
Something Nasty in the Woodshed: The Public
Knowledge Model

Robert Stevens1 and Phillip Lord2 and Andrew Gibson1

1 School of Computer Science, University of Manchester, Oxford Road, Manchester, UK, M13
9pl

robert.stevens@manchester.ac.uk
2 School of Computing Science, Newcastle University, Claremont Tower,

Newcastle-Upon-Tyne, UKphillip.lord@newcastle.ac.uk

Abstract. Ontologies encoded in OWL-DL can be complex and even arcane
to all but the encoders themselves. It is well understood that the user model or
user view of this knowledge model should be different. The ontology knowledge
model might, for instance, drive a forms based interface populated with appropri-
ate terms driven by knowledge captured in the ontology. The knowledge model,
however, will be used as a component via some API and the application is it-
self a user. There are often parts of the knowledge model that, while being a
representation of the universe being modeled, do not or should not be seen by
the application, let alone the end-user of, for instance, the forms. In this position
paper we speculate on requirements for metadata that would make such knowl-
edge artefacts “invisible” to the user, but remain part of the knowledge model that
is reasoned over. We also discuss possible options and consequences for hiding
parts of OWL-DL encoded ontologies.

1 Introduction

OWL-DL otologies can be very complex artefacts. The separation of the model from the
users’ view of that model is standard architectural practice, in many areas of computer
science. A biologist using a terminology delivered by an OWL ontology should neither
need to nor should be required to see the complexities of the underlying OWL model.
In this position paper, we suggest the requirement to support an application view of the
knowledge model, separate from the ontology builders view, to better enable presenta-
tion to the end user.

An OWL ontologist will use, by necessity, many knowledge components within the
ontology that are required to achieve a high-fidelity representation of the domain. The
most obvious example might be the upper level ontology needed to make ontological
distinctions. Ontology design patterns, used to extend the capabilities of the language,
often include components necessary to enable the pattern to achieve its goal. It is not
only the end-user that needs not to see this portion of the knowledge model, it might
also be hidden from the direct user of that knowledge model, such as an application
builder.

TheGRAIL language provided a feature for this purpose [1]. The keywordinvisible
was part of the language itself and could be applied to concepts and their criteria in an



ontology [1]. These concepts did not appear in any application driven via theGRAIL

terminology server (TeS). Theinvisiblecomponents of the ontology were nevertheless
still present as part of the knowledge server and could be queried via the TeS and were
reasoned over with the rest of the ontology; but thoseinvisible components were not
available outside the TeS, therefore providing the separation of knowledge model and
application view.

In this paper, we are not arguing for extensions to the formal semantics of OWL. As
with GRAIL, invisible components would be still be available to the reasoning process.
In the rest of the paper for which components could be rendered invisible, and offer a
brief discussion of mechanisms for achieving this goal.

2 What do we want to do

The ComparaGRID project3 uses an application ontology that primarily provides a con-
trolled vocabulary to facilitate database integration. Rather than directly engineering an
ontology to be used by the ComparaGRID application, the project employs a strategy
of engineering a much richer domain ontology for comparative genomics, from which
the more specific application ontology can be derived at any time. The ontology covers:
biological sequence features; maps; evidence for findings; and biological entities such
as chromosomes. After ensuring that the initial domain ontology satisfies all of the ba-
sic requirements of the application developers, the domain ontology can be “trimmed
down” to an application view of that ontology.

Currently, the process of “trimming down” the domain ontology into an application
ontology is not efficient. Typically, this will involve removing some of the artefacts of
knowledge engineering, such as some highly detailed leaf ontology terms used in the
design process.

2.1 Knowledge Model Presentation Requirements

In this section, we describe the components of the knowledge model that we would
wish to makeinvisible in producing an application view of the knowledge model or,
specifically, the application ontology of ComparaGRID:
1. Hide classx. For example, ifz is part ofy, thenx might be created as a superclass of

z, but serves no other purpose than grouping it’s children. After hidingx, children
to x would have to be made to appear to be children of all superclasses ofx, except
where this resulted in entirely redundant subclass relationships.

2. Hide all asserted descendants ofxi; we may wish to reduce the complexity (and
the specificity) of the ontology. This should be simple—we just appear to have a
smaller ontology.

3. Hide all asserted ancestors ofx; for example, while upper ontologies or even owl:Thing
may increase interoperability, they, often, do not need to be seen by the application
view. This also appears straightforward.

