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Abstract. Distributed storage systems are nowadays ubiquitous, often
under the form of multiple caches forming a hierarchy. A large amount
of work has been dedicated to design, implement and optimise such sys-
tems. However, there exists to the best of our knowledge no attempt to
use formal modelling and analysis in this field. This paper proposes a
formal modelling framework to design distributed storage systems, with
the innovating feature to separate the various concerns they involve like
data model, operations, placement, consistency, topology, etc. A system
modelled in such a way can be analysed through model-checking to prove
correctness properties, or through simulation to measure timed perfor-
mance. In this paper, we define the modelling framework and then focus
on timing analysis. We illustrate the latter aspect on a simple yet real-
istic example, showing that our proposal has the potential to be used to
make design decisions before the real system is implemented.

1 Introduction

Nowadays technologies make intensive use of distributed storage systems. A
particular and prominent form of such systems is caches. They can be found
embedded in almost every piece of hardware or software system that involves
information storage at some point. This results in overwhelmingly complex sys-
tems in which we cannot even be sure that caches actually improve the global
performance. One reason for this situation is the lack of tools to analyse such
systems during their designing stages; in particular, to the best of our knowledge,
there exists no attempt to apply formal modelling and analysis to such systems.

Our main contribution in this paper is thus to propose a modelling framework
that can be applied to design distributed storage systems. Moreover, the overall
performance depends on a very large number of intricate aspects that cannot
easily be considered separately from each other. An important and innovative
part of our contribution (hence its relative complexity) is to provide a clear
separation of various concerns with an explicit link between them, as summarised
on Figure 1:

– a generic data model defines states (see Section 2.1) and allows to consider
a variety of operations applicable to them (Sec. 2.2);
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Fig. 1. Overview of the framework where: stacked boxes are replicated on every node
of the distributed storage, while the other are globally defined; arrow indicate which
aspect relies on which others; boxes on the left-most column (resp. right) relate to
static (resp. dynamic) aspects, with two boxes covering both aspects.

– a topology is defined independently, describing how states are arranged in
the distributed system and how its nodes communicate (Sec. 2.3);

– this leads to a notion of interpretation of a distributed state into a global
state (Sec. 2.3);

– a placement policy decides how to manage the storage on nodes and where
each piece of state has to be located (Sec. 2.4);

– a job manager is used at each node to store the received requests while they
are proceeded, taking into account their dependencies;

– finally, an execution engine defines generic processes to take into account
the requests from the job manager (Sec. 2.5) as well as the specific processes
executed on each node, in particular actors that are the nodes that initiate
the whole activity (for instance, a CPU in a cache hierarchy—Sec. 2.6).

All together, these processes yield executions that can be analysed (Sec 2.7)
so that properties like data consistency (e.g., cache coherence), correctness and
termination of operations, deadlock-freeness, worst/best/mean-time execution,
etc., can be studied separately on the modelled systems.

Section 3 illustrates this framework on a simple three-level cache hierarchy
equipped a widely used algorithm, and it shows how it can be modelled and
how its performance can be analysed. The last section concludes and gives per-
spectives, together with a survey of related work. Finally, Appendix A briefly
presents the Petri nets that implement the processes presented in Section 2.3.

2 The Modelling Framework

2.1 Data Model

We consider three pairwise disjoint nonempty sets: K is the set of keys that can
be thought of as addresses; V is the set of values stored at these addresses; L is
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the set of labels used to label or relate keys. For instance, for a Unix file system,
K would be the inodes addresses, V their content and L could model relations
like directory membership. For a memory model, V would hold all the possible
memory blocks whose addresses would be in K, and L would not be used.

Definition 1. A reduced state σ∗ is a pair (σ∗.h, σ∗.r) such that σ∗.h ∈ 2K×V

and σ∗.r ∈ 2L×2
K×2K . We note by Σ∗K,V,L the set of all reduced states, and

define dom(σ∗.h)
df
= {k | ∃v ∈ V, (k, v) ∈ σ∗.k}. A reduced state σ∗ ∈ Σ∗K,V,L is

well-formed iff it satisfies the following conditions:

– σ∗.h is a map: ∀k ∈ dom(σ∗.h), |{(k, v) ∈ σ∗.h}| = 1;
– all the keys in σ∗.r are mapped by σ∗.h:

⋃
(l,K1,K2)∈σ∗.rK1∪K2 ⊆ dom(σ∗.h).

We define a partial order �∗ on Σ∗K,V,L by σ∗a �∗ σ∗b iff σ∗a.h ⊆ σ∗b.h∧σ∗a.r ⊆
σ∗b.r.

Intuitively, a reduced state is a map from related keys to the corresponding
data. For instance, consider an extremely simplified file-system containing the
following objects: the root directory “/”, sub-directories “/bin”, “/usr” with
nested sub-directory “/usr/bin”, and files “/bin/sh” and “/usr/bin/sh”. These
objects could be represented as a reduced state σ∗ as follows:

σ∗.h
df
=
{
(0, /), (1, bin), (2, usr), (3, sh), (4, bin), (5, sh)

}

σ∗.r
df
=
{
(root, {0}, ∅), (dir, {0}, {1}), (dir, {0}, {2}), (dir, {2}, {4}),
(file, {1}, {3}), (file, {4}, {5})

}

where σ∗.h stores the identifiers of the file-system objects associating them to
their names, and σ∗.r stores links between the objects, allowing to identify a root
directory (root label) and the children of each directory, which may be directories
themselves (dir label) or files (file label).

Definition 2. A (complete) state is a triple σ df
= (σ.content , σ.plus, σ.minus)

in ΣK,V,L
df
= (Σ∗K,V,L)

3. Such a state is well-formed iff σ.content is well-formed,
σ.plus �∗ σ.content and σ.minus∩σ.content = ∅. We define a partial order � on
ΣK,V,L as the component-wise extension of �∗, i.e., σa � σb iff σa.content �∗
σb.content ∧ σa.plus �∗ σb.plus ∧ σa.minus �∗ σb.minus.

