
can be browsed at https://github.com/CosyVerif/formalisms. One part of
the definition has been stripped down: the definition of “active” constraints, im-
plemented as Lua functions.

4.1 YAML

YAML describes data structured as trees using map-
pings, sequences and scalars. Structure is shown through
indentation (one or more spaces). Sequence items are
denoted by a dash, and mapping keys and values are
separated by a colon.

key:
- item 1
- subkey: value

9 Surprise! Rahan invented Petri nets a few thousand years before Carl Adam Petri.
10 Surprise again! These villagers have discovered state space exploration.

A. Linard et al.: Layered Data: a Modular Formal Definition 295

4.2 Usability

For better usability, we define two special branch labels: meta and implicits.
The meta branch label is used to distinguish metadata, put within meta, from
instance data, put outside. The implicits branch states that all direct children
of the object, that are neither meta nor refines, implicitly refine the elements
within implicits. These two labels are not mandatory for layered data, but are
together a useful feature when defining formalisms and models. We do not add
them to the formal definition for readability.

4.3 Collection

The collection formalism represents a collection (list) of similar objects. It
defines a type to optionally specify the type of the collection values; a container
to optionally specify where these values must be stored (in this case, they will be
references); and an optional minimum and maximum number of elements within
the collection.

collection:
meta:

collection:
type: null
container: null
minimum: null
maximum: null

implicits: collection->meta.collection.type

By default, type, container, minimum and maximum are set to null, equiv-
alent to our ⊥ (nothing) constant. All elements in a collection automatically
refine its type, because of the implicits key. This feature is not mandatory,
but useful when creating instances, as we show at the end of this section. The
collection->meta.collection.type item represents a reference to the fields
meta.collection.type of the object that refines the collection formalism. It
is not YAML syntax, but a convenient representation for us.

Active constraints, implemented as functions, are not represented here. They
are in fact part of the formalism and check that the collection constraints are
applied on its instances.

4.4 Record

A record is a mapping from keys to optionally typed
values. It allows specifying that the value associated to
a particular key must be of a type, and/or a reference to
an element within another object, usually a collection.
All formalisms refining record should fill the contents
of ? for their own keys to ensure a correct typing of their
associated value.

record:
meta:

?:
type: null
container: null

Active constraints, implemented as functions, are not represented here, but
are the main part of the record formalism.

296 PNSE’16 – Petri Nets and Software Engineering

4.5 Hyper Multi Graph

The root of all graphs is the formalism for hypermultigraphs, i.e., graphs where
an edge can relate more than two vertices (hypergraph [20]), and where there
can be several edges between the same vertices (multigraph [18]). This definition
is quite big, so we split it in several commented parts.

A hypermultigraph defines a vertex_type, that is simply a record with no
defined fields, meaning that there is no mandatory field within a vertex. It also
defines a collection of vertices as an instance within the hypermultigraph. The
vertex_type is only a type, and thus defined within the meta key, whereas the
vertices instance is defined outside.

hypermultigraph:
meta:

vertex_type:
meta:

refines: record
vertices:

refines: collection
meta:

collection:
type: hypermultigraph->meta.vertex_type

Note that the refines: key expects a sequence of elements to refine, but
that we skip the sequence syntax when there is only one.

In the analogy with trees and lianas presented before, each indentation level
is a fork in the tree, reference to other formalisms, such as record or collection
are lianas, labels such as collection: or meta: are labels painted on branches,
and hypermultigraph->meta.vertex_type is a reference sign. The climb func-
tion is used to access nested fields.

The formalism defines in a similar way an edge_type, and an edges collec-
tion. The edge_type is more complex, as it contains itself the definition of a
type for its arrows, arrow_type and a collection of arrows as an instance in
every edge.

hypermultigraph:
meta:

edge_type:
meta:

refines: record
arrow_type: ...

arrows:
refines: collection
meta:

collection:
type: edge_type->meta.arrow_type

edges:
refines: collection
meta:

A. Linard et al.: Layered Data: a Modular Formal Definition 297

collection:
type: hypermultigraph->meta.edge_type

Each arrow contains a vertex field, that must be a reference to a vertex
within the vertices collection of the graph. As vertices is a container of
vertex_type, the formalism ensures that all edges point to vertices, and that
these vertices belong to the same graph. Putting arrow_type within edge_type,
instead of hypermultigraph allows to later override the arrow types for each
edge instance, or for subtypes of edges.

