
The Manchester OWL Syntax

Matthew Horridge1, Nick Drummond1, John Goodwin2, Alan Rector1, Robert
Stevens1, and Hai H Wang1

1 The University of Manchester
2 The Ordnance Survey

Abstract. This paper describes a new syntax that can be used to write
OWL ontologies, and fragments of OWL ontologies for presentation and
editing purposes. The syntax, which is known as the Manchester OWL
Syntax, was developed in response to a demand from a wide range of
users, who do not have a Description Logic background, for a“less logician
like” syntax. The Manchester OWL Syntax is derived from the OWL
Abstract Syntax, but is less verbose and minimises the use of brackets.
This means that it is quick and easy to read and write. The important
features of the syntax are discussed, and a reference implementation of
a Java based parser is described.3

1 Introduction and Motivation

Since OWL became a W3C recommendation, there has been a steady stream of
OWL ontology editing tools that have made their way to users’ desktops. Most
notably, Protégé-OWL [1], from Stanford Medical Informatics, and Swoop [2]
from the Mindswap lab at the University of Maryland.

Both of these tools offer a variety of presentations or renderings for class,
property and individual descriptions and axioms. These presentations range from
the officially recommended RDF/XML exchange syntax [3], to a Description
Logic style syntax, with Turtle/N-Triples [6], and the OWL Abstract Sytnax [4]
somewhere between the ends of this syntax spectrum.

Experience of delivering several OWL tutorials and workshops, mainly for
domain experts, including bio-informaticians, geographers and e-scientists, has
made it evident that for the vast majority of non-logicians, none of the above
syntaxes are suitable for writing class expressions and other types of axioms. In
particular, the existing OWL syntaxes are either too verbose, or too complicated.

1.1 W3C OWL Syntaxes

A quick read through of the W3C OWL web pages leaves no room for doubt
that the preferred OWL syntax is RDF/XML. Even the OWL guide uses this
syntax for the presentation of examples. However, the verbosity of the XML,
3 It should be noted that the description given in this paper is informative, for a

normative specification see http://www.co-ode.org.

and the fact that it is difficult to write by hand, rule this syntax out for quickly
writing and editing class descriptions in a concise manner.

An alternative to the RDF/XML syntax is the OWL Abstract Syntax [4].
This syntax is a high level, human readable OWL syntax. The Abstract Syntax is
frequently used to exchange snippets of OWL via e-mail messages and discussion
lists. However, like the RDF/XML syntax, the Abstract Syntax is also verbose –
it has an excessive number of keywords, and typically requires the use of a large
number of brackets.

The Semantic Web Best Practices Working Group [5] settled on Turtle –
an N3 derivative [6], for posting snippets of ontologies in e-mail discussions
and for presentation in their best practice documents. Turtle is a triple based
notation, and, amongst others, is favoured by Tim Berners Lee. It was primarily
designed to represent RDF. Hence, representation of OWL class descriptions and
other constructs in Turtle exposes the triples that are used to encode ontology
constructs. It is arguable that when written in Turtle, the meaning of OWL
entities is obfuscated because of the representation of raw triples.

1.2 The German DL Syntax and Protégé-OWL Compact Syntax

For the presentation of class descriptions and class axioms, both Protégé-OWL
and Swoop defaulted to a syntax that is favoured by the logicians – the German
DL Syntax. This syntax uses description logic symbols such as ∃, ∀, u, ¬. 4

Examples from Protégé-OWL and Swoop are shown in Figure 1 and Figure 2
respectively.

Given the Description Logic underpinnings of OWL, and the compactness of
the DL Syntax, it perhaps unsurprising that this was the syntax of choice for
the major OWL tools. However, it has been evident that the DL syntax isn’t
the preferred syntax for non-logicians. Indeed, the German DL Syntax presents
an extra hurdle for non-logicians when learning OWL. It has been observed
that domain experts, who do not have a DL background, recoil at the sight of
backwards Es and upside down As. They find the DL style syntax both difficult
to read and write.

Coupled with the problem of containing cryptic symbols, the syntax for
restrictions is a prefix syntax. That is, the restriction quantifier precedes the
role/property name and optional filler. It has has been observed that this can
lead users to initially read restrictions incorrectly. For example, many users in-
tially read, ∃ hasTopping MozzarellaTopping as, “some pizzas have toppings that
are mozzarella topping”, compared with the correct reading, “all pizzas have
toppings that are some mozzarella topping”.

Additionally, due to the special symbols required by the DL syntax, it is
difficult to paste snippets of ontologies into e-mails, discussion forums and pre-
sentation slides, meaning that it isn’t an ideal human readable exchange syntax.

