
Exporting Knowledge Bases into OWL

Vinay K. Chaudhri, Bill Jarrold, John Pacheco

Artificial Intelligence Center, SRI International, Menlo Park, CA 94025
{vinay.chaudhri, william.jarrold, john.pacheco}@sri.com

Abstract. We present our experience in exporting a knowledge base (KB).
Specifically, we discuss the translations of the representation of scalar, cardinal, and
categorical values, tasks, built-in data types, and collections. These examples could
be illustrative for others trying to use OWL in their work. We also raise design
questions that could provide fodder for discussion at the workshop.

1 Introduction

Many knowledge representation and reasoning systems do not use OWL as their native
format, but export to OWL to achieve interoperability. In this paper, we consider one such
case study. Our experience raises some interesting design questions. For example, do the
current sublanguages in OWL provide a direct sweet spot for practical applications?

We are conducting this work in the context of CALO (Cognitive Assistant that Learns
and Organizes), a multidisciplinary project funded by DARPA to create cognitive
software systems that can reason, learn from experience, be told what to do, explain what
they are doing, reflect on their experience, and respond robustly to surprises (See
http://caloproject.sri.com/ for more information.)

2 Problem Setup

We are using the Knowledge Machine (KM) system to develop the KB [1]. Our KB uses
the component library or CLib [2], a generic domain-independent KB, as its upper
ontology. We extended CLib by adding representations for the office domain, for
example, People, Meetings, Tasks, Organizations, and Projects [3].

Many components of CALO needed to incorporate the ontology into their code base.
Therefore, we needed to export the ontology from KM into some Interlingua that could be
loaded by other system modules. A key system module that needed to use the ontology
was IRIS. IRIS is a semantic desktop application [4] that is built on Jena graphs and uses

OWL as its native language. We chose OWL as an exchange language because it offered
most of the features needed for an interchange language for the project.

We implemented the translator from KM to OWL as a Lisp program. The translator
takes a KB expressed in KM and produces the OWL equivalent to the extent possible. KM
expressions, for example, rules, are not easily expressed in OWL and are omitted from the
translation. We load the output of the translator into Protégé [5], which allows us to
browse the result and has the added benefit of ensuring that we are generating legal OWL.
If we encounter errors while loading the translation output into Protégé, we use the
Vowlidator1 or the WonderWeb2 OWL Ontology Validator. We process the ontology
using OWLDoc,3 so that the ontology documentation can be viewed by end users.

Since the representation language in KM is more expressive than OWL, and OWL has
three sublanguages⎯OWL-Lite, OWL-DL, and OWL-full⎯ we had to make choices on
which sublanguage of OWL to use in the translation. After we present the translations of
relevant features of KM into OWL, we step back and analyze the features called for by the
application. Based on the observation that we needed to use some subset of features from
OWL-DL and OWL-full we speculate about whether we should consider a sublanguage of
OWL that cuts across the three sublanguages.

3 Description of Translation

We now discuss aspects of the OWL translation: (1) representing scalar, cardinal, and
categorical values; (2) representing task knowledge; (3) experience using built-in data
types; and (4) representing collections.

3.1 Representing Scalar, Cardinal, and Categorical Values

CLib distinguishes two kinds of values: categorical and scalar/cardinal [2]. The fillers of
properties such as color, duration, or length are an instance of class
Property-Value. The range of each such slot has some subclass of Property-
Value as its range (e.g., Color-Value, Duration-Value, Length-Value).
Several different property slots may share the same range. For example, length, width, and
distance all have Length-Value as their range.