hypermultigraph:
meta:

edge_type:
meta:

arrow_type:
refines: record
meta:

record:
vertex:

container: hypermultigraph->vertices

4.6 Graph

We can now define the usual graphs
above the hypermultigraphs. It is done
by specifying an exact size for edge
arrows: 2, one for the source of the
edge, one for its target. Moreover, for
usability, we specify that an edge has
the source and target attributes. The
arrows collection contains two prede-
fined arrows, also named source and
target which vertex attribute auto-
matically refers to source and target
attributes of the edge.
We cannot specify in the syntax shown
in this article that there must not be two
edges between the same vertices, i.e., re-
move the “multigraph” part. In the im-
plementation of layered data and for-
malisms, such a constraint can be de-
fined as an additional checking function.

graph:
refines: hypermultigraph
edge_type:

meta:
record:

source:
container: graph->vertices

target:
container: graph->vertices

arrows:
meta:

collection:
minimum: 2
maximum: 2

source:
vertex: edge_type->source

target:
vertex: edge_type->target

4.7 Automaton Scheme

An automaton is a graph where vertices are called states and edges are
called transitions, and where states can be set as initial and/or final. The
automaton-scheme formalism defines the general structure of automata.

298 PNSE’16 – Petri Nets and Software Engineering

Transitions are labeled with letters taken from
an alphabet, defined within the automaton.
The alphabet is a collection of things, that are
not defined in this formalism, but must be spe-
cialized in more concrete formalisms.

automaton-scheme:
refines: graph
alphabet:

refines: collection

The notion of state_type (transition_type) refines vertex_type (respec-
tively edge_type), that have been imported by refines: graph. The only
changes are the new names, and two attributes to states (initial and final).

automaton-scheme:
meta:

state_type:
refines: automaton-scheme->meta.vertex_type
meta:

record:
initial:

type: boolean
final:

type: boolean
transition_type:

refines: automaton-scheme->meta.edge_type
meta: record:

letter:
type: automaton-scheme->alphabet.meta.collection.type
container: automaton-scheme->alphabet

The formalism also defines two containers, one for states, and one for
transitions, in the same way the graph defined containers for vertices and
edges.

automaton-scheme:
states:

refines: collection
meta:

collection:
type: automaton-scheme->meta.state_type

transitions:
refines: collection
meta:

collection:
type: automaton-scheme->meta.transition_type

The last step is to create a link between the states and the vertices, and
between the transitions and the edges. The main idea is that, as an automaton
is also a graph, all states should be also vertices, and all transitions should also be
edges. The following refines states that when looking for elements in vertices,
one must also look at states.

automaton-scheme:
vertices:

A. Linard et al.: Layered Data: a Modular Formal Definition 299

refines: automaton-scheme->states
edges:

refines: automaton-scheme->transitions

4.8 Petri net Scheme

Petri nets are bipartite graphs, with two vertex types: places and transitions.
Edges are called arcs. The petrinet-scheme formalism defines the general
structure of a Petri net, not the Place/Transition net formalism, that will be
defined later. It is quite similar to automaton-scheme.

Place and transition type both refine the vertex_type, imported by refines:
graph. Places have a marking attribute, and arcs a tokens one. Their type is
not defined in this formalism, as they vary in Petri nets variants. Pre and post
arcs refine arcs by specifying the bipartite graph constraint.

petrinet-scheme:
refines: graph
meta:

place_type:
refines: petrinet-scheme->meta.vertex_type
meta:

record:
marking: null

transition_type:
refines: petrinet-scheme->meta.vertex_type

arc_type:
refines: petrinet-scheme->meta.edge_type
meta:

record:
tokens: null

pre_arc_type:
refines: petrinet-scheme->meta.arc_type
meta:

record:
source:

container: petrinet-scheme->places
target:

container: petrinet-scheme->transitions
post_arc_type:

refines: petrinet-scheme->meta.arc_type
meta:

record:
source:

container: petrinet-scheme->transitions
target:

container: petrinet-scheme->places

petrinet-scheme defines containers for places, transitions and arcs. It
also sets the link between them and the vertices and edges container of graph.