A state (σ.content , σ.plus, σ.minus) can be understood as a reduced state
with a history, i.e., σ.content is the result of adding σ.plus to and removing
σ.minus from an original reduced state. Such a state σ shall be depicted as:

({
σ.content .h

}
+
{
σ.plus.h

} −{σ.minus.h
}

{
σ.content .r

}
+
{
σ.plus.r

} −{σ.minus.r
}
)

Historicized states are needed to model distributed storage. Consider indeed a
simple case where a cache lies between a process and a storage. If the process
requests to delete the resource associated to a key k, this may be made in the
cache only. Just dropping the information associated to k in the cache is not
correct. Indeed, by definition, the cache holds only a subset of the information
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that the storage holds. The absence of k in the cache is thus not a sufficient
information to know that k has to be deleted in the storage too, it may as well
mean that k has never been stored in the cache. Moreover, if later k is allocated
again, the cache may store the new value associated to k and forget about the
fact that k has been deleted previously. So, a history enables a cache for actually
hiding operations to the storage, which is a crucial feature of a cache. We have
chosen to keep just the necessary information of the history in order to have
simpler models. Storing the full history of a state would make models much
more memory consuming without providing features identified as useful.

Reduced and complete states are equipped with various compositions and op-
erations. For σ∗a, σ∗b ∈ Σ∗K,V,L, we define union (∪), intersection (∩) and difference
(\) as simple component-wise extensions of their sets counterparts. For instance,
we have σ∗a ∪ σ∗b

df
= (σ∗a.h ∪ σ∗b .h, σ∗a.r ∪ σ∗b .r). Moreover, for σa, σb ∈ ΣK,V,L,

these operations are further extended component-wise. For instance, we have
σa ∪ σb df

= (σa.content ∪ σb.content, σa.plus ∪ σb.plus, σa.minus ∪ σb.minus).
For k ∈ K, σ∗ ∈ Σ∗K,V,L, we note by σ∗ \ k the restriction of σ∗ in which we
removed any element involving k; this notation is extended component-wise to
a complete state. Finally, we define projection � as follows:

σa � σb
df
=
((

(σa.content ∪ σb.content) \ σa.minus
)
∪ σa.plus,

(
(σa.plus \ σb.minus) ∪ σb.plus

)
\ σa.minus,

(
(σa.minus \ σb.plus) ∪ σb.minus

)
\ σa.plus

)

Projection is used to compute the effect of some operations on states. Con-
sider for instance our example of a simplified file system presented above, and
take an initial state where only “/” and “/bin” exist. The creation of “/usr” can
be computed through a projection as follows:
(
{} +

{
(2, usr)

} −{}
{} +

{
(dir, {0}, {2})

} −{}

)
�

( {
(0, /), (1, bin)

}
+{} −{}{

(root, {0}, ∅), (dir, {0}, {1})
}

+{} −{}

)

=

( {
(0, /), (1, bin), (2, usr)

}
+
{
(2, usr)

} −{}{
(root, {0}, ∅), (dir, {0}, {1}), (dir, {0}, {2})

}
+
{
(dir, {0}, {2})

} −{}

)

The definition of projection is specially designed to provide with the following
properties:
– σ∅

df
= ((∅, ∅), (∅, ∅), (∅, ∅)) is neutral: for any σ ∈ ΣK,V,L that is well defined

we have σ∅ � σ = σ and σ � σ∅ = σ;
– intermediate changes that cancel each other are hidden: consider for example

an initially empty state σ∅ as above on which we perform a series of updates
• add a: ((∅, ∅), a, (∅, ∅))� σ∅ = (a, a, (∅, ∅)) df

= σ1,
• drop a to add b instead: ((∅, ∅), b, a)� σ1 = (b, b, a)

df
= σ2,

• finally drop b to add c instead: ((∅, ∅), c, b) � σ2 = (c, c, a) in which b
has disappeared like if we had dropped a to add c directly from σ1;

– similarly, if as above we start from σ1 then drop a to add b instead, we get
σ2; then if we now drop b to add a back, we compute (a, a, b) � (b, b, a) =
(a, (∅, ∅), (∅, ∅)) which also hides the mutually cancelling operations.
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2.2 Operations

An operation is a request a user of the storage system might perform and is part
of a system definition. We assume that any operation has an effect (possibly
neutral), provided as a parametrised complete state, and a result. To apply an
operation, one provides a valuation of the input parameters, then the result is a
valuation of the output parameters. If no output parameters can be found, the
operation fails. Otherwise, the effect is computed from the parametrised state
evaluated using to the input and output parameters values. Such a mapping
from variables to values is called a binding and usually noted by β, possibly
with subscripts or superscripts. We note by keys(β)

df
= img(β)∩K the set of keys

referenced in β, where img is the image (or codomain) of the binding.

Definition 3. Let vars(e) be the set of variables involved in an expression e. An
operation is a 4-tuple op

df
= (op.name, op.guard , op.effect , op.params) such that:

– op.name is a name used to refer to the operation (any string);
– op.guard is a Boolean expression that guards the application of op;
– op.effect is an expression that can be evaluated to a complete state;
– op.params is a set of variables such that op.params ⊆ vars(op.guard) ∪

vars(op.effect)
df
= vars(op);

– we have vars(op.effect) ⊆ op.params ∪ vars(op.guard);
– there exists at least one binding such that both op.effect and op.guard can be

actually evaluated ( i.e., both are actually computable simultaneously).

We note by OPS the set of all defined operations.