Representing Scalar Values. A scalar value ascribes a symbolic value in relation to a
reference class, for example, hot for a drink, or small for a house. The values are ordered;
for example, hot involves a higher temperature than warm. Although an object may have

1 See http://projects.semwebcentral.org/projects/vowlidator/
2 See http://wonderweb.semanticweb.org/
3 See http://www.co-ode.org/downloads/owldoc/co-ode-index.php.

only one value for a given property (e.g., height is single valued), that value may be
associated with multiple scalar values when there are multiple reference classes, e.g., a
person has only one value for height. However, that value may be considered “tall” with
reference to the class Person but “short” with reference to the class representing basketball
players. CLib reifies the scale value, and allows one to assert the magnitude of the reified
value, e.g., we can represent Ana is short for a Person as follows:

<Person rdf:ID="Ana">
 <height>
 <Length-Value>
 <scalar-value>
 <Scalar>
 <scalar-constant rdf:resource="#Short"/>
 <reference-class rdf:resource="#Person"/>
 </Scalar>
 </scalar-value>
 </Length-Value>
 </height>
</Person>

We have reified the value of height to Anas-Height. The value of the height
slot has dimension Length, and therefore, we define Anas-Height as an instance
of Length-Value. The relation scalar-constant represents the magnitude of a
Length-Value with respect to a reference class such as Person.
In KIF and KM, it is possible to define scalar-value as a ternary relation instead:

(scalar-value-with-reference-to Height-1 Short Person)

Since OWL does not allow ternary relations, we reify the arguments of what would
have been a ternary relation, and specify them using scalar-constant and
reference-class [6].

Representing Cardinal Values. A cardinal value is a quantity in some dimension. A
unit of measure is associated with each dimension, for example, days, grams, or degrees
Fahrenheit. To represent unitless quantities such as slope, CLib provides a unit called
UoM-Unitless. We can represent that Ana has a height of 1.2 m as follows:

<Person rdf:ID="Ana">
 <height>
 <Length-Value>
 <cardinal-value>
 <Cardinal>
 <xsd:float>
 <rdf:numeric-value>1.2</rdf:numeric-value>
 </xsd:float>
 <unit rdf:resource="#Meter"/>

 </Cardinal>
 </cardinal-value>
 </Length-Value>
 </height>
</Person>

The height values are instances of Length-Value as they are for distance,
width, and so on. We reify an instance of Cardinal (rather than a Scalar) and use
numeric-value (rather than scalar-constant) to specify its value.

Representing Categorical Values. Categorical values are symbolic in that they do not
sensibly appear on any scale or continuum. There is no ordering to the categorical values.
For example, color is a categorical value. There is no natural ordering of its symbolic
values: blue, orange, and so on. Although it is possible to assign arbitrary numeric values
to the symbolic constants (such as the RGB encoding of colors), it is not a feature of the
colors that they are ordered. Outside of some arbitrary imposed ordering, it does not make
sense to say that “blue is greater than orange”, or “something green has a higher/greater
color than something red”. Suppose we wish to state Ana’s car is black. We can state

<Person rdf:ID="Ana">
 <possesses>
 <Car rdf:about=”Car-35”>
 <colorIs>
 <Color-Value>
 <categorical-value>
 <categorical-constant rdf:resource=”#Black”/>
 </categorical-value>
 </Color-Value>
 </colorIs>
 </Car>
 </possesses>
</Person>

3.2 Representing Task Knowledge

The CALO system makes an extensive use of tasks. For example, the user may instruct
the system to purchase a piece of equipment, arrange a meeting, or remind the user of an
important deadline. The CALO system has an extensive collection of process models that
can execute the tasks on behalf of the users. Some of these process models are engineered
by hand, while others are learned by the system either by observation or by instruction.
We represent the executable tasks within a procedural reasoning and execution system
called SPARK [7]. SPARK provides an expressive language for encoding the execution of
procedures. A discussion on the relationship between the procedure language of SPARK
and other process languages such as OWL-S is available elsewhere [8]. With each

procedure, we can associate a declarative task that specifies the parameters of the
procedure, and organizes the tasks into a taxonomy. The KM system is well suited for the
representation of such declarative knowledge about tasks, but we faced several challenges
in translating that representation into OWL.

The parameters to an executable task often have meta-properties associated with them.
For example, some of the parameters are input to the procedure, while others are output.
Similarly, some are required parameters, while others are optional. Given a task, there is a
frequent need for queries such as what are the input or output parameters. We consider
two approaches for meeting this requirement, property based and instance based. Both the
approaches that we discuss here are allowed in KM and CLIB, but they map to different
sublanguages of OWL, and present tradeoffs in terms of which sublanguage to use.