300 PNSE’16 – Petri Nets and Software Engineering

This is similar to what exists in automaton-scheme. The previous definition
of petrinet-scheme is completed as below (the first line is repeated only for
readability).

petrinet-scheme:
places:

refines: collection
meta: collection:

type: petrinet-scheme->meta.place_type
transitions:

refines: collection
meta: collection:

type: petrinet-scheme->meta.transition_type
pre_arcs:

refines: collection
meta: collection:

type: petrinet-scheme->meta.pre_arc_type
post_arcs:

refines: collection
meta: collection:

type: petrinet-scheme->meta.post_arc_type
arcs:

refines:
- petrinet-scheme->pre_arcs
- petrinet-scheme->post_arcs

vertices:
refines:

- petrinet-scheme->places
- petrinet-scheme->transitions

edges:
refines: petrinet-scheme->arcs

4.9 State space of Petri net

The state space of a Petri net is simply an au-
tomaton where states are labeled with Petri net
states, and transitions are labeled with Petri net
bindings. The notions of states and bindings is
not defined in the petrinet formalism, so we
first define them in a petrinet-behavior for-
malism. Contrary to the ones we already de-
fined, petrinet-behavior does not refine graph
or petrinet. It takes the petrinet as a param-
eter instead. This formalism must be refined for
each Petri net variant.

petrinet-behavior:
refines: record
meta:

record:
petrinet:

type: petrinet-scheme

The state_type is set as refining the Petri net (markings are overloaded in
each state), whereas the binding_type has the fired transition as attribute.

A. Linard et al.: Layered Data: a Modular Formal Definition 301

petrinet-behavior:
meta:

state_type:
refines: petrinet-behavior->petrinet

binding_type:
refines: record
meta:

record:
transition:

container: petrinet-behavior->petrinet.transitions

A Petri net state space formalism is built upon a Petri net, and a Petri net
behavior. The state space takes as parameter the Petri net, and passes it to a
petrinet-behavior instance.

petrinet-statespace:
refines: automaton-scheme
meta:

record:
petrinet: petrinet-scheme

behavior:
refines: petrinet-behavior
petrinet: petrinet-statespace->petrinet

Automaton states are states of the behavior, while the transition alphabet
uses the Petri net behavior bindings.

petrinet-statespace:
meta:

state_type:
refines: petrinet-statespace->behavior.meta.state_type

alphabet:
meta:

collection:
type: petrinet-statespace->behavior.meta.binding_type

4.10 P/T net:

The Place/Transition net formalism is a
Petri net where place markings are nat-
ural numbers, and arcs are also valued
by positive natural numbers.
This formalism sets the types of place
markings and arc tokens to natural,
that is a predefied formalism for natural
integer literals. The petrinet-pt for-
malism also sets default values for place
markings and arc values.

petrinet-pt:
refines: petrinet-scheme
meta:

place_type:
marking: 0
meta:

record:
marking: natural

arc_type:
tokens: 1
meta:

record:
tokens: positive

302 PNSE’16 – Petri Nets and Software Engineering

We can also create the formalism
for their behavior. It simply refines
the petrinet-behavior one with no
changes, as bindings are composed of the
fired transition only.

petrinet-behavior-pt:
refines: petrinet-behavior
record:

petrinet:
type: petrinet-pt

4.11 P/T net for Philosophers:

We can continue to specialize Place/Transition nets to define the formalism for
Place/Transition Philosophers Petri nets. It defines a different place type for
each “kind” of place (think, . . .), and does the same for transitions.

petrinet-philosophers:
refines: petrinet-pt
meta:

place_type:
record:

identifier: natural
transition_type:

record:
identifier: natural

think:
refines: petrinet-philosophers->meta.place_type

fork:
refines: petrinet-philosophers->meta.place_type

...
release:

refines: petrinet-philosophers->meta.transition_type
...

This formalism can be useful for graphical representations of instances: po-
sitions can be specified in polar coordinates for each place or transition type,
depending on the philosopher identifier.

4.12 Philosophers model

The final model is the Philosophers instance. Each place or transition defines
its philosopher identifier and refines its place or transition type. Note that there
is here no need to specify the refines for each place, transition or arc, as the
implicits of collection define implicitly the refinements.

philo:
refines: petrinet-philosophers
places:

think1:
refines: philo->meta.think
identifier: 1

...

