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Abstract. We present our experience in exporting a knowledge base (KB). 
Specifically, we discuss the translations of the representation of scalar, cardinal, and 
categorical values, tasks, built-in data types, and collections. These examples could 
be illustrative for others trying to use OWL in their work. We also raise design 
questions that could provide fodder for discussion at the workshop. 

1   Introduction 

Many knowledge representation and reasoning systems do not use OWL as their native 
format, but export to OWL to achieve interoperability. In this paper, we consider one such 
case study. Our experience raises some interesting design questions. For example, do the 
current sublanguages in OWL provide a direct sweet spot for practical applications? 

We are conducting this work in the context of CALO (Cognitive Assistant that Learns 
and Organizes), a multidisciplinary project funded by DARPA to create cognitive 
software systems that can reason, learn from experience, be told what to do, explain what 
they are doing, reflect on their experience, and respond robustly to surprises (See 
http://caloproject.sri.com/ for more information.)  

2   Problem Setup 

We are using the Knowledge Machine (KM) system to develop the KB [1]. Our KB uses 
the component library or CLib [2], a generic domain-independent KB, as its upper 
ontology. We extended CLib by adding representations for the office domain, for 
example, People, Meetings, Tasks, Organizations, and Projects [3]. 

Many components of CALO needed to incorporate the ontology into their code base. 
Therefore, we needed to export the ontology from KM into some Interlingua that could be 
loaded by other system modules. A key system module that needed to use the ontology 
was IRIS. IRIS is a semantic desktop application [4] that is built on Jena graphs and uses 



OWL as its native language. We chose OWL as an exchange language because it offered 
most of the features needed for an interchange language for the project. 

We implemented the translator from KM to OWL as a Lisp program. The translator 
takes a KB expressed in KM and produces the OWL equivalent to the extent possible. KM 
expressions, for example, rules, are not easily expressed in OWL and are omitted from the 
translation. We load the output of the translator into Protégé [5], which allows us to 
browse the result and has the added benefit of ensuring that we are generating legal OWL. 
If we encounter errors while loading the translation output into Protégé, we use the 
Vowlidator1 or the WonderWeb2 OWL Ontology Validator. We process the ontology 
using OWLDoc,3 so that the ontology documentation can be viewed by end users. 

Since the representation language in KM is more expressive than OWL, and OWL has 
three sublanguages⎯OWL-Lite, OWL-DL, and OWL-full⎯ we had to make choices on 
which sublanguage of OWL to use in the translation. After we present the translations of 
relevant features of KM into OWL, we step back and analyze the features called for by the 
application. Based on the observation that we needed to use some subset of features from 
OWL-DL and OWL-full we speculate about whether we should consider a sublanguage of 
OWL that cuts across the three sublanguages. 

3   Description of Translation 

We now discuss aspects of the OWL translation: (1) representing scalar, cardinal, and 
categorical values; (2) representing task knowledge; (3) experience using built-in data 
types; and (4) representing collections.  

3.1   Representing Scalar, Cardinal, and Categorical Values 

CLib distinguishes two kinds of values: categorical and scalar/cardinal [2]. The fillers of 
properties such as color, duration, or length are an instance of class 
Property-Value. The range of each such slot has some subclass of Property-
Value as its range (e.g., Color-Value, Duration-Value, Length-Value). 
Several different property slots may share the same range. For example, length, width, and 
distance all have Length-Value as their range.  

Representing Scalar Values. A scalar value ascribes a symbolic value in relation to a 
reference class, for example, hot for a drink, or small for a house. The values are ordered; 
for example, hot involves a higher temperature than warm. Although an object may have 
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2 See http://wonderweb.semanticweb.org/ 
3 See http://www.co-ode.org/downloads/owldoc/co-ode-index.php. 



only one value for a given property (e.g., height is single valued), that value may be 
associated with multiple scalar values when there are multiple reference classes, e.g., a 
person has only one value for height. However, that value may be considered “tall” with 
reference to the class Person but “short” with reference to the class representing basketball 
players. CLib reifies the scale value, and allows one to assert the magnitude of the reified 
value, e.g., we can represent Ana is short for a Person as follows: 

<Person rdf:ID="Ana"> 
 <height> 
  <Length-Value> 
   <scalar-value> 
    <Scalar> 
     <scalar-constant rdf:resource="#Short"/> 
     <reference-class rdf:resource="#Person"/> 
    </Scalar> 
   </scalar-value> 
  </Length-Value> 
  </height> 
</Person> 

We have reified the value of height to Anas-Height. The value of the height 
slot has dimension Length, and therefore, we define Anas-Height as an instance 
of Length-Value. The relation scalar-constant represents the magnitude of a 
Length-Value with respect to a reference class such as Person.  
In KIF and KM, it is possible to define scalar-value as a ternary relation instead: 

(scalar-value-with-reference-to Height-1 Short Person) 

Since OWL does not allow ternary relations, we reify the arguments of what would 
have been a ternary relation, and specify them using scalar-constant and 
reference-class [6].  