The first approach, property based, is to define slots such as inputProperty and
requiredInputProperty and assert that requiredInputProperty is a
subproperty of inputProperty. Consider as an example the class
ExtractMeetingTask⎯the task of extracting proposed meeting information such as
location, participants, and start/end times from an email message. Within the above
framework, hasEmail would be an input parameter and would be required.

<owl:ObjectProperty rdf:ID=”optionalOutputPropertyIs”>
 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about=”outputPropertyIs”/>
 </rdfs:subPropertyOf>
 <rdf:type rdf:resource=”&owl;AnnotationProperty”/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”requiredInputPropertyIs”>
 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about=”inputPropertyIs”/>
</rdfs:subPropertyOf>
 <rdf:type rdf:resource=”&owl;AnnotationProperty”/>
 </owl:ObjectProperty>

<owl:Class rdf:ID="ExtractMeetingTask">
 <optionalOutputPropertyIs>
 <owl:FunctionalProperty rdf:ID="meetingParticipantsAre"/>
 </optionalOutputPropertyIs>
</owl:Class>

In the instance-based approach, we define classes such as InputParameter and
OutputParameter. For each argument to a procedure, we would then define an
instance of the relevant class, and assert properties on that instance to add detail [6].

Consider, for example, the instance-based analog of the hasEmail parameter. Instead
of using the slot hasEmail, we would reify an instance, call it Parameter007, about
which we will make the following assertions in OWL full:

<InputParameter rdf:ID=”Parameter007”>
 <rdf:type>
 <owl:Class rdf:about=”#OptionalParameter”>
 </rdf:type>
</InputParameter>

One advantage if instance-based approach is that one can express the fact that no input
parameter is also an output parameter simply by asserting

<owl:Class rdf:ID="InputParameter">
 <owl:disjointWith>
 <owl:Class rdf:about=”#OutputParameter”>
 <owl:disjointWith>
</owl:Class>

There is no way to express this fact using the property-based approach within OWL-
DL. The second advantage is that one can easily represent and reason about meta-
properties about the parameter, e.g., one can express the position of a given parameter
within the task signature. Furthermore, one can express the constraint that a parameter can
occupy at most one position.

<InputParameter rdf:about=”Parameter007”>
 <parameterPositionIs>1</parameterPositionIs>
</InputParameter>
<owl:DatatypeProperty rdf:ID="parameterPositionIs">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
</owl:DatatypeProperty>

The advantage of the property-based approach is that it leads to more compact
representation and involves reifying fewer new objects. In the current ontology, we
support both these representations. Ideally, we would have liked to be able to represent the
translation between the two representations in OWL, but that requires using rules that are
outside the scope of OWL.

3.3 Using Built-in Types

We mapped built-in data types in KM to standard types in OWL, e.g., if a slot had a
cardinality constraint defined as N to 1 in CLib, we defined it to be an instance of
Functional Property in OWL. If it had a cardinality constraint of 1 to 1, we defined it to be
an instance of OWL class FuncationalProperty and InverseFunctionalProperty.

OWL distinguishes two kinds of slots: DatatypeProperty and ObjectProperty. KM
does not make this distinction. It was straightforward to compute this distinction by
checking if the range of a slot is an XSD data type, for example, String or Number.

KM uses the type Number as a generic type for all numbers. There is no
straightforward mapping from the type Number into OWL. There is no class that is a least
common ancestor of all the classes that represent numbers. We believe this to be a
limitation of the current design of the data types in OWL.

In OWL, one cannot define subclasses of primitive data types such as STRING. There
were several compelling situations where such a feature was critical. For example, a
learning algorithm may deduce that a string such as “94025-3493” is an instance of the
class of strings representing U.S. Postal Codes, and that a string such as “650-555-1212”
is an instance of the class representing phone numbers in the United States. Once deduced,
there is a need to enforce it as a constraint on the legal values of postal codes and phone
numbers. To support this requirement, we introduced a collection of classes termed
Pseudo Ranges that were not a subclass of the built-in OWL class String. For example,
PostalCodeString is a pseudo range class that is a string, and defines legal strings for U.S.
Postal Codes. This was not an isolated example; our KB has numerous such examples.

