
Modeling Reusable Concurrent
Passive Entity Objects in

Colored Petri Nets

Rowland Pitts and Hassan Gomaa

George Mason University, Fairfax, Virginia, USA
{rpitts,hgomaa}@gmu.edu

Abstract. Concurrent software systems are growing increasingly large
and complex; the risks associated with poor design and architectural
choices are increasing as well. Building executable prototypes can help
identify problems early and Colored Petri Nets are well suited to this
purpose. This paper presents an approach to modeling reusable thread-
safe passive entity objects in Colored Petri Nets, including public, private
and static members, plus encapsulation and object composition.

Keywords: colored Petri nets, concurrency, rapid prototyping, passive
entity object.

1 Introduction

Concurrent software systems are growing increasingly large and complex. Con-
sequently, the risks associated with poor design and architectural choices are
increasing as well. Assembling executable models can help to identify problems
early, and Colored Petri Nets (CPN) [9] are well suited for building executable
concurrent software models; additionally, the language primitives facilitate the
modeling of reusable design pattern templates [7], as well as the passive entity
objects they interact with.

In spite of the fact that failure is increasingly expensive [1], often little con-
sideration is given to system performance or reliability until a project is already
implemented; unplanned behavioral analysis is typically inefficient, unreliable
and difficult to repeat [12].

CPNs routinely depict concurrent software systems as tokens moving through
a series of operations (transitions), sequentially or navigating control structures,
analogous to dynamic flow charts. This paper introduces an approach to mod-
eling thread-safe objects, with an emphasis on object-oriented properties, such
as information hiding, providing a public interface of operations, and reusability
using CPN Tools [5].

This paper is organized as follows: Section 2 discusses related work, Section
3 introduces the modeling approach and Section 4 provides validation. Section
5 discusses conclusions and future work.



2 Related Work

There is much literature devoted to the analysis of concurrent software with
CPNs, and some related to object modeling.

Bauskar and Mikolajczak modeled objects using CPN’s hierarchical capabil-
ities [3]. Jensen and Kristensen have examined reusability using CPNs hierarchi-
cal capabilities [9]. Costa and Gomes propose module replication, composition
and defining interfaces [4]. Barros and Gomes discuss transitions as functions
with input parameters and also the creation and destruction of objects [2]. Pettit,
Fant and Gomaa have modeled behavioral design patterns and communication
templates, including threads-of-control [7, 12, 11]. Lakos introduces Object Petri
Nets, which incorporate inheritance, polymorphism, dynamic binding, and in-
clude a single class hierarchy of both token and subnet types [10]. The Reference
Net Workshop supports object references as tokens [13].

This paper focuses on combining a number of object-oriented properties while
modeling concurrent objects, such as information hiding, providing a public in-
terface of operations, static variables and operations, and reusability, as well as
modeling threads-of-control by which a client can animate passive entity objects
as needed.

3 Object Modeling in CPN

toString

Out
STRING

Out

TS
out

Out
CTRL

Out

P
out

Out
CTRL

Out

TS
in

In
CTRL

In

GN
in

In
CTRL

In

GA
in

In
CTRL

In

P
in

In
CTRL

In

GN
out

Out
CTRL

Out

nameIn

In
STRING

In

ageIn

In
INT

In

GA
out

Out
CTRL

Out

age
INT

name
STRING

setAge

In

INT

In

setName

In

STRING

In

Const-
ructed

Person() setAge() toString() setName()

ctrl ctrl
ctrlctrl

n a

a aa1n

ctrl
ctrl

a

n^" Age:"^INT.mkstr(a)

n n1

n

ctrl
ctrl

a n

Fig. 1. Person class definition in CPN.

3.1 Design Conventions

CPNs are not inherently object-oriented; however, the language primitives allow
for almost infinite flexibility. To the extent that visual structure aids in conveying
a designer’s intent, the following conventions, illustrated in Figure 1, are utilized
for object modeling. The behavior otherwise modeled in Figure 1 is discussed
in more detail in the next subsection.

218 PNSE’17 – Petri Nets and Software Engineering



Input and Output Parameters are depicted across the bottom of their class
diagrams, grouped by operation, and indicated by a double-line, as opposed to
a single line. This includes threads-of-control, which determine the sequence in
which modeled operations execute. Placing tokens into the input places, and
retrieving tokens from the output places, is the means by which clients commu-
nicate with objects.