The role of the guard is to prevent operations to be applied on incompatible
states (e.g., one cannot read from an unallocated address). Thus the guard is
always evaluated on the state on which the operation is meant to be applied
for a given valuation of the input parameters. Then, if the guard is true and
output parameters can be computed, the effect is evaluated and projected onto
the state. Given an operation op, we note by:

– Bop,K,V,L the set of all bindings β : vars(op)→ K ∪ V ∪ L;
– Binop,K,V,L the set of all bindings β : op.params → K ∪ V ∪ L;
– Boutop,K,V,L the set of all bindings β : vars(op) \ op.params → K ∪ V ∪ L.
It should be stressed that we intentionally avoid to define a precise syntax for

expression because we do not want to fix K, V and L, nor we want to restrict the
scope of our definitions. The last item in definition 3 is sufficient to ensure that
a concrete implementation of the framework has to provide a concrete syntax
(possibly a typing) for expressions as well as an effective way to evaluate them.

For two bindings βa, βb ∈ Bop,K,V,L such that dom(βa) ∩ dom(βb) = ∅, we
define their composition β df

= βa+βb : dom(βa)∪dom(βb)→ K∪V ∪L as follows:

∀x ∈ dom(β), β(x)
df
=

{
βa(x) if x ∈ dom(βa),
βb(x) otherwise, i.e., if x ∈ dom(βb)

For convenience, we introduce some more notations. Let σin ∈ ΣK,V,L, op ∈
OPS, and βin ∈ Binop,K,V,L, we define:
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– op.guard(σin, β) is the evaluation of op.guard through β+{σ → σin}, where
σ refers to the input state and can be used to access it from the guard;

– op.effect(β) is the evaluation of op.effect through a binding β;
– op.candidates(σin, βin)

df
= {βout ∈ Boutop,K,V,L | op.guard(σin, βin + βout) ∧

op.effect(βin + βout) ∈ ΣK,V,L} is the set of possible output bindings that,
combined with βin, allow to validate the guard and to evaluate the effect to
an actual complete state;

– op is called elligible for σin and βin iff op.candidates(σin, βin) 6= ∅;
– op is called deterministic iff for all σin ∈ ΣK,V,L and all βin ∈ Binop,K,V,L we

have |op.candidates(σin, βin)| ≤ 1.

Then, when op is elligible for some input state and input binding, the set
of output states and output bindings is computed by applying op with every
possible candidate binding, which is made using a projection as follows.

Definition 4. The application of operation op ∈ OPS onto input state σin ∈
ΣK,V,L given an input binding βin ∈ Binop,K,V,L results in the subset of Boutop,K,V,L×
ΣK,V,L defined by op(σin, βin)

df
= {(βout, op.effect(βin + βout) � σin) | βout ∈

op.candidates(σin, βin)}.

The part of the model defined so far can be used on its own to study the data
model itself. For instance, one can check the correctness of (sequences of) oper-
ations, on a chosen set of states and input bindings. In other words, it becomes
possible to check the correctness of operations with respect to a specification, in
particular by using model-checking.

2.3 Topology

A distributed storage consists of a set of nodes that store (local) states and
communicate through buses. This is formalised as an hypergraph as follows.

Definition 5. Let N be a set of nodes, a topology T on N is a pair T df
=

(T.nodes, T.buses) where T.nodes
df
= N is the set of nodes and T.buses ⊆ 2N \ ∅

is the set of hyperedges. For i, j ∈ T.nodes, we note by T [i, j] the fact that there
exists b ∈ T.buses such that {i, j} ⊆ b.

Given a topology T , nodes in T.nodes are allowed to communicate by ex-
changing frames over the buses in T.buses. We assume that a bus can transmit
only one message at a time, i.e., a sender is blocked until a previously sent mes-
sage has been received. If one needs to allow several messages transmissions in
parallel, it is possible to model more than one bus between two nodes: for in-
stance, to have two buses between a and b, one could add extra “dummy” nodes
1 and 2 and the buses would be the hyper edges {a, b, 1} and {a, b, 2}. Moreover,
a receiver is blocked until a message is sent for it, i.e., reading on a bus is a
blocking operation. The possible frames are defined in Figure 2. Each frame is
a 4-tuple holding the bus on which the communication is made, the sender and
recipient nodes identities, and the message itself. Message can be of four types:
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〈frame〉T ::= (bus, source, destination, 〈message〉)
〈message〉 ::= (sync, 〈request〉) | (async, 〈request〉)

| (wait, handler) | (return, 〈response〉) | (return, handler , 〈response〉)
〈request〉 ::= (operate, op, βin)
〈response〉 ::= (success, βout) | (failure, text)

Fig. 2. The frames exchanged between the nodes of a topology T , where bus ∈ T.buses,
source, destination ∈ T.nodes, handler ∈ H (H is a set of identifiers), op ∈ OPS,
βin ∈ Bin

op,K,V,L, βout ∈ Bout
op,K,V,L and text is a text string. Special typesetting denotes

〈non terminals〉 and symbols (i.e., constants).

sync this type of message transmits a 〈request〉. It is synchronous in that there
can be no further message between source and destination until the destina-
tion has responded with a return message holding the expected 〈response〉;

async this type of message transmits a 〈request〉. It is asynchronous in that
it only blocks the sender until the destination has responded with a wait

message, but the actual 〈response〉 will come later;
wait this is a response to an async message, which comes with a handler (a

unique identifier) so that the receiver will be able to link its request with the
response that will be provided later. We assume that H is a set that is large
enough (e.g., infinite) to assign a unique handler for every wait message;

return this type of message transmits a 〈response〉 to a 〈request〉. A response
to a sync message comes as a pair (return, 〈response〉); a response to
an async message comes as a triple (return, handler , 〈response〉), where
handler is the identifier that was provided with the wait response.

There is currently only one type of 〈request〉, but this may change if needed.
A request req

df
= (operate, op, β) is parametrised by an operation req .op and

an input binding req .β for this operation. The corresponding answer, sent syn-
chronously or asynchronously, is a 〈response〉 that can be a success or a
failure. In the former case, it comes with the output binding (noted resp.β)
chosen by the system; in the latter case, it comes with a failure message.