Representing Cardinal Values. A cardinal value is a quantity in some dimension. A 
unit of measure is associated with each dimension, for example, days, grams, or degrees 
Fahrenheit. To represent unitless quantities such as slope, CLib provides a unit called 
UoM-Unitless. We can represent that Ana has a height of 1.2 m as follows: 

<Person rdf:ID="Ana">  
 <height> 
  <Length-Value>   
   <cardinal-value> 
    <Cardinal> 
      <xsd:float> 
      <rdf:numeric-value>1.2</rdf:numeric-value>    
      </xsd:float> 
     <unit rdf:resource="#Meter"/> 



    </Cardinal> 
   </cardinal-value> 
  </Length-Value> 
 </height> 
</Person> 

The height values are instances of Length-Value as they are for distance, 
width, and so on. We reify an instance of Cardinal (rather than a Scalar) and use 
numeric-value (rather than scalar-constant) to specify its value.  

Representing Categorical Values. Categorical values are symbolic in that they do not 
sensibly appear on any scale or continuum. There is no ordering to the categorical values. 
For example, color is a categorical value. There is no natural ordering of its symbolic 
values: blue, orange, and so on. Although it is possible to assign arbitrary numeric values 
to the symbolic constants (such as the RGB encoding of colors), it is not a feature of the 
colors that they are ordered. Outside of some arbitrary imposed ordering, it does not make 
sense to say that “blue is greater than orange”, or “something green has a higher/greater 
color than something red”. Suppose we wish to state Ana’s car is black. We can state  

<Person rdf:ID="Ana">  
 <possesses> 
  <Car rdf:about=”Car-35”> 
    <colorIs> 
     <Color-Value> 
     <categorical-value> 
      <categorical-constant rdf:resource=”#Black”/> 
     </categorical-value> 
    </Color-Value> 
   </colorIs> 
  </Car> 
 </possesses> 
</Person> 

3.2   Representing Task Knowledge 

The CALO system makes an extensive use of tasks. For example, the user may instruct 
the system to purchase a piece of equipment, arrange a meeting, or remind the user of an 
important deadline. The CALO system has an extensive collection of process models that 
can execute the tasks on behalf of the users. Some of these process models are engineered 
by hand, while others are learned by the system either by observation or by instruction. 
We represent the executable tasks within a procedural reasoning and execution system 
called SPARK [7]. SPARK provides an expressive language for encoding the execution of 
procedures. A discussion on the relationship between the procedure language of SPARK 
and other process languages such as OWL-S is available elsewhere [8]. With each 



procedure, we can associate a declarative task that specifies the parameters of the 
procedure, and organizes the tasks into a taxonomy. The KM system is well suited for the 
representation of such declarative knowledge about tasks, but we faced several challenges 
in translating that representation into OWL.  

The parameters to an executable task often have meta-properties associated with them. 
For example, some of the parameters are input to the procedure, while others are output. 
Similarly, some are required parameters, while others are optional. Given a task, there is a 
frequent need for queries such as what are the input or output parameters. We consider 
two approaches for meeting this requirement, property based and instance based. Both the 
approaches that we discuss here are allowed in KM and CLIB, but they map to different 
sublanguages of OWL, and present tradeoffs in terms of which sublanguage to use. 

The first approach, property based, is to define slots such as inputProperty and 
requiredInputProperty and assert that requiredInputProperty is a 
subproperty of inputProperty. Consider as an example the class 
ExtractMeetingTask⎯the task of extracting proposed meeting information such as 
location, participants, and start/end times from an email message. Within the above 
framework, hasEmail would be an input parameter and would be required.  

<owl:ObjectProperty rdf:ID=”optionalOutputPropertyIs”> 
 <rdfs:subPropertyOf> 
  <owl:ObjectProperty rdf:about=”outputPropertyIs”/> 
  </rdfs:subPropertyOf> 
 <rdf:type rdf:resource=”&owl;AnnotationProperty”/> 
</owl:ObjectProperty> 

 
<owl:ObjectProperty rdf:ID=”requiredInputPropertyIs”> 
 <rdfs:subPropertyOf> 
  <owl:ObjectProperty rdf:about=”inputPropertyIs”/> 
</rdfs:subPropertyOf> 
    <rdf:type rdf:resource=”&owl;AnnotationProperty”/> 
  </owl:ObjectProperty> 
 
<owl:Class rdf:ID="ExtractMeetingTask"> 
 <optionalOutputPropertyIs> 
  <owl:FunctionalProperty rdf:ID="meetingParticipantsAre"/> 
 </optionalOutputPropertyIs> 
</owl:Class> 

In the instance-based approach, we define classes such as InputParameter and 
OutputParameter. For each argument to a procedure, we would then define an 
instance of the relevant class, and assert properties on that instance to add detail [6]. 