4 The default syntax for Protégé-OWL was actually a syntax that was derived from the
German DL Syntax, called the Compact OWL Syntax. This syntax was a confusing
mixture of prefix and infix notation.

1.3 Summary

The Manchester Syntax was created to deal with the above issues and provide
non-logicians with a syntax that makes it easier to write ontologies. It has been
designed primarily for presenting and editing class expressions in tools, but it
can also be used for representing complete ontologies. The syntax is discussed
in detail through the rest of this paper.

Fig. 1. An Example of the original DL syntax used in Protégé-OWL . The figure shows
the description of a VegetarianPizza as defined in the pizza ontology.

Fig. 2. An Example of the syntax used in Swoop . The figure shows the description of
a VegetarianPizza as defined in the pizza ontology.

2 The Manchester OWL Syntax

2.1 Design Considerations

The primary design considerations were to produce a syntax that was concise, did
not use DL symbols, and was quick and easy to read and write. These consider-
ations were based on the experience and interaction with users of Protégé-OWL
where the syntax would be primarily used to edit class expressions. Lessons
learnt from the GALEN project [7] were also taken into consideration. For ex-
ample, minimsing the number of brackets required to write class expressions,
and choosing keywords to promote readability, were taken into account.

It was also decided that although the syntax should be aligned as much as
possible with the OWL specification, for example by using keywords derived from
the OWL abstract syntax specification, the main objective would be to strive

for readability and a reduction in the amount of time it took domain experts
and non-logicians to understand the information that was being represented. To
this end, several new keywords were created.

2.2 The Syntax

Although the Manchester OWL syntax borrows ideas from the OWL Abstract
Syntax, it is much less verbose. Whilst following the compactness of the German
DL syntax, special mathematical symbols such as ∃ ∀, ¬ and have been replaced
by more intuitive keywords such as some, only, and not.

A significant design decision was to use an infix notation rather than a pre-
fix notation for keywords that are used in restrictions. This was decision was
made in order to directly combat the problem of non-logicians misreading class
expressions as described in Section 1.2.

2.3 Class Descriptions

One of the main driving factors behind the Manchester OWL Syntax was to
produce a syntax that could be used to edit class descriptions in tools such as
Protégé-OWL or Swoop . The class description syntax is shown in Figure 3.
Keyword symbols are shown in bold caps, however, capitalisation of keywords is
optional – for on screen presentations, it has been found that lower case keywords
with colouring and syntax highlighting work particularly well.

In addition to making class expressions more natural to read, the natural
language keywords, also makes it easy to paste the plain text representation
of the expression into e-mails etc. without incurring the formatting problems
that can arise due to the different fonts required to represent the mathematical
symbols that are used in the DL syntax.

OWL Constructor DL Syntax Manchester OWL S. Example

intersectionOf C u D C AND D Human AND Male
unionOf C t D C OR D Man OR Woman
complementOf ¬ C NOT C NOT Male
oneOf {a} t {b}... {a b ...} {England Italy Spain}
someValuesFrom ∃ R C R SOME C hasColleague SOME Professor
allValuesFrom ∀ R C R ONLY C hasColleague ONLY Professor
minCardinality ≥ N R R MIN 3 hasColleague MIN 3
maxCardinality ≤ N R R MAX 3 hasColleague MAX 3
cardinality = N R R EXACTLY 3 hasColleague EXACTLY 3
hasValue ∃ R {a} R VALUE a hasColleague VALUE Matthew

Fig. 3. The Manchester OWL Syntax OWL 1.0 Class Constructors

Precedence The Manchester OWL Syntax encourages the minimisation of the
number of brackets that are used. This is achieved using operator precedence for
class descriptions. The following list summarises operator precedence – operators
are shown from highest precedece to lowest precedence.

– SOME, ALL, VALUE, MIN, MAX, EXACTLY, THAT
– NOT
– AND
– OR

As would be expected, the syntax supports the nesting of class constructors
to arbitrarily complex levels. Complex class expressions can be disambiguated by
bracketing. For example, the class expression below describes the set of people
who have at least one child that has some children that are only men (i.e. grand-
parents that only have grandsons). The expression has been formatted using
indentation to aid readability.

Person AND
hasChild SOME (Person AND

(hasChild ONLY Man) AND
(hasChild SOME Person))

The ‘THAT’ Keyword The “THAT” keyword was introduced into the sytax
to make certain class expressions read more naturally. The inspiration for this
was taken from the syntax that was developed as part of the GALEN project [7].
The keyword “THAT” is in fact a synonym for “AND”. It is used after named
classes which precede restrictions. In the example below, the previous example
has been rewritten to use the THAT keyword – it is noticable that the expression
is more readable.