Interpretations and Integration. As soon as states are distributed over a
topology, we need to define how to compose these local states into a unique global
state. This must be user-defined together with the topology. Moreover we must
define how a node integrates the information about states it can deduce from its
exchanges with other nodes. For instance, consider a memory hierarchy with a
cache that receives a request to read a block a. If it forwards the request to the
next level in the hierarchy and eventually receives the value v in the response,
it knows that (a, v) could be added to its local state. More generally, because of
the way operations are defined, knowing the operation together with the input
and output bindings is enough to evaluate op.effect . The latter is a state that
may be composed with the local state. How this composition must be made (or
avoided) is dependent on how the distributed state is interpreted and must be
user-defined as well.
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Definition 6. An interpretation IT of a topology T is a pair of functions:

IT
df
=
(

globalview : T.nodes×ΣK,V,L → ΣK,V,L ,

integrate : T.nodes× T.nodes→ ΣK,V,L ×ΣK,V,L → ΣK,V,L
)

In this definition, globalview is responsible for computing a single global state
from the collection of states located on T.nodes. Function integrate is more
complex: it takes a pair of nodes (a, b) and returns another function ΣK,V,L ×
ΣK,V,L → ΣK,V,L. This one takes a pair of states (σa, σb) and combines them
into a single state σ′a that can be understood as the integration on a of the effect
σb on the state σa, for an operation that was actually computed on node b.

When considering a hierarchy, where a process accesses a storage through a
chain of caches, function globalview can be computed as: σ0 � σ1 � · · · � σn
where the σi’s are the locals states ordered from the one closest to the process
(i.e., σ0) to the state of the storage itself (i.e., σn).

2.4 Placement Policy

The question of placement is complementary to that of interpretation: a node
has to know on which other node the value associated with a key is located. This
way it knows how to retrieve this value or to whom it has to forward a request
it cannot handle itself (or does not want to). This information is provided by a
placement policy PmeIT

that is provided by the user for an interpretation IT . Let
us assume a global variable me that is the identity of the node on which these
methods are called, then PmeIT

is provided as a set of methods:

where (keys ⊆ K,notme ∈ {⊥,>})→ T.nodes ∪ {7}
Returns a node where the resources referenced by keys should be stored, or
a dummy value 7 if no such node can be identified. If notme = >, the return
value cannot be me.

space (keys ⊆ K,σin ∈ ΣK,V,L)→ N
Returns the number of resources currently stored on node me that need to
be deleted in order to be able to store locally the values associated to keys.

update (keys ⊆ K, handler ∈ H)
This method does not return any value but is called on node me whenever
a request identified by handler has just been received. It is used to update
the current knowledge about the situation that may be maintained by the
policy. For instance it may update the MRU (most recently used) keys in a
LRU (least recently used) cache. Notice that we see here a handler in H like
we have used for asynchronous requests; indeed, it is used internally by the
nodes for their bookkeeping (see below).

purge ()→ K
Deletes and returns a resource, currently stored on node me, which should
be considered as the least useful when purge is called. For instance, a LRU
cache will exactly choose the least recently used key.
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close (handler ∈ H, outcome ∈ {success, failure})
This method is called to commit (on a success) or cancel (on a failure)
the changes that occurred when update has been called.

Methods update and close work together: calling update allows to increase
the usefulness of a set of keys, then calling close allows to commit or cancel
the update. The reason for such a mechanism is that most operations on a node
cannot be realised atomically and may require to communicate with other nodes.
During this process, the node may receive and process other requests that can
be completed locally, so we cannot rely on a mechanism that would lock the
whole node during the processing of a request. Instead, we have this notion of
transactions that we can commit or rollback.

PmeIT
can be thought of as a class of which each node me holds an instance

and the above definitions are its methods. Note that update, close and purge are
thus expected to have side effects on the instance.

2.5 Nodes Management Processes

We now describe how the nodes manage their states and communicate with each
other. It should be stressed that these algorithms are completely generic: the user
just has to provide the elements specified above to get a working model.

At the core of each node is the job manager that is fed by process listener
shown in Figure 3: when a 〈request〉 is received by a node, it is first stored
in a job manager and associated to a handler in H; it is kept here until it is
fully processed. Dependencies can occur between requests: two requests r1 and
r2 are independent iff keys(r1.β)∩keys(r2.β) = ∅. The job manager handles these
dependencies and provides the following methods:

last (key ∈ K)→ H] {7}
Returns the handler of the last request added with a domain including key ,
or a dummy value 7 if no such request exists.

add (request ∈ 〈request〉)→ H
Adds request identified by handler into the manager and returns a fresh
handler for it. The added request is recorded as dependent on the lastly
added request for every key in keys(request).

next ()→ 〈request〉 × H
Returns a pair (request , handler) that is ready to be proceeded (no pending
dependencies). The caller is blocked until such a job is actually available.

deps (handler ∈ H)→ (〈request〉 × H)∗
Returns the list of pairs (r, h) corresponding to all the requests r and han-
dlers h the request rhandler associated with handlers depends on. This list is
computed deterministically and ordered consistently with dependencies, the
last item being (rhandler , handler).

done (handler ∈ H)
Marks every information associated to handler as disposable and clears from
the job manager any disposable information that is not needed anymore.
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Nodes processes are implemented as coloured Petri nets [8] (see appendix A),
however, to clarify the presentation, we provide them here as pseudo-code. Not-
ing by p! the infinite replication of a process p, each node runs a simple process
consisting of two such replications composed in parallel listener! ‖ worker!, which
is executed in a context with the following global variables:

– me is the node on which the process is executed;
– jobsme is the job manager for node me;
– T is the topology and we note by T.send (b, s, d,m) the sending of a message
m on bus b from a source node s to a destination node d; the reception
is noted by T.receive (b, s, d,m). Recall that T.send (b, . . . ) is blocking if a
message is already in transit on b and T.receive (b, s, d, . . . ) is blocking until
a message is actually sent on b, from s to d. Moreover, pattern matching may
be used to filter the format of received messages and to match free variables
against received values, in particular the sender’s identity (see, e.g., the first
instruction of listener);

– ret is a communication channel internal to the node that behaves like a bus,
i.e., it provides methods ret .send (m) and ret .receive (m);

– IT and PmeIT
are the interpretation and the placement respectively;

– σme is the current state.