Consider, for example, the instance-based analog of the hasEmail parameter. Instead 
of using the slot hasEmail, we would reify an instance, call it Parameter007, about 
which we will make the following assertions in OWL full: 

<InputParameter rdf:ID=”Parameter007”> 
 <rdf:type> 
  <owl:Class rdf:about=”#OptionalParameter”> 
 </rdf:type> 
</InputParameter> 

One advantage if instance-based approach is that one can express the fact that no input 
parameter is also an output parameter simply by asserting  

<owl:Class rdf:ID="InputParameter"> 
 <owl:disjointWith> 
  <owl:Class rdf:about=”#OutputParameter”> 
 <owl:disjointWith> 
</owl:Class> 

There is no way to express this fact using the property-based approach within OWL-
DL. The second advantage is that one can easily represent and reason about meta-
properties about the parameter, e.g., one can express the position of a given parameter 
within the task signature. Furthermore, one can express the constraint that a parameter can 
occupy at most one position. 

 
<InputParameter rdf:about=”Parameter007”> 
 <parameterPositionIs>1</parameterPositionIs> 
</InputParameter> 
<owl:DatatypeProperty rdf:ID="parameterPositionIs"> 
 <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
</owl:DatatypeProperty> 

The advantage of the property-based approach is that it leads to more compact 
representation and involves reifying fewer new objects. In the current ontology, we 
support both these representations. Ideally, we would have liked to be able to represent the 
translation between the two representations in OWL, but that requires using rules that are 
outside the scope of OWL.  

3.3   Using Built-in Types 

We mapped built-in data types in KM to standard types in OWL, e.g., if a slot had a 
cardinality constraint defined as N to 1 in CLib, we defined it to be an instance of 
Functional Property in OWL. If it had a cardinality constraint of 1 to 1, we defined it to be 
an instance of OWL class FuncationalProperty and InverseFunctionalProperty. 



OWL distinguishes two kinds of slots: DatatypeProperty and ObjectProperty. KM 
does not make this distinction. It was straightforward to compute this distinction by 
checking if the range of a slot is an XSD data type, for example, String or Number. 

KM uses the type Number as a generic type for all numbers. There is no 
straightforward mapping from the type Number into OWL. There is no class that is a least 
common ancestor of all the classes that represent numbers. We believe this to be a 
limitation of the current design of the data types in OWL. 

In OWL, one cannot define subclasses of primitive data types such as STRING. There 
were several compelling situations where such a feature was critical. For example, a 
learning algorithm may deduce that a string such as “94025-3493” is an instance of the 
class of strings representing U.S. Postal Codes, and that a string such as “650-555-1212” 
is an instance of the class representing phone numbers in the United States. Once deduced, 
there is a need to enforce it as a constraint on the legal values of postal codes and phone 
numbers. To support this requirement, we introduced a collection of classes termed 
Pseudo Ranges that were not a subclass of the built-in OWL class String. For example, 
PostalCodeString is a pseudo range class that is a string, and defines legal strings for U.S. 
Postal Codes. This was not an isolated example; our KB has numerous such examples.

The pseudo range approach has some disadvantages. First, even though one may make 
an assertion that the pseudo range of the addressPostalCodeIs is PR-ZipCode, 
such an assertion does not invoke any type checking. Second, this approach allows one to 
reify an instance for every ZIP code. This can get computationally expensive. There are 
some reasoners, such as Pellet,4 that allow extending the built-in types such as STRING, 
but their extensions are not interoperable and not a part of the OWL standard. 

3.4   Representing Collections 

Collection data types are sets, bags, lists, and tuples. The CALO application has a frequent 
need to use different collection types. For example, the attendees of a meeting need to be 
represented as a set. The result of searching a collection of documents is a ranked order 
list. If a user queries for the prices of homes in an area, the answer is a collection of tuples 
of length two. While computing the median price of homes in a region, we need to 
construct a bag of prices in which duplicates are retained.  

The container constructs from the RDF vocabulary⎯rdf:List and rdf:nil⎯are 
unavailable in OWL-DL because they are used in the RDF serialization of OWL in [9]. 
Although rdf:Seq is not illegal, and one could get around the unavailability of rdf:List and 
rdf:nil within OWL by defining equivalent constructs in the OWL name space, the 
container representation in RDF has the following disadvantages: (1) The elements in a 
container are defined using the relations rdf:_1, rdf:_2, and so on that have no 
formal definition in RDF. Using them for the purpose of reasoning will require us to 
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define and enforce the properties of these relations. (2) It is not possible to define a 
container that has elements only of a specific type. (3) For updating a specific element in a 
container in a remote source, one is forced to transmit the whole container. (4) It is not 
possible to associate provenance information with the elements in a container. 