Operations comprising a class’ public interface are represented as transitions
just above, and connected by arcs to, their respective inputs and outputs. Model-
ing operations as transitions works well for multiple reasons: transitions perform
conversions, and CPN Tools’ hierarchical capabilities facilitate the creation of
reusable objects that effectively enforce communication through the defined pub-
lic interface and otherwise prevent access to an object’s non-public members.

Instance Variables are depicted as places in the space above the public in-
terface operations, or as objects as described herein, and are maintained by the
public operations or by other internal functions.

3.2 A Simple Class Example

Figure 1 is the class definition for a simple Person class. Two places near the
top represent instance variables for age and name. Four public operations are
provided: Person(), setAge(), toString() and setName(), and each is rep-
resented by a transition. Their various inputs and outputs are represented by
places across the bottom.

Concurrency: No two operations can simultaneously access an object’s val-
ues. No operation can execute until the constructor has been initially executed.
Furthermore, the constructor cannot re-execute after the object is created.

Encapsulation: When used, a Person object’s data elements and functionality
are encapsulated within the object, providing the client with only indirect access
through the defined public operations. An example Employee object is depicted
in the uppermost region of Figure 2.

Reusability: Any number of Person objects may be used within a CPN.

3.3 A More Complex Example

Figure 2 represents an Employee class definition, which features a composed ob-
ject (Person1), a static variable (employeeCount) and associated static accessor
method (getCount()), and a meta-variable (lock) used for synchronization. Em-
ployee also includes a constructor (Employee()) and a toString() operation.

Pitts et.al.: Reusable Concurrent Passive Entity Objects 219



Given the relative complexity of this example, representing an operation with a
single transition is insufficient. Treating these as atomic actions would result in
the thread-of-control being released to the client prematurely, and potentially
cause concurrency issues. Therefore, an inbound transition fires to initiate the
behavior sequence, and a return transition fires when the process is complete,
releasing the thread-of-control and return values at the appropriate time.

For simplicity, a minimal number of operations have been modeled; however,
more could easily be added. For example, setAge() and setName() could be
added, and connected to the otherwise unused equivalents in Person1.

lock

emp
ID

INT

TS
out

CTRL

person
toString

STRING

TS
in

CTRL

CP
out

CTRL

CP
in

CTRL

person
name

STRING

person
age

INT

employee
Count

Static

INT

0

GA
in

CTRL

setAge
In

INT

GA
out

CTRL

GN
out

CTRL

setName
In

STRING

GN
in

CTRL

E
in

In
CTRL

In

TSe
out

Out

CTRL

Out

E
out

Out
CTRL

Out

Num
Emp's

Out

INT

Out

toString
Employee

Out

STRING

Out

C'tor
Employee

Age
In

INT

In

GC
out

Out
CTRL

Out

TSe
in

In

CTRL

In

C'tor
Employee

Name
In

STRING

In

GC
in

In
CTRL

In

getCount() Employee()
Constructor

Return
toString()

toString
Return

Person1

PersonPerson

c
a

c+1

ctrlctrl
ctrl

c+1
n

ctrl

ctrl
ctrl

ctrlc
str^" ID:"
^INT.mkstr(id)

a
ctrl

ctrl
nctrl

c id

Const-
ructed

str

Static

Fig. 2. Employee class definition, with composed Person object and static members.

Concurrency: The Employee class employs a more explicit locking mechanism.
When the constructor executes, a token is moved to the lock place. To ensure
mutually exclusive access, each instance-method must acquire the lock before
executing and return it when finished [8]. Therefore, no two can execute simul-
taneously (given the scope of this short paper, only one such method is depicted,
but any additional methods would acquire and release the lock token in the same
way). Non-static methods cannot execute until the constructor has been invoked
to create the object, and the constructor cannot re-execute once the object is
created.

220 PNSE’17 – Petri Nets and Software Engineering



Encapsulation: An Employee object’s data elements, including a Person ob-
ject, and functionality are encapsulated. Employee provides only indirect access
to itself through the defined public operations.

Reusability: Any number of Employee objects may be used within a CPN;
additionally, each Employee object also re-uses a Person object.

Static Behavior: The employeeCount place is effectively made static by defin-
ing it as a fusion place, facilitated by CPN Tools. Its initial marking is zero
(simulating an initialized value), and is incremented each time an instance of
Employee’s constructor is invoked. The value in the fusion place is shared by
all instances of Employee; therefore, invoking the getCount() method in any
instance of Employee will return the same value.