Figure 3 shows process listener that is responsible for receiving a message for
the node, add it to the job manager and send back the response as soon as it is
available. It is quite a simple process, but it is worth noting how asynchronous
requests are handled. Figure 3 also shows process worker that is responsible for
actually executing the jobs. Essentially, it uses the placement to know if node
me is responsible for the keys associated to the request and if so, it computes
the effect locally if possible or forwards the request to the appropriate node
otherwise.

Figure 4 shows process apply that is responsible for applying on the local state
σme the effect of an operation for which we have obtained the output binding. To
do so, it possibly makes room in the local state if needed. For instance, a cache
may drop a block if it has to store one more block but is already full. Finally,
Figure 4 also shows process sync that applies all the pending requests a given
handler depends on. It should be stressed that a call to sync (h) also proceeds
the request for h itself, as the last one. So sync returns the response for this
request together with the identity of the node that actually answered it.

2.6 Actors

To produce activity, we need to introduce dedicated nodes, called actors, whose
only role is to send messages and receive the corresponding answers. For instance,
a processor is the actor in a memory hierarchy. It is not possible to define a
generic model of an actor because each one corresponds to a particular profile
of activity, and so it stimulates the system in its particular way. For instance, a
processor at the top of a memory hierarchy could behave in many different ways
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process listener:
T.receive (bus, src,me, (kind , req)) #receive a message (kind , req)
h← jobsme .add (req) #add it to the job manager and get its handler h
Pme
IT
← Pme

IT
.update(keys(req.β), h) #notify the placement policy

if kind = async: #this is an asynchronous request
T.send (bus,me, src, (wait, h)) # immediately send a wait answer

ret .receive (resp, h) #wait for the worker process to respond
if kind = async:

T.send (bus,me, src, (return, h, resp)) #send asynchronous answer
else:

T.send (bus,me, src, (return, resp)) #send synchronous answer

process worker:
req , h← jobs.next () #wait until a new job is available
if Pme

IT
.where (keys(req.β),⊥) = me:

c← req .op.candidates(σ, req .β) #search for possible βout
if c 6= ∅:

choose βout ∈ c #make a non-deterministic choice if |c| > 1
resp ← (success, βout) #build the response
apply (req , resp, h,me) #apply the effect to update σ

elif Pme
IT
.where (keys(req.β),>) 6= 7:

resp, pos ← sync (h) #complete all the dependencies on h and get a
# response from node pos that performed the latest operation in sync

if resp[0] = success:
apply (req , resp, h, pos) #apply the effect to update σ

else: #we do not know how to process the request
resp ← (failure, "no node to handle request")

else: #this forwards the request to the appropriate node
resp, pos ← sync (h) #recall that we have resp[0] ∈ {failure, success}

Pme
IT
.close (h, resp[0]) #tell the placement about the outcome

jobsme .done (h) #tell the job manager that the request for h is done
ret .send (resp, h) #send the response back to the listener

Fig. 3. The listener and worker processes, where sub-processes apply and sync are
provided in Figure 4.

depending on what kind of programs it is supposed to execute. We can however
define basic types of actors that may be useful to exercise a model.

– the serial player sequentially sends the messages of a series and wait for each
answer before sending the next message;

– the random messenger repeatedly sends arbitrary messages, generated from
a given set of patterns by instantiating parameters in given ranges. In paral-
lel, it reads the answers as they arrive. To avoid flooding the system, it may
count the pending messages (sent requests not yet answered) and avoid to
overtake a chosen bound;
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process apply (req , resp, h, pos):
k ← keys(req .β + resp.β) #get the keys involved in the operation
Pme
IT
.update (k, h) #tell placement that keys k are currently under interest

for 1 ≤ i ≤ Pme
IT
.space (k, σ):

least ← Pme
IT
.purge () #get and drop the least value element

h′ ← jobsme .last (least) #get the last added request for least
if h′ 6= 7:

r, p← sync (h′) #flush operations h′ depends on
σme ← σme \ least #restrict σme to remove least

integrate = IT .integrate (me, pos) #get the method to integrate the effect
# in the local state

σme ← integrate(σme, req .op.effect(req .β + resp.β)) #do it actually

process sync (handler):
for req , h in jobs.deps (handler): #the list order is respected!

pos ← Pme
IT
.where (keys(req .β),>) #where to process req excluding me

choose b ∈ T.buses such that T [pos,me] #get a bus to reach pos
if no such b: #this is a bug in the placement or the topology!

return (failure, "no path to pos"),me
T.send (b,me, pos, (sync, req)) #forward req to pos
T.receive (b, pos,me, (return, resp)) #wait for the response

return resp, pos #return the latest response that is for handler

Fig. 4. The apply and sync processes called from Figure 3.

– the scenario performer plays a scenario describing the messages to send
depending of the answers already received. It can be seen as an evolution of
the serial player with branches and loops;

– the profiler generates and plays a scenario that fits a statistical profile de-
fined from the observation of concrete systems. For instance, we could exer-
cise a cache with respect to spatial and temporal locality observed in real-
world programs by generating series of read/write requests on consecutive
addresses.