Person THAT
hasChild SOME (Person THAT

(hasChild ONLY Man) AND
(hasChild SOME Person))

2.4 OWL Entity Descriptions

Class expressions that are built up using the syntax described previously can
be used in tools for presenting and editing items such as superclass/equivalent
class expressions etc. Figure 4 shows an example of the Manchester OWL Syntax
being used to represent the concept of a VegetarianPizza in Protégé-OWL .

In addition to the class expression syntax, there is a full syntax for OWL
entity descriptions. This means that it is possible to represent full descriptions
for classes, properties and individuals in a textual manner. An example of the
syntax for named class descriptions is given in Figure 5 and an EBNF style
grammar shown in Figure 6. Such textual descriptions are ideal for use in non-DL

Fig. 4. An example of the Manchester OWL Syntax being used to represent the concept
of a VegetarianPizza in Protégé-OWL

papers, or in e-mail discussion lists and forums. As can be seen from Figure 5, it
is possible to represent annotations on classes and class axioms using the syntax.
Inspiration for this annotation syntax was taken from the JavaDoc [8] syntax
that is used for documenting Java classes and methods.

For the sake of brevity, the full class description syntax and grammar for
properties and individuals is not shown in this paper – full specifications can be
found on the CO-ODE website5. However, property and individual descriptions
follow the same style as class descriptions.

/**

 * @rdfs:comment A vegetarian pizza is a pizza that only has cheese toppings
 * and tomato toppings.
 *

 * @rdfs:label Pizza [en]
 * @rdfs:label Pizza [pt]
 */

Class: VegetarianPizza

EquivalentTo:

Pizza and

not (hasTopping some FishTopping) and

 not (hasTopping some MeatTopping)

DisjointWith:

NonVegetarianPizza

Fig. 5. An example of the Manchester OWL Syntax being used to represent a full class
description.

5 http://www.co-ode.org

[Annotation]
‘Class:’ classID {Annotation

((‘SubClassOf:’ ClassExpression)
| (‘EquivalentTo’ ClassExpression)
| (’DisjointWith’ ClassExpression)) }

ClassExpression = A class expression that is constructed using the
class constructors shown in Figure 3.

Fig. 6. EBNF for OWL Class Descriptions

3 Design Patterns and Macros

3.1 ONLYSOME

A common ontology desing pattern is to combine a set of existential restrictions
that act along a given property with a universal restriction that acts along
the same property and has a filler that is the union of the existential fillers.
The universal restriction is sometimes known as a closure axiom. The following
example is taken from the well known pizza ontology6.

Pizza THAT
hasTopping SOME MozzarellaTopping AND
hasTopping SOME TomatoTopping AND
hasTopping SOME PeperroniTopping AND
hasTopping ONLY (MozzarellaTopping OR

TomatoTopping OR
PepperonniTopping)

Since this is a common pattern, the Manchester OWL Syntax provides a
shortcut macro. The macro takes the form, R ONLYSOME [C0,. . . Cn], which
expands to,

R SOME C0 AND
...

R SOME Cn AND
R ONLY (C0 OR ... OR Cn)

Figure 7 shows the above example expressed using the onlysome macro – the
reduction in verbosity should be evident.

Similar macros, using the SOME and ONLY keywords, are also available
for sets of existential restrictions and sets of universal restrictions respectively.
The SOME keyword macro expands to an existential restriction for each class
listed between square brackets. The ONLY keyword macro expands to a single
6 http://www.co-ode.org/ontologies/pizza

restriction that has a filler, which is the disjunction of the classes listed between
square brackets. Hence, both macros encourage neophyte users to “do the right
thing”.

Pizza THAT
hasTopping ONLYSOME [MozzarellaTopping,

TomatoTopping,
PepperonniTopping]

Fig. 7. An example of the ONLYSOME macro

3.2 Value Partitions

The Semantic Web Best Practices Working Group [5] have published several on-
tology desgin patterns. The Manchester OWL Syntax includes a shortcut macro
for creating one of these commonly used patterns – Value Partitions. This syntax
for value partitions is:

‘ValuePartition:’ className
objectPropertyID ‘[’classID classID {classID}‘]’

This expands to produce a functional property, and a list of disjoint classes
which cover the value partion class that is identified by ‘className’.

3.3 Exclusive OR

Ontology development at the Ordnance Survey highlighted a need for a compact
way of representing an exclusive OR. In other words, A OR B but not both A
and B. In line with some programming languages, the exclusive OR macro was
introduced. The macro simply uses the XOR keyword. For example C XOR D,
which expands to (C OR D) AND NOT (C AND D).