4 Validation

The limited length of this short paper permits only a brief description of the
validation carried out; however, tests were conducted to determine that each
modeled object’s operations execute correctly and that the synchronization con-
siderations ensure that there is no detrimental conflict for shared data. A unit
testing approach was employed, because it offers “the most effective means to
test individual software components for boundary value behavior" [6]. Figure 3
is a depiction of one such test scenario

P
in

CTRL

ageIn

INT

nameIn

STRING

P
out

CTRL

GA
in

CTRL

GA
out

CTRL

GN
in

CTRL

GN
out

CTRL

setName

STRING

TS
in

CTRL

TS
out

CTRL

toString

STRING

setAge

INT

setup
Age

INT

25

setup
Name

STRING

"JohnDoe"

new
Age

INT

50

new
Name

STRING

"JaneDoe"

ToC

CTRL

1

Output

STRING

ToC

CTRL

TestPerson

PersonPerson

Create
Person

Invoke
setAge

Invoke
setName

Invoke
toString

Observe
Output

a n

a n ctrl ctrl ctrl

a

a

n

n
ctrl

ctrl

ctrl

n

n

ctrl

ctrl

ctrlctrl

Fig. 3. Unit test of a Person object.

For clarity, the object under test, including the input and output places
associated with its public operations, is depicted with bolder lines. The elements
otherwise associated with the testing operations are depicted normally.

Pitts et.al.: Reusable Concurrent Passive Entity Objects 221



Test Scenario: From left to right in Figure 3, a Person object is created,
after which the setAge() and setName() operations are invoked. Finally, the
toString() operation is invoked in order to observe the expected output.

5 Conclusions and Future Work

Objects can be effectively modeled with CPNs, as shown in the examples above.
The unit tests conducted confirm that they perform as expected. Modeling
single- and multithreaded active objects is the logical next direction related
to this short paper. Modeling inheritance would pose an interesting challenge as
well.

This work is part of a larger project to model concurrent distributed appli-
cations and middleware. The ultimate goal of the overarching research effort is
to provide a suite of executable architectural components and communications
templates for a variety of software design patterns.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press (2016)

2. Barros, J.P., Gomes, L.: On the Use of Coloured Petri Nets for Object-Oriented
Design, pp. 117–136. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

3. Bauskar, B.E., Mikolajczak, B.: Abstract node method for integration of object
oriented design with colored Petri nets. In: Third International Conference on
Information Technology: New Generations (ITNG’06). pp. 680–687 (April 2006)

4. Costa, A., Gomes, L.: Module composition within Petri nets model-based devel-
opment. In: 2007 International Symposium on Industrial Embedded Systems. pp.
316–319 (July 2007)

5. CPN Tools website (May 2017), http://cpntools.org
6. Ellims, M., Bridges, J., Ince, D.C.: Unit testing in practice. In: 15th International

Symposium on Software Reliability Engineering. pp. 3–13 (Nov 2004)
7. Fant, J.S., Gomaa, H., Pettit, R.G.: A comparison of executable model based

approaches for embedded systems. In: 2012 Second International Workshop on
Software Engineering for Embedded Systems (SEES). pp. 16–22 (June 2012)

8. Gomaa, H.: Real-Time Software Design for Embedded Systems. Cambridge Uni-
versity Press (2016)

9. Jensen, K., Kristensen, L.M.: Colored Petri nets: A graphical language for formal
modeling and validation of concurrent systems. Commun. ACM 58(6), 61–70 (May
2015)

10. Lakos, C.: Object Oriented Modelling with Object Petri Nets, pp. 1–37. Springer
Berlin Heidelberg, Berlin, Heidelberg (2001)

11. Pettit, R.G., Gomaa, H., Fant, J.S.: Modeling and prototyping of concurrent soft-
ware architectural designs with colored Petri nets. In: International Workshop on
Petri Nets and Software Engineering. pp. 67–79 (2009)

12. Pettit, R.G., Gomaa, H.: Modeling behavioral design patterns of concurrent ob-
jects. In: Proceedings of the 28th International Conference on Software Engineer-
ing. pp. 202–211. ICSE ’06, ACM, New York, NY, USA (2006)

13. The reference net workshop website (May 2017), http://www.renew.de

222 PNSE’17 – Petri Nets and Software Engineering