Many other kind of actors may probably be considered. Choosing an adequate
model of actor is crucial for a correct analysis. Indeed, most distributed storage
systems, and cache policies in particular, are based on strong hypotheses about
the access patterns of the systems using them.

2.7 Executions and timed analysis

An actor is implemented as a Petri net that is composed with the Petri nets
implementing the nodes processes to obtain a full system from which we can
get executions of two kinds. On the one hand, the state space, consists of the
reachable states of the Petri net, linked by the transitions from one state to
another. This is usually a huge object that is suitable for qualitative analysis,
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in particular through model-checking. On the other hand, a trace is a sequence
of alternating states and transitions that corresponds to a path in the state
space. As such, it is usually used to exhibit a faulty execution discovered using
model-checking.

To enable for timed analysis of the modelled systems, and in particular per-
formance analysis, we propose to apply a cost function that maps each transition
to its duration. For instance, communication costs can be modelled by weighting
appropriately the transitions that correspond to message sending and reception.
Applying a cost function results in weighted executions, allowing to compute
the global cost of an execution. Concurrent threads of transition firings that
occur for distinct nodes are physically executed in parallel, so their costs is not
summed but the maximum is taken instead.

3 Application Example

To illustrate our framework, and in particular to clarify what a user has to
concretely provide in order to model a system, we propose now a model of a
simple hierarchical: an actor A requests memory blocks to a storage S through
a LRU cache C. These nodes are arranged on topology T df

= ({A,C, S}, {{A,C},
{C, S}}) and their initial states are:

σA
df
=
( ∅ ∅ ∅
∅ ∅ ∅

)
, σC

df
=
( ∅ ∅ ∅
∅ ∅ ∅

)
, and σS

df
=
(
α ∅ ∅
∅ ∅ ∅

)
,

where α df
= {k1 → v1, . . . , kszK → vszK} is randomly generated such that σS is

well-formed, and szK is a parameter to control the size of the system, i.e., its
number of key/value pairs.

This system uses two operations, read and write defined as follows:

read
df
=





name
df
= “read”

guard
df
= (k, v) ∈ σ.content.h

effect
df
=
(
(k,v) ∅ ∅
∅ ∅ ∅

)

params
df
= {k} write

df
=





name
df
= “write”

guard
df
= (k, v1) ∈ σ.content.h

effect
df
=
( ∅ (k,v2) (k,v1)
∅ ∅ ∅

)

params
df
= {k, v2}

Operation read gets the value v associated to a given key k. Operation write
replaces the value v1 associated to key k with value v2 also passed as argument.

We have here a hierarchical system in which state interpretation is straight-
forward: the global state is obtained by projecting states top-down and integra-
tion projects an observed state onto the local state (except for A that maintains
an empty local state):

IT
df
=




globalview : {(A, σA), (C, σC), (S, σS)} 7→ (σA � σC)� σS ,

integrate : me, pos 7→
{
σme , σpos 7→ σme if me = A,
σme , σpos 7→ σpos � σme otherwise.




The placements PA, PC and PS respectively associated to the nodes A, C
and S are defined as follows:
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– PA is such that every key belongs to C because A does not store any data.
So, where constantly returns C; space constantly returns 0 (and thus, purge
is never called); update and close are no-ops;

– PS is such that every key belongs to S, otherwise it behaves like PA: where
constantly returns S; space constantly returns 0; update and close are no-ops;

– PC is such that every key belongs to C, moreover, it maintains a list ` in
which new keys are positioned in MRU and purge always deletes the key
positioned in LRU. So, where returns C if notme is false, or S otherwise;
space (keys, σin)

df
= max (0, |σin.h| + |keys| − szC), where szC is the size of

the cache (i.e., the maximum number of keys it can store); update (keys, h)
adds [(k, h) | k ∈ keys] at the head of ` (MRU position); purge returns k
such that (k, h) is the tail of ` (LRU position), which is dropped from `;
close (h, outcome) either drops from ` any pair (k, h) if outcome = failure

or drops elements at the tail of ` until its has at most szC elements.

To perform a timed analysis of this system, we have considered a LRU friendly
actor that sequentially sends requests (waiting for each answer before to send
the next request) as follows:

– it maintains a MRU-to-LRU ordered list L of keys already sent in a request;
– a read or write is chosen with 50% probability each;
– with probability 1/a, a key k is chosen in L, otherwise, it is chosen in K \ L;
– with probability 1/b, the LRU key is dropped from L;
– k is added to L in MRU position.

Choosing szK = 10, we have executed 100 runs of this system for every
szC ∈ {0, . . . , 12}. For each run we measured its costs using a fixed weighting
of events as follows: communication events cost 0 on A, 40 on C and 400 on S;
other events cost 0 on A, 1 on C and S. Figure 5 shows the mean value of these
estimated costs with respect to the size of the cache. Because the actor is LRU
friendly (with a = 2 and b = 100), costs decrease with the cache size, until szK
where we reach the number of available keys. This closely matches the shape of
curves one can obtain from exercising a real LRU. Moreover, curves obtained
with larger values of szK are closely similar as well.

This example shows how it is easy to use simulations of modelled systems
to analyse the impact of various parameters on the timed performance of the
system. We have considered here a simple system with a simple analysis, but it
is easy to see that we could have considered many other analyses of the already
numerous parameters of this system. A more complex case study can be found
in [7, chap. 4] where the demote distributed cache protocol presented below is
analysed. Both these studies are done within a prototype implementation of the
framework presented in this paper. Using the SNAKES toolkit [12], it defines
all the classes and methods that correspond to the definitions as well as the
necessary to build the Petri net actually used to compute runs or state spaces.
In particular, the LRU case study presented in this section requires about 120
lines of Python to be implemented. For comparison, the code for demote in [7]
requires about 350 lines of Python. Both codes are straightforward to write, the
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Fig. 5. Estimated cost of a request (lower is better) with respect to cache size; 95%
confidence intervals are depicted as vertical segments (and the gray zone).

difficult part being more in the design phase that has to extract the various
aspects (in particular the methods for the placement policies) from the original
algorithm in which they are intricate.