A. Linard et al.: Layered Data: a Modular Formal Definition 303

transitions:
release1:

refines: philo->meta.release1
idetifier: 1

...
arcs:

arc1:
source: philo->places.think1
target: philo->transitions.take-left1

...

The real implementation of the formalisms and models is as data represented
in the Lua [16] programming language. It is thus easy to write a function that
generates the Philosophers model from a positive number parameter.

5 Comparison with existing solutions

We can distinguish two approaches for formalism or language definition: the for-
mal methods and the software engineering ones. In the formal methods domain,
formalisms usually are a mathematical definition of a class of models with their
semantics, seldom derived from an already existing class of models. In the soft-
ware engineering domain, the definition is composed of the following parts, but
unoften uses the mathematical definition:

– an abstract syntax of the concepts and their relationships, from a syntacti-
cal point of view, usually described using a metamodel, e.g., in UML class
diagram notation;

– a concrete syntax defining the notation that will be used to represent actual
models of the formalism; it can make use of any sense available to the human
programmer or the computers, but is usually textual or graphical; it can be
intended either for human use, e.g., graphical notations, or for computer use,
e.g, interchange formats;

– a syntactic mapping between the abstract syntax and the concrete one, that
allows the rigorous translation of the concrete syntax elements into the ab-
stract syntax ones, thus enabling programs or human beings to figure out
the models being described, and interpret them properly.

Recent works, such as the ISO/IEC 15909 Standard for Petri nets [10], [11]
merge the two approaches by adding a semantic mapping between the formal
definition and the abstract syntax, that allows the rigorous interpretation of any
model instance represented in the abstract syntax using the semantics provided
with the formal definition.

This standard sets the ground work for Petri net formalisms definition by
providing formal definitions and semantics, abstract syntax using UML class
diagrams, semantic mappings, and a transfer format (PNML) are provided for
three types of Petri nets: P/T nets, Symmetric nets and High-level Petri nets.
It is implemented in the PNML Framework [9]. Recent works [8] have targeted

304 PNSE’16 – Petri Nets and Software Engineering

the modularity of these definitions. Several tools implement more or less this
approach, for instance the ePNK [13] platform dedicated to Petri net tools, and
the CosyVerif [3] platform that is more formalism agnostic.

6 Conclusion

This article defines a data structure, called layered data. It stores data as layers
of directed rooted trees, and allows accessing them in a flattened view. With
only a few simple constructs (refinement, labels and references), layered data
allow building abstract syntaxes for complex modular formalisms and models.

As an example, we have used layered data to build several formalisms, from
the hypermultigraphs to Petri net instances and the state space of P/T nets.
All these definitions remain both modular and compact. The semantics usually
associated to formalisms is not encoded in layered data, that only focus on the
abstract syntaxes. Future works should consider adding semantic information
within the formalisms. Our approach should allow to define hierarchies for both
formalisms and semantics, in a synchronized way.

Layered data [5] and the hierarchy of formalisms [4] presented in this article
are hosted on GitHub [7] and implemented in Lua [16]. This language is intended
for embedding into host languages, and allows porting layered data to any lan-
guage (for instance C++, Java or even JavaScript) by using only existing binding
libraries or generators.

Formalisms and models shown in this article are all defined within the scope
of the CosyVerif [3] project: a platform dedicated to the verification of complex
systems. The whole platform is open source, released under the permissive MIT
software license [17]. In this platform, formalisms are defined by researchers,
who also create tools for analysis of their models; whereas engineers or students
create models and use tools on them.

We also show in this article that the distinction between formalisms and
models is not as simple as it seems to be. The formal methods community lacks
a clear definition for these two notions. We suggest that formalisms do not exist
on their own, but that any model used to define another one should be called a
formalism of its model.