3 http://www.comparagrid.org



4. Hide a specific layer or interval of classes. Again this is useful for reducing com-
plexity. As this generalises hiding a class, it should involve no additional complex-
ity. We are aware that the concept of level is somewhat undefined in any ontology
hierarchy excepting for trees. In the first instance, we suspect that level can be best
interpreted as any class between these the two specified classes by any route.

5. Hide this restriction. For example, we have achieved disjointness between large
numbers of siblings, using functional datatype properties to ordinal numbers, to
avoid quadratic disjoint statement explosions4. While the use of OWL is still im-
mature, such “dirty tricks” are inevitable, but should definitely be hidden from the
end application as they are not part of the knowledge domain.

6. Hide this property. This would be useful in a complex hierarchy of properties cre-
ated to achieve the desired effects from reasoning. A restriction using an invisible
property would be shown to use the first visible super-property; we consider that
hiding root properties would be inappropriate.

7. Hide this axiom. Again considering large numbers of disjoint siblings—even in
OWL 1.1—a large number of disjoint statements for each class, is likely to be
unwieldy in any application view. Rendering these invisible, also appears to be
straightforward.

8. Hide an imported OWL module. This seems equivalent to hiding a number of indi-
vidual classes.

3 Mechanisms

There appear to be a series of possible mechanisms for fulfilling these requirements for
specifying invisibility.

First, it would be possible to extend the formal semantics of OWL; while this might
produce the most elegant and expressive solution, there is no formal theory and would
take a significant investment of effort.

Second, we could use the existing semantics of OWL; for example, we might de-
fine anInvisible class all of whose children would be so. This would enable us to
state, for example, the general properties of a class which make in invisible. However,
this mechanism would not extend readily to properties. It also conflates the knowledge
model with the delivery of that model, which is ontologically undesirable5 and would
increase the computational requirements for reasoning.

Third, a construct in a macro expansion language could be used in the application
view. The knowledge model could then be generated by macro expansion, which there-
fore fulfils the requirements of separating the two. We see issues with this. Currently
no macro language exists and would require extensions to the OWL specification. Also
a macro language could also be used for many other purposes therefore occluding the
notion of invisibility.

Finally, and we believe most plausibly, a defined set of annotation properties could
be used to provide information about the visibility of most of the various entities de-
scribed above. Additionally, the ability to express ”always visible” may be necessary,

4 We are aware that this problem should be more elegantly soluble in OWL 1.1
5 Of course, the Invisible class would be a subclass of itself, and so would be invisible



to address the case where a class which we wish to be visible is inferred to be part of
a layer marked as invisible. There may be a need to discriminate between behaviour of
invisibility in the asserted and inferred hierarchy—this would certainly appear to be the
case for direct children or parents as this is only clear within the asserted hierarchy.

4 Discussion

Here we have discussed the requirements and possible mechanisms to facilitate the
separation of an application view from a possible complex knowledge model. This is a
feature that has proven useful in the past. We suggest this as a light-weight option rather
than a full-blown mechanism for enabling ontology views. Similarly, while it has some
features that might be desirable for implementing a modularity mechanism, it would
only be a small part of one.

Obviously, such a mechanism as described here could be dangerous if overused:
the application view of the ontology would be different from the underlying knowledge
model; this could have consequences unexpected by the user—searches might return
apparently incomplete results. Such a feature should only ever be used sparingly, to
hide those components of the ontology which would be genuinely inconvenient in the
application view. OWL-DL is a powerful language and many of its features can have
wide-ranging consequences in an ontology; like these features, that a visibility mecha-
nism could, at times, have undesirable consequences does not bar it from having utility.
We would recommend any implementation had an option for bypassing this feature.

Despite these caveats, as we are experienced at building ontologies which are re-
quired for applications within the life sciences, we believe that such a mechanism would
be useful. As ontology builders, rather than language experts, we welcome interaction
with the latter community to ensure that fulfilling these requirements is possible.

Acknowledgements:Andrew Gibson is funded by BBSRC grant BBS/B/17156.

References

1. A.L. Rector, Sean Bechhofer, Carole Goble, Ian Horrocks, W.A. Nowlan, and W.D. Solomon.
The GRAIL Concept Modelling Language for Medical Terminology.Artificial Intelligence in
Medicine, 9:139–171, 1997.