Our approach for modeling collection types introduces additional vocabulary in OWL. 
We introduce a class LinkedList to represent instances of a linked list. The first-
element is a functional property that denotes the first element in a list. The relation 
restOfListIs is a property that captures the recursive structure of the list. We use a 
distinguished property value LinkedListNull to denote the list termination. 

<LinkedList> 
   <first-element rdf:resource="Sally" /> 
   <restOfListIs> 
    <LinkedList> 
    <first-element rdf:resource="Leigh"/> 
    <restOfListIs rdf:resource="LinkedListNull" /> 
   </LinkedList> 
   </restOfListIs> 
  </LinkedList> 

We introduce a class called Bag to represent the instances of a bag collection type. We 
use the property element to represent the elements of a bag, and the instance of class 
BagElement to hold the elements of a bag. The relation object on BagElement is a 
functional relationship. We need to introduce the element BagElement so that we can 
represent duplicate values. Without the use of BagElement, multiple identical values 
of <element> will be eliminated because by default they are treated as a set. 

<Bag rdf:ID=”Bag01”>  
  <element> 
   <BagElement rdf:ID=”BagElement01”> 
    <object rdf:resource=”Sally”> 
   </BagElement rdf:ID> 
  </element> 
  <element> 
   <BagElement rdf:ID=”BagElement02”> 
    <object rdf:resource=”Leigh”> 
   </BagElement rdf:ID> 
  </element> 
  <element> 
   <BagElement rdf:ID=”BagElement03”> 
    <object rdf:resource=”Sally”> 
   </BagElement rdf:ID> 
  </element> 
 </Bag> 



To represent tuples, we introduce the class. The element property on Tuple has as 
its value the instances of the class TupleElement. The instances of the class 
TupleElement hold the individual tuples. The property object on TupleElement 
is functional, and we introduce an additional property positionInTupleIs to capture 
the position of the tuple element in the overall tuple. In principle, we can implement a 
tuple as a subclass of linked list by adding a restriction on the length property. But, that is 
ontologically not correct. In a linked list, the second element of a list is a linked list or 
nil. In a tuple there is no requirement for the second element to be a linked list or nil. 

5   Discussion Topics for the Workshop 

Design of built-in data types: We identified two limitations of the built-in data types of 
OWL. First, there is no generic Number class in OWL, which made translation from KM 
to OWL difficult. Omission of such a general type appears to be an oversight to us 
because a generic Number type is essential for interoperability. Second, the inability to 
define subclasses of built-in classes is a serious limitation. We illustrated a large number 
of subclasses of String that we needed to define. Should we rethink the design of built-in 
types in OWL? Is there a better way to represent the same knowledge? 

Suggestions for the OWL Best Practices Working Group: The Working Group 
provides will require several worked-out representations in OWL to support the OWL 
user community. There is already some interest from the members of this task force for 
best practices for representing units and measures. The translation presented in this paper 
can be a useful input to the Working Group. While there is no explicit expression of 
interest in representations for collections and tasks, we believe that they are of sufficiently 
broad interest that the Working Group should consider providing best practices for them. 

Sublanguages of OWL: We can analyze the three sublanguages by asking the 
following questions: Could we have used OWL-Lite? Could we have used OWL-DL? 
Which features of OWL-DL were most used? Which features of OWL-full were used? 
What is an appropriate language for the CALO application? 

The units and measures representation that we consider in this paper can be expressed 
in OWL-Lite. The instance-based approach for representing task parameters can be 
represented in OWL-Lite with the exception of the disjoint-ness assertion between the 
classes, which requires OWL-DL. The problems we face with built-in types cannot be 
addressed in any of the three sublanguages of OWL. The solution based on pseudo-ranges 
that we considered to get around the OWL limitations can be expressed within OWL-Lite. 
Representation of slot groupings requires OWL-full. 

Based on this discussion, consider a language called OWL-Meta that has the following 
features: 

a. Uses OWL-Lite as a representation language 
b. Allows classes and slots to be instances of other classes 
c. Allows disjointWith relationships between classes 



d. Allows specialization of built-in data types 
Such a language will serve the needs of the current application quite well. It builds on 

OWL-Lite and adds selected features from OWL-DL and OWL-full. In our earlier work 
[10], we surveyed an extensive range of knowledge representation systems, and OWL-
Meta represents the most commonly used core across a range of systems.  
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