4 Implementation

A Java based reference implementation of a Manchester OWL Syntax parser was
created.7 The parser can parse class expressions, class, property and individual
descriptions, and complete ontologies written in the Manchester OWL Syntax.
It was constructed using the Java Compiler Compiler (JavaCC) [9]. A version
of the parser that creates class expressions or descriptions, and ontologies using
the WonderWeb OWL API [10] is also available.

7 The implementation is available from http://www.co-ode.org

5 OWL 1.1 Support

The Manchester OWL Syntax was developed prior to the OWL 1.1 specification.
However, the syntax has been extended, with minimal effort, to support OWL
1.1. Such extensions included support for QCRs, ValueNot, Disjoint unions, user
derived datatypes and the like. Full specifiactions can be found on the CO-ODE
web site.

6 Informal Evaluation

Since the Manchester OWL Syntax was created, it has become the default syntax
in Protégé-OWL . Many non-logician users, such as members of the BioPAX con-
sortium8, the Ontogenisis Network and the Ordnance Survey9 have commented
that they much prefer the syntax to the previous DL style syntax. They find it
easier to grasp and in some cases, such as at the Ordnance Survey, it has lowered
the barrier to being able to read and interpret ontologies10.

The Manchester OWL Syntax has also had commercial success. The recently
released OWL ontology editor TopBraid Composer11 has made the Manchester
OWL Syntax the syntax of choice.

In summary, the Manchester OWL Syntax has been well received by non-
logicians. However, it should be noted that while most users have found the
syntax easy to read, in general, they still needed training to re-align their ‘nat-
ural interpretation’ with the correct OWL/DL interpretation. For example, it is
often necessary to explain the precise meaning of ‘some’ – i.e. the semantics of
existential restrictions. Another example is that universal restrictions are often
interpreted to mean ‘only and some’ – trivial satisfaction of such restrictions
is counter intuitive for many users. However, it is arguable that explanations of
OWL semantics would be required whatever syntax was chosen. What is clear, is
that the Manchester OWL Syntax has, to a large degree, ameleorated the ‘prefix
problem’ (described in section 1.2) associated with restrictions. The syntax also
seems to be more memorable than the German DL syntax, which means users
get used to reading and writing class expressions in a shorter amount of time.
They also find it easier to map between the syntax and semantics.

7 Conclusions

– The Manchester OWL Syntax is a new OWL Syntax that was designed in
response to a demand from non-DL users for less logician like syntax.

– Key features of the syntax are that is uses natural language keywords rather
than DL symbols, and an infix notation for restrictions.

8 http://www.biopax.org
9 The Brisith equivalent of the US Geological Survey –

http://www.ordnancesurvey.co.uk/oswebsite/
10 Personal communication with John Goodwin and O/S employees
11 http://www.topbraidcomposer.com

– The syntax is suited for use in tools for presenting and editing class descrip-
tions, for use in papers, e-mail messages and tutorials, where the audience
is a non-DL audience. The syntax can also be used to represent complete
OWL (including OWL-Full) ontologies.

– User feedback from groups such as BioPAX, Ontogenisis and the Ordnance
Survey have confirmed that the Manchester Syntax is the preferred syntax
for non-logicians when editing class expressions.

– A reference implementation of a Java based parser has been produced, which
may be integrated into any tool. The implementation also includes a con-
verter, which can transform the Manchester Syntax to RDF/XML syntax.

In summary, the OWL user community has indicated that it needs a range of
syntaxes for a range of purposes. Each syntax discussed has its uses for a partic-
ular communtiy of either people or tools. In creating tools for non-logician users,
the need for another syntax has been identified. The design of the Manchester
OWL syntax has met the issues that have been discussed, and its wider user is
recommend for testing and further development.

Acknowledgements

This work was supported in part by the CO-ODE project funded by the UK Joint
In- formation Services Committee (JISC) and the HyOntUse Project (GR/S44686)
funded by the UK Engineering and Physical Science Research Council. The au-
thors would like to thank Andrew Gibson from the Bio Health Informatics Group
at the University of Manchester for his input and feedback during the develop-
ment of the Manchester OWL Syntax.

References

1. Knublauch, H., Musen, M.A., Rector, A.L.: Editing description logic ontologies
with the Protégé-OWL plugin (2004)

2. Kalyanpur, A., Parsia, B., Hendler, J.: A tool for working with web ontologies
(2005)

3. Becket, D.: Rdf/xml syntax specification (revised) (2004)
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

4. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: Owl web ontology language, seman-
tics and abstract syntax. http://www.w3.org/TR/owl-semantics (2004)

5. W3C: The semantic web best practices and deployment working group.
http://www.w3.org/2001/sw/BestPractices (2001)

6. Beckett, D.: New syntaