
MetaDesk: A Semantic Web Desktop Manager

Robert MacGregor, Sameer Maggon, Baoshi Yan

Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292, U.S.A.

{macgregor, maggon, baoshi}@isi.edu

Abstract
MetaDesk is an RDF authoring tool that facilitates entry of
facts, rather than construction of ontologies. MetaDesk
places no restrictions on vocabulary—users can invent
terms on-the-fly, which the system converts into underlying
RDF structures. Knowledge entry focuses on the creation
of semantic structures that form scaffolding both for
retrieving and interpreting facts. The most common
hierarchic relationships turn out to be partonomies
(whole/part structures) and set membership (as opposed to
the traditional is-a hierarchies and class memberships).
MetaDesk is also a semantic desktop that includes
references to folders and documents within its knowledge
base. We have found that the same semantic structures are
appropriate for organizing desktop information

Introduction
A year ago we experimented with a tool for attaching RDF
metadata to Web pages that used Protégé [Eriksson 1999]
as the data entry (authoring) component. The tool required
that a class be selected for instantiation as a prerequisite to
knowledge entry. Our experiment was a failure, for two
reasons. We found that the ontology-driven paradigm
resulted in creation of artificial classes (often suffixed with
the term “Annotation”) that drew an artificial boundary
between the objects being annotated and the metadata
descriptions. Worse, it was just annoying—the effort to
select a class before typing in an annotation discouraged
use of the tool.1

In response, we invented a new tool, MetaDesk that
makes RDF data authoring as quick and painless as
possible. We use MetaDesk to record the kinds of
metadata we generate during everyday tasks. We quickly
discovered that the kinds of knowledge structures users
(the authors, in this case) produced with the tool differ
from the structures found in typical RDF databases.
Currently, we are using MetaDesk as a personal
information manager to keep track of projects, proposals,
to-do lists, slides, etc., and as a launching pad for quickly
bringing up specific folders and documents (like Windows
shortcuts, only better organized and optionally possessing
metadata annotations). Our intention is to add one or more
additional knowledge sharing capabilities to MetaDesk,
and then release it as a generic tool for managing

1 These artificial classes were created to provide domains for “annotation
properties”.

information and for collaborating with other MetaDesk
users.

Example: MetaDesk provides two metaphors for entering
information—users can create “nodes” (represented
internally as RDF resources) that are arranged in a
hierarchy, and they can attach attribute-value pairs to
nodes.

Figure1: Recording Trip information in MetaDesk

Suppose you are planning a trip to the forthcoming ISWC
conference and you need to record information about the
trip in an organized fashion. Details could include flight
carrier, confirmation number, hotel preferences, prices etc.
In addition, you would like the information to be
represented in such a way that restructuring of the data is
feasible. Storing such information in the current RDF
authoring tools is a tedious process. As opposed to directly
writing the information in the tool, you first have to create
a myriad of classes and properties like Trip Class, Flight
Class, and Hotel Class etc. Also, the domain and range
constraints of the properties have to be specified. Further
more, the ontological information is not very obvious in
particular cases. For example, it is difficult to name the
relationship between Trip class and Flight class and
between Trip class and Hotel class. As a result, a naive
user, or one in a hurry, would prefer to create such
information in a text format than recording it in an
ontology-driven RDF authoring tool. Our tool excels in
simplicity, providing an efficient data entry paradigm.

107

Recording the information in this example is easy and fast
with MetaDesk. One can simply create a Trip node and
add some child nodes to it. The child nodes could be a
Flight node, a Hotel node and a Conference node. One can
attach other information to individual nodes; for example,
add a confirmation number to the Flight node. The
resultant hierarchy is shown in Figure 1.

MetaDesk is all RDF-based--although users enter the data
rather quickly without knowing anything about RDF, the
created data is converted to RDF triples. Below we list the
underlying RDF triples (in N3 format for readability) for
the information shown in Figure 1. The "parentChild" links
specify that under the "ISWC_2004_Trip" node are three
nodes: "Flight" node, "Hiroshima_Prince_Hotel" node and
"Places_to_Visit" node. Under "Flight" node are four other
nodes representing individual connecting flights:
"JAL1604", "JAL5016", "JAL5015", and
"JAL1601". There are also RDF triples defining the
reservation number and phone number for the hotel, etc.

myNS:Trips

 rdfs:label “Trips” ;

 sew:parentChild myNS:ISWC_2004_Trip .

myNS:ISWC_2004_Trip

 rdf:type myNS:Trip ;

 rdfs:label “ISWC 2004 Trip” ;

 sew:parentChild myNS:Hiroshima_Prince_Hotel

 ,myNS:Places_to_Visit

 ,myNS:Flight .

myNS:Hiroshima_Prince_Hotel

 rdf:type myNS:Hotel ;

 rdfs:label "Hiroshima Prince Hotel" ;

 myNS:Phone_Number "81-82-256-1111" ;

 myNS:Reservation_Number "3345788" .

myNS:Places_to_Visit

 rdf:type sew:Desktop_Folder ;

 rdfs:label "Places to Visit" ;

 fileNS:fullpath "C:\\Documents and

Settings\\maggon\\My Documents\\Places to Visit".

myNS:Phone_Number rdfs:label "Phone Number".

myNS:Flight
 rdfs:label "Flight" ;

 sew:parentChild myNS:JAL5016 , myNS:JAL1604 ,

myNS:JAL5015 , myNS:JAL1601 .

Mapping MetaDesk to RDF
MetaDesk is represented as “triples all the way

down”—every link in MetaDesk maps to a triple. A new
node is created by highlighting an existing node, and
explicitly typing the name of a child node, or by dragging
something (a Web page, PDF file, Word Document, etc. or
another node) onto the highlighted node. MetaDesk

consciously imitates the gestures, look and feel used to
construct hierarchies using Windows Explorer.

If ‘P’ is a node, and ‘C’ is one of its children, the link
between them is represented by a triple of the form <P, R,
C> where ‘R’ is either ‘parentChild’ or one of its
subproperties. The ‘parentChild’ relationship is roughly
definable as the most-general, directed structural
relationship. As such it subsumes more specific relations
such as whole/part, class/subclass, set/set member, or
folder/subfolder. We originally assumed that it should also
subsume the class/instance property (the inverse of
‘rdf:type’), but when viewing children of a class, we found
that we wanted to see only its subclasses, not mixed in
with its instances. A node can have multiple parents (it
occupies the object position of multiple ‘parentChild’
triples). A special node called ‘Heap’ exists as a catch-
all—an RDF resource that does not have a parent node is
considered to be “on the heap”. This is handy for
operations such as tabbed search that assumes that each
node it displays is located somewhere in the hierarchy.

Each node N has zero or more attributes, represented by
triples of the form <N, R, V> where ‘R’ is not a
subproperty of ‘parentChild’ (or of its inverse). There are
no restrictions on what attributes can be attached to a node
(i.e., violations of domain constraints may be flagged, but
are not forbidden). Users are encouraged, but not required,
to fill in the attributed named “type”, which denotes the
property ‘rdf:type’. A future version of MetaDesk will
semi-automate the filling-in of type attributes.

RDF structures in their raw format are not readable, so we
want to hide all details of RDF from users, including URIs
and namespaces. Hence, all non-literal names that a user
sees in MetaDesk (names attached to nodes in the
hierarchy, attributes, and in attribute value position)
correspond to RDF ‘labels’. Underneath, each label ‘N’
maps to a URI ‘U’, and MetaDesk asserts the triple <U,
rdfs:label, N>. Some labels have semantics built in, e.g.,
“type” maps to ‘rdf:type’ and “parent class” maps to
‘rdfs:subClassOf’. By default, a label “xxx” that does not
match an existing label is mapped to the URI ‘myns#xxx’,
where “myns” is the URI for a user’s personal namespace.

An attribute value ‘V’ is stored as a literal (a string) if the
relevant range information references a literal class (a
subclass of ‘rdfs:Literal’), or as a resource if the range
indicates a non-literal. If there is no range information,
then the system first looks for a label matching ‘V’,
creating a matching resource if there is. Otherwise, ‘V’
defaults to a string, but the user can convert a literal value
it into a new resource (by gestures provided by MetaDesk)
any time. Values representing brand-new resources are
considered a part of the “heap”.

108

Importing Data
 Arbitrary RDF files can be dropped into a MetaDesk
hierarchy, but MetaDesk will not know which new
resources to treat as nodes within the hierarchy. Instead,
all of these nodes are assigned to the “heap”. An
exception is Class and Property resources. These are
entered under the Ontology node, below either ‘owl:Thing’
or ‘sew:Attribute’(‘sew’ is the nickname for the
namespace that is internally used by MetaDesk).

Arbitrary XML files can also be dropped into a MetaDesk
hierarchy. These are automatically converted into RDF,
with the top-most tag forming the root resource. The
‘parentChild’ Property is used to represent the relationship
between tags and subtags (except when the subtag
represents a literal). For example, for the following XML

<trip>
 <hotel confirmation=”39880A78B”>
 <flight fltnum=”884”

 confirmation=”S38BN04”>
 <carrier>America West</carrier>

</flight>
<trip>

Our translator would create resources of RDF type
‘myns:Trip’, ‘myns:Hotel’, and ‘myns:Flight’, with
‘parentChild’ links from the Trip resource to the Hotel and
Flight resources. Each of the three attributes is converted
into the obvious RDF triple. The Flight resource is linked
via a triple to the string “America West” via a property
named ‘myns:carrier’.

Interaction with Windows Applications
The primary means provided currently for interacting

with desktop objects are (i) drag and drop actions to/from
the desktop and (ii) launching applications by double-
clicking on nodes denoting them that reside in the
hierarchy. Windows folders are a special case—when a
Windows folder is dropped into the hierarchy, the
corresponding MetaDesk node can materialize additional
child nodes (on demand) corresponding to the contents of
the folder when the node is “opened”. Annotations
attached to folders are persistent, but the ‘parentChild’
links that relate folders and subfolders are not stored
persistently (to save space). Move and copy operations on
folder nodes cause corresponding changes in the
underlying Windows desktop hierarchy.

A complete semantic desktop should demonstrate similar
levels of integration for other applications such as e-mail.
Ideally, one or several commercial e-mailers could be
integrated with MetaDesk. Alternately, one could mimic
Haystack [Quan 2003] and implement an entire e-mail
application (as a plug-in) within MetaDesk.

Plug-ins
 MetaDesk architecture can be extended by using
plug-ins to create alternate displays for the top and bottom
panes to the right of the hierarchy pane. Plug-ins are
associated with particular data types – when a node is
highlighted, the default display plus all relevant plug-ins
that correspond to the type of that node are presented as
options. MetaDesk also enables users to select a default
plug-in for the data type; this way MetaDesk remembers
the user’s choice for the next time. We have developed a
photo viewer plug-in (Figure 2) that enables users to view
the thumbnails of the images organized in MetaDesk.
Whenever the user clicks on the Album Node (a node with
the rdf:type – Photo_Album) in the hierarchy, the
photographs are shown in the bottom pane. User can view
as well as annotate the pictures thus embracing an
interactive session.

Figure 2: Photo-Plugin for displaying graphics resources

MetaDesk allows a user to choose the plug-in for any data-
type (or class). For example, a user might want to associate
the photo viewer plug-in with the nodes that have the type
Photo Graphs instead of Photo Album. This leverages the
ease of customizing MetaDesk according to personal
preference. In addition to developing plug-ins for specific
data types, one might consider writing a plug-in that
enforces type restrictions on its input, or one that displays
Protege-like templates in place of the free-form attribute
editor that comes standard in MetaDesk. Such plug-ins
would enable MetaDesk to mimic more traditional
Semantic Web RDF editors. Thus, MetaDesk uses these
plug-in points to keep track of the user's working behavior
and provide self-personalization.

Ongoing Work
Search: Currently, MetaDesk supports keyword search.
When searching for a match to the keyword “xxx”, a triple
<S, P, V> matches if one of S, P, or V has a label

109

containing “xxx” as a substring, or if V is a literal value
that contains “xxx”. Results may be in the form of a tabbed
search, wherein each hit of the ‘tab’ key opens the
hierarchy to the location of the next matching node, or the
results may be placed under a newly-created search node
which can further be annotated.