Note finally that the choice of 100 executions in this section is not due to time
limitation. Simulation is fast and we could have run thousands of executions. But
100 is already enough to get smooth curves with good confidence intervals. Time
efficiency of simulation based analysis has been observed also on larger instances,
as well as on the bigger example of [7].

4 Conclusion, Related Work and Perspectives

We have presented what is, to the best of our knowledge, the first attempt to
provide a generic modelling framework for distributed storage systems, and in
particular cache systems. Our proposal has the original feature to allow for a
separation of usually intricate concerns. Moreover, it can be applied to qualita-
tive or timed analysis. We have illustrated on a simple yet realistic example how
a system can be modelled and its timed performance can be analysed. A more
complex case study with a detailed analysis is proposed in [7, chap. 4].

We have surveyed about 60 papers about caches and distributed storage sys-
tems and found no work directly related to ours. However, among others, several
papers are worth citing. [1] is probably the first paper to introduce the notion
of caches (not yet named this way) using a FIFO eviction algorithm. Later,
in [4], LRU (least recently used) is introduced, which is further generalised in [13]
that considers a hierarchy of caches. A recent evolution is ARC, defined in [11],
that is a sophisticated dynamic eviction algorithm which adapts with respect to
frequently or recently used blocks. Regarding analysis aspects, [13] presents a
simulation driven design of an efficient cache algorithm (called demote). How-
ever, it is not implemented because it involves extensions of existing low-level
APIs of storage. This work also introduces the idea of distributed storage by
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partitioning the key domain across the caches in a hierarchy. Another proposal
is [6] that defines promote to fix costs problems of demote. An interesting con-
tribution is to introduce a notion of optimality of a cache algorithm, showing
that promote approaches it. Moreover, this work introduces ideas to address
multi-path hierarchies. [10] explores the idea of exploiting the relations between
resources, which are discovered through statistical analysis of accesses. In con-
trast, our proposal makes these relations explicit in σ.r. Finally, an interesting
paper is [3] that surveys majors multi-level cache systems, with a classification
with respect to collaboration between levels, eviction algorithm and local optimi-
sation strategies. It also shows an analysis of the algorithm through simulation
and actual implementation of widely used benchmarks. These benchmarks could
be rendered as dedicated actors in our proposal.

Future work will be dedicated to explore performance analysis directly on the
state space, instead of resorting to simulated traces. It may be more accurate
than our current simulation-based method, but probably also less efficient if
non trivial actors are considered (leading to larger state spaces). To cope with
this, we shall consider symbolic techniques to reduce the cost of model-checking
on models in our framework. In particular, symmetries reductions on keys like
in [5] and finite abstraction of values on infinite domain like in [2] should be
easy to adapt to our case and would allow to consider realistic storage sizes.
Combining both is a more challenging problem that we would like to address on
the long term. Note however that this is needed for state-space analysis only,
indeed, traces are always fast to computed, even with large number of keys
as we have experienced using varied parameters of the case study presented in
section 3. Moreover, we observed that usually few traces are required in order
to obtain smooth curves and good confidence intervals like that of Figure 5.

Another perspective would be to take into account systems with a dynamic
topology, in particular, new nodes may appear while other may leave, like in
distributed hash tables. This looks like a straightforward evolution of the current
setting, but it leads to additional difficulties with respect to state-space analysis.
In particular it is likely that we can quickly obtain infinite state systems, which
must be avoided to perform analysis other than simulation.
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A Petri Nets Implementation

To allow their actual execution, the processes presented in section 2.5 are imple-
mented as colored Petri nets. We present them here to illustrate their complexity
but we lack space to give detailed explanations and refer to [7] for such details.
We have used the SNAKES toolkit [12] that allows us to split the whole systems
into sub-nets with shared places that can be merged latter on. Below, shared
places are depicted with thick circles, and are named. Non-shared places are
depicted with thin circles and are anonymous. For the sake of readability, we
do not draw all the places. Instead we introduce some notations. For instance,
the placements are stored in a place Placement as pairs (me,Pme) for each
node me. Access or update to this place are not depicted but an annotation
like n′ ← Pme.where(keys(req.β),>) in Figure 7 understands a read arc from
Placement labelled with (me,Pme) in order to get the value of Pme. Similarly,
Pme ← Pme.update(K,h) in Figure 10 understands an input arc labelled with
(me,Pme) together with an output arc labelled by (me,Pme.update(K,h))that
produce the new value for Pme. We use similar notations for jobsme, IT and σme.

Communications are simulated with two shared places used together: io and
buses. Every sent message is produced as a token in place io, from where it will
be consumed by a transition of the destination node. When a message is sent
on a bus b, the token b is also consumed by the sender in place buses and it is
produced back by the receiver of the message. This way, only one message can
transit at a time on a bus. To simplify further the pictures, we also introduce a
notation for communications as shown in Figure 6.

In the model, handlers for new requests are created by the job manager.
Our implementation makes use a feature of the SNAKES framework: dynamic
process identifiers. This feature has initially been created to handle systems that
can dynamically start/stop processes, see [9, 5]. We use here the same notations
has in these papers to create requests handlers while being able to record by
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buses io ≡ ↑ (b,me, n, 〈msg〉)b b,me, n, 〈msg〉

io buses ≡ ↓ (b, n,me, 〈msg〉)b, n,me, 〈msg〉 b

Fig. 6. Notations for communications: the complete nets are depicted on the left and
the abbreviated ones on the right.

which node each was created: each node is identified by me that is implemented
as a pid (process identifier); given a pid p, ν(p) creates a new pid that has a
parent-child relation with p, and χ(p) destroys pid p from the system.