The pseudo range approach has some disadvantages. First, even though one may make
an assertion that the pseudo range of the addressPostalCodeIs is PR-ZipCode,
such an assertion does not invoke any type checking. Second, this approach allows one to
reify an instance for every ZIP code. This can get computationally expensive. There are
some reasoners, such as Pellet,4 that allow extending the built-in types such as STRING,
but their extensions are not interoperable and not a part of the OWL standard.

3.4 Representing Collections

Collection data types are sets, bags, lists, and tuples. The CALO application has a frequent
need to use different collection types. For example, the attendees of a meeting need to be
represented as a set. The result of searching a collection of documents is a ranked order
list. If a user queries for the prices of homes in an area, the answer is a collection of tuples
of length two. While computing the median price of homes in a region, we need to
construct a bag of prices in which duplicates are retained.

The container constructs from the RDF vocabulary⎯rdf:List and rdf:nil⎯are
unavailable in OWL-DL because they are used in the RDF serialization of OWL in [9].
Although rdf:Seq is not illegal, and one could get around the unavailability of rdf:List and
rdf:nil within OWL by defining equivalent constructs in the OWL name space, the
container representation in RDF has the following disadvantages: (1) The elements in a
container are defined using the relations rdf:_1, rdf:_2, and so on that have no
formal definition in RDF. Using them for the purpose of reasoning will require us to

4 See: http://www.mindswap.org/2003/pellet/index.shtml

define and enforce the properties of these relations. (2) It is not possible to define a
container that has elements only of a specific type. (3) For updating a specific element in a
container in a remote source, one is forced to transmit the whole container. (4) It is not
possible to associate provenance information with the elements in a container.

Our approach for modeling collection types introduces additional vocabulary in OWL.
We introduce a class LinkedList to represent instances of a linked list. The first-
element is a functional property that denotes the first element in a list. The relation
restOfListIs is a property that captures the recursive structure of the list. We use a
distinguished property value LinkedListNull to denote the list termination.

<LinkedList>
 <first-element rdf:resource="Sally" />
 <restOfListIs>
 <LinkedList>
 <first-element rdf:resource="Leigh"/>
 <restOfListIs rdf:resource="LinkedListNull" />
 </LinkedList>
 </restOfListIs>
 </LinkedList>

We introduce a class called Bag to represent the instances of a bag collection type. We
use the property element to represent the elements of a bag, and the instance of class
BagElement to hold the elements of a bag. The relation object on BagElement is a
functional relationship. We need to introduce the element BagElement so that we can
represent duplicate values. Without the use of BagElement, multiple identical values
of <element> will be eliminated because by default they are treated as a set.

<Bag rdf:ID=”Bag01”>
 <element>
 <BagElement rdf:ID=”BagElement01”>
 <object rdf:resource=”Sally”>
 </BagElement rdf:ID>
 </element>
 <element>
 <BagElement rdf:ID=”BagElement02”>
 <object rdf:resource=”Leigh”>
 </BagElement rdf:ID>
 </element>
 <element>
 <BagElement rdf:ID=”BagElement03”>
 <object rdf:resource=”Sally”>
 </BagElement rdf:ID>
 </element>
 </Bag>

To represent tuples, we introduce the class. The element property on Tuple has as
its value the instances of the class TupleElement. The instances of the class
TupleElement hold the individual tuples. The property object on TupleElement
is functional, and we introduce an additional property positionInTupleIs to capture
the position of the tuple element in the overall tuple. In principle, we can implement a
tuple as a subclass of linked list by adding a restriction on the length property. But, that is
ontologically not correct. In a linked list, the second element of a list is a linked list or
nil. In a tuple there is no requirement for the second element to be a linked list or nil.