References

1. Étienne André, Barbot, B., Demoulins, C., Hillah, L.M., Hulin-Hubard, F., Kordon,
F., Linard, A., Petrucci, L.: A modular approach for reusing formalisms in verifi-
cation tools of concurrent systems. In: Groves, L., Sun, J. (eds.) Formal Methods
and Software Engineering - 15th International Conference on Formal Engineer-
ing Methods, ICFEM 2013, Queenstown, New Zealand, October 29 - November
1, 2013, Proceedings. Lecture Notes in Computer Science, vol. 8144, pp. 199–214.
Springer (2013), http://dx.doi.org/10.1007/978-3-642-41202-8_14

2. Étienne André, Lembachar, Y., Petrucci, L., Hulin-Hubard, F., Linard, A., Hillah,
L., Kordon, F.: Cosyverif: An open source extensible verification environment. In:

A. Linard et al.: Layered Data: a Modular Formal Definition 305

2013 18th International Conference on Engineering of Complex Computer Systems,
Singapore, July 17-19, 2013. pp. 33–36. IEEE Computer Society (2013), http:
//dx.doi.org/10.1109/ICECCS.2013.15

3. CosyVerif: a platform dedicated to the verification of complex systems, http://
cosyverif.org

4. Cosyverif formalisms, https://github.com/CosyVerif/formalisms
5. Layered Data, https://github.com/saucisson/lua-layeredata
6. Diestel, R.: Graph theory. Graduate texts in mathematics, Springer, Berlin (2005),

http://opac.inria.fr/record=b1102131, cop. 2006 pour l’édition brochée
7. GitHub, https://github.com
8. Hillah, L., Kordon, F., Lakos, C., Petrucci, L.: Extending pnml scope: A framework

to combine petri nets types. In: T. Petri Nets and Other Models of Concurrency
[12], pp. 46–70, http://dx.doi.org/10.1007/978-3-642-35179-2_3

9. Hillah, L., Kordon, F., Petrucci, L., Trèves, N.: PNML framework: An extendable
reference implementation of the petri net markup language. In: Lilius, J., Penczek,
W. (eds.) Applications and Theory of Petri Nets, 31st International Conference,
PETRI NETS 2010, Braga, Portugal, June 21-25, 2010. Proceedings. Lecture Notes
in Computer Science, vol. 6128, pp. 318–327. Springer (2010), http://dx.doi.org/
10.1007/978-3-642-13675-7_20

10. ISO/IEC: Software and Systems Engineering - High-level Petri Nets, Part 1: Con-
cepts, Definitions and Graphical Notation, International Standard ISO/IEC 15909
(December 2004)

11. ISO/IEC: Software and Systems Engineering - High-level Petri Nets, Part 2: Trans-
fer Format, International Standard ISO/IEC 15909 (February 2011)

12. Jensen, K., van der Aalst, W.M.P., Marsan, M.A., Franceschinis, G., Kleijn, J.,
Kristensen, L.M. (eds.): Transactions on Petri Nets and Other Models of Con-
currency VI, Lecture Notes in Computer Science, vol. 7400. Springer (2012),
http://dx.doi.org/10.1007/978-3-642-35179-2

13. Kindler, E.: The epnk: An extensible petri net tool for PNML. In: Kristensen,
L.M., Petrucci, L. (eds.) Applications and Theory of Petri Nets - 32nd International
Conference, PETRI NETS 2011, Newcastle, UK, June 20-24, 2011. Proceedings.
Lecture Notes in Computer Science, vol. 6709, pp. 318–327. Springer (2011), http:
//dx.doi.org/10.1007/978-3-642-21834-7_18

14. Kordon, F., Linard, A., Buchs, D., Colange, M., Evangelista, S., Lampka, K.,
Lohmann, N., Paviot-Adet, E., Thierry-Mieg, Y., Wimmel, H.: Report on the model
checking contest at petri nets 2011. In: T. Petri Nets and Other Models of Con-
currency [12], pp. 169–196, http://dx.doi.org/10.1007/978-3-642-35179-2_8

15. Lecureux, R., Chéret, A.: Rahan. Lécureux Productions (2000)
16. Lua Language, http://lua.org
17. Mit license, https://opensource.org/licenses/MIT
18. Multigraph, http://www.encyclopediaofmath.org/index.php?title=

Multigraph&oldid=13089
19. Rp22: A petri net model of the dining philosophers problem, with 4

philosophers (2008), https://upload.wikimedia.org/wikipedia/commons/7/78/
4-philosophers.gif

20. Sapozhenko, A.: Hypergraph, http://www.encyclopediaofmath.org/index.php?
title=Hypergraph&oldid=11526

21. YAML Ain’t Markup Language, http://www.yaml.org

306 PNSE’16 – Petri Nets and Software Engineering