A.1 Implementation of the Processes

Process listener (see Section 2.3) is split into two nets for synchronous and
asynchronous exchanges depicted respectively in Figures 8 and 9. First, in Fig-
ure 8 that depicts the Petri nets implementation of synchronous messages mech-
anism, place idle is used by the sender node to forbid further communica-
tions with node n until a response has been received. It is initialised with:
{(me, n) ∈ T | T [me, n]}. Asynchronous messages are handler similarly as de-
picted in Figure 9, the main difference is that they lead to two successive answers
(first a wait, then the corresponding return).

Process sync (see Figure 7) performs a loop over a list of request that need
to be sent to another node. It then returns the last response and the node that
found it. We use a place sync where we put the list, the last response and the
last node; then we consume the list request by request until it is empty. Process
apply shown in Figure 10 also has an internal loop intended to make some room
before integrating a result: it executes A1 followed by loops on B1 and B2, and
finally A2. Finally, Figure 11 depicts the Petri net implementation of process
worker with basically three paths: through 2a if the request is not to be handled
by the current node; through 2b otherwise, then through 3a if the request cannot

sync S1 reqs

resp

S2 S3

∗ •

†

† ‡
∗∗

S1 – n′ ← Pme.where(keys(req.β),>)
– b[n,me]

S2 – l 6= []
S3 – l = []

– jobsme ← jobsme.done(h)
∗ me, (req, h′) :: l, h, resp, n
∗∗ me, l, h, resp, n′

• me, req, h′, n′, b
† me, l, h, h′, n′

‡ me, resp, h′

Fig. 7. Petri net implementation of process sync.
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be computed locally but can be forwarded, or through 3b if an output binding
is found and the request can be completed, or finally through 3c if no output
binding is found and no other node can handle the request.

We refer to [7] for a more detailed description of the processes. However, it is
worth noting that these Petri nets have been model-checked on small instances
to prove that they always terminate with a correct result. They also have been
intensely exercised through simulation of numbers of examples, including large
ones, and we have checked that each run was actually a correct execution.

idle

A1 A2reqs resps
∗

∗∗

† †

∗∗
‡

idle

B1 B2 rets

∗∗

4

‡

4

∗∗

∗ me, req, h, n, b
∗∗ me, n
† me, h
‡ me, resp, h
4 me, n, h
A1 ↑ (b,me, n, (sync, req))
A2 ↓ (b, n,me, (return, resp))

B1 – ↓ (b, n,me, (sync, req))
– h = ν(me)
– jobsme ← jobsme.add(req, h)
– Pme

IT
← Pme

IT
.update(keys(req.β), h)

B2 – ↑ (b,me, n, (return, resp))
– χ(h)

Fig. 8. Petri nets implementation of synchronous exchanges, requests are performed
by the left-hand part and answers by the right-hand part of the net.

A2

idle

A1 A3reqs resps
∗

†

∗∗

∗∗

†

4

4

†

�

B2

idle

B1 B3 rets

†

•

•

†

•

†

•

�

∗ me, req, h, n, b
∗∗ me, h
† me, n
‡ me, n, h
4 me, n, h, h′

� me, resp, h
• me, n, b, h
A1 ↑ (b,me, n, (async, req))
A2 ↓ (b, n,me, (wait, h))

A3 ↓ (b, n,me, (return, h′, resp))
B1 – ↓ (b, n,me, (async, req))

– h = ν(me)
– jobsme ← jobsme.add(req, h)
– Pme

IT
← Pme

IT
.update(keys(req.β), h)

B2 ↑ (b,me, n, (wait, h))
B3 – ↑ (b,me, n, (return, h, resp))

– χ(h)

Fig. 9. Petri net implementation of asynchronous exchanges, with requests handled on
the left and answers on the right.
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apply A1

mkr

A2

B1

sync

B2

∗
†∗

∗ ‡

∗∗

4�

� ∇

•

†

A1 – K ← keys(req.β + resp.β)
– Pme ← Pme.update(K,h)
– N ← Pme.space(K,σ)

A2 – integrate← IT .integrate(me, n)
– σme ← integrate(σme,

req.op.effect(req.β + resp.β))
– jobsme ← jobsme.done

B1 – N > 0
– Pme, least← Pme.purge()
– h′ ← jobsme.last(least)

– jobs, l← jobsme.deps(h
′)

B2 – σme ← σme \ least
∗ me, req, resp, h, n
∗∗ me, resp, h
† me,N, h
• me,N − 1, h
‡ me, 0, h
� me,N, least, h′, h
4 me, l, h′, 7,7
∇ me, [], h′, resp, n

Fig. 10. Petri net implementation of process apply.

1

2a sync

2b

3a

4a

4b

apply3b

3c

5 rets
∗ ∗

∇

• •

∗∗

∗

4
�

∗

‡
� �∗∗ †

� �

1 – jobsme, req, h← jobsme.next()
– req 6= 7

– K ← keys(req.β)
2a – Pme.where(K) 6= me

– jobsme, l← jobsme.deps(h)
2b – Pme.where(K) = me

– c← req.op.candidates(σme, req.β)
3a – c = []

– Pme.where(K,>) 6= 7

– jobsme, l← jobsme.deps(h)
3b – c 6= []

– choose βout ∈ c
– resp← (‘success′, βout)

3c – c = []
– Pme.where(K,>) = 7

– jobsme ← jobsme.done(h)
4a – l = []

– resp.type = ‘failure′

4b – l = []
– resp.type = ‘success′

5 – Pme ← Pme.close(h, resp.type)

∗ me, req, h
∗∗ me, req, h, c
• me, h

∇ me, l, h, 7, 7
4 me, [], h, resp, n
† me, req, resp, h,me

‡ me, req, resp, h, n
� me, resp, h

Fig. 11. Petri net implementation of process worker.
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