Ontology Alignment: Philosophically, MetaDesk runs
completely against the grain by promoting “ontological
promiscuity” and advocating bottom-up development of
ontologies. “Promiscuity” refers to MetaDesk’s
encouraging users to make up their own vocabulary. In
our scheme, we first let a thousand flowers bloom, and
then specify semantic mappings (alignments) that say how
one user’s terminology relates to another’s. We call this
“grassroots alignment”, since it empowers ordinary users
to build terminologies, instead of requiring ontology
experts. The current MetaDesk is missing two things: (i)
“carrots” that encourage MetaDesk users to align their
terminology with terms used by others and to fill in the
type attribute on each node, and (ii) alignment tools that
make aligning terms very simple. One example of such a
carrot is a search facility that exploits alignments to
increase the recall of its matches. Another is a report
generator that produces denser, better organized reports
when alignments are taken into account. ISI’s
WebScripter[Yan 2003] report generator incorporated both
a carrot and an alignment capability into a single tool.
Determining whether quality ontologies can be achieved
bottom-up via a sufficiently mature set of carrots and
alignment tools is at this point an open question—one that
we believe deserves to be tested.

Future Directions
At present, we have hypothesized that end-user

alignment can compensate for the ontological promiscuity
engendered by multiple MetaDesk users, enabling a
community of MetaDesk users to profitably share
information. This hypothesis needs to be tested. Our near
term goal is to add sharing capability, and then to
distribute MetaDesk to a community of users. Our supply
of “carrots”—tools that encourage end-users to align with
each others’ vocabulary—is still sparse. We will find out
whether we are close to having a viable sharing
infrastructure, or if more incentives are needed.

MetaDesk will eventually support multiple search
regimens—more sophisticated ones will trade precision for
user convenience (more typing yields more precision).

Conclusion
 We have introduced MetaDesk, an original RDF
authoring tool. MetaDesk’s approach to RDF authoring is
extreme: users immediately create metadata without

defining ontology first. Instead, it is our belief that
ontologies can be created later in a bottom-up fashion, as
the by-product of creating and using data, rather than a
straightjacket that inhibits the evolution of domain
vocabularies. Compared with other ontology-driven RDF
authoring tools (SHOE Annotator [Heflin 1999] OntoMat
[Handschuh 2002] SMORE [Kalyanpur 2003] Melita
[Ciravegna 2002]), MetaDesk is more ordinary-user
friendly, more flexible in metadata creation, and provides
immediate rewards to users’ effort.

MetaDesk’s metadata authoring paradigm allows quick
data entry and organization. As a result, MetaDesk is
already viable as a personal information manager.
MetaDesk has been extended as a usable semantic desktop
application. It is integrated with an actual user desktop,
allowing direct annotations on file systems and direct
launching of applications from within it. MetaDesk’s
simplicity in metadata creation as well as usefulness as a
semantic desktop makes it a rewarding semantic web
application.

References
F. Ciravegna, A. Dingli, D. Petrelli, and Y. Wilks. Timely
and Non-Intrusive Active Document Annotation via
Adaptive Information Extraction. Semantic Authoring,
Annotation and Knowledge Markup, ECAI Workshop,
July 2002.

H. Eriksson, R. W. Fergerson, Y. Shahar, and M. A.
Musen. Automatic Generation of Ontology Editors. 12th
Banff Knowledge Acquisition Workshop, 1999.

S. Handschuh and S. Staab. Authoring and Annotation of
Web Pages in CREAM. WWW, May 2002.

Heflin, J., Hendler, J., and Luke, S. SHOE: A Knowledge
Representation Language for Internet Applications.
Technical Report CS-TR-4078 (UMIACS TR-99-71),
Dept. of Computer Science, University of Maryland at
College Park. 1999.

A. Kalyanpur, B. Parsia, J. Hendler, and J. Golbeck.
SMORE – Semantic Markup, Ontology, and RDF Editor.

D. Quan, D. Huynh, and D. R. Karger. Haystack: A
Platform for Authoring End User Semantic Web
Applications. International Semantic Web Conference, Oct
2003.

B. Yan, M. Frank, Pedro A. Szekely, R. Neches, J. Lopez:
WebScripter: Grass-roots Ontology Alignment via End-
User Report Creation. International Semantic Web
Conference, Oct 2003.

110