5 Discussion Topics for the Workshop

Design of built-in data types: We identified two limitations of the built-in data types of
OWL. First, there is no generic Number class in OWL, which made translation from KM
to OWL difficult. Omission of such a general type appears to be an oversight to us
because a generic Number type is essential for interoperability. Second, the inability to
define subclasses of built-in classes is a serious limitation. We illustrated a large number
of subclasses of String that we needed to define. Should we rethink the design of built-in
types in OWL? Is there a better way to represent the same knowledge?

Suggestions for the OWL Best Practices Working Group: The Working Group
provides will require several worked-out representations in OWL to support the OWL
user community. There is already some interest from the members of this task force for
best practices for representing units and measures. The translation presented in this paper
can be a useful input to the Working Group. While there is no explicit expression of
interest in representations for collections and tasks, we believe that they are of sufficiently
broad interest that the Working Group should consider providing best practices for them.

Sublanguages of OWL: We can analyze the three sublanguages by asking the
following questions: Could we have used OWL-Lite? Could we have used OWL-DL?
Which features of OWL-DL were most used? Which features of OWL-full were used?
What is an appropriate language for the CALO application?

The units and measures representation that we consider in this paper can be expressed
in OWL-Lite. The instance-based approach for representing task parameters can be
represented in OWL-Lite with the exception of the disjoint-ness assertion between the
classes, which requires OWL-DL. The problems we face with built-in types cannot be
addressed in any of the three sublanguages of OWL. The solution based on pseudo-ranges
that we considered to get around the OWL limitations can be expressed within OWL-Lite.
Representation of slot groupings requires OWL-full.

Based on this discussion, consider a language called OWL-Meta that has the following
features:

a. Uses OWL-Lite as a representation language
b. Allows classes and slots to be instances of other classes
c. Allows disjointWith relationships between classes

d. Allows specialization of built-in data types
Such a language will serve the needs of the current application quite well. It builds on

OWL-Lite and adds selected features from OWL-DL and OWL-full. In our earlier work
[10], we surveyed an extensive range of knowledge representation systems, and OWL-
Meta represents the most commonly used core across a range of systems.

Acknowledgments

We thank Richard Fikes, Ken Barker, and Bruce Porter who did the early design work for many of the
representations discussed in this paper. We thank Carl Shapiro who was the original implementer of the KM-to-
OWL, translator, and Sunil Mishra who subsequently maintained the translator. We thank Chris Brigham and
Richard Guili for many helpful discussions on the output of the OWL translation. This material is based upon
work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No.
NBCHD030010. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of DARPA or the Department of Interior-National
Business Center (DOI-NBC).

References

1. Clark, P. and B. Porter. KM -- The Knowledge Machine: Users Manual. 1999.
2. Barker, K., B. Porter, and P. Clark, A Library of Generic Concepts for Composing

Knowledge Bases, in Proc. 1st Int Conf on Knowledge Capture. 2001. p. 14--21.
3. Chaudhri, V.K., et al., A Case Study in Engineering a Knowledge Base for an Intelligent

Personal Assistant. In the Proc. of the 2006 Semantic Desktop Workshop, Athens, GA.
4. Cheyer, A., J. Park, and R. Guili. IRIS: Integrate, Relate, Infer, Share. in Semantic

Desktop Workshop. 2005. Galaway.
5. Gennari, J., et al., The Evolution of Protege: An Environment for Knowledge-Based

Systems Development. International Journal of Human-Computer Interaction, 2003.
58(1): p. 89-123.

6. Noy, N. and A. Rector. Defining N-ary Relations on the Semantic Web. 2004 [cited;
Available from: http://www.w3.org/TR/swbp-n-aryRelations/.

7. Morley, D. and K. Myers. The SPARK Agent Framework. in International Conference on
Autonomous Agents and Multi-agent Systems. 2004.

8. Clark, P.E., et al. A Portable Process Language. in Workshop on the Role of Ontologies in
Planning and Scheduling. 2005. Monterey, CA.

9. Drummond, N., et al. Sequences in OWL. in 9th International Protege Conference. 2006.
Stanford, CA.

10. Chaudhri, V.K., et al., OKBC: A Programmatic Foundation for Knowledge Base
Interoperability, in Proceedings of the AAAI-98. 1998: Madison, WI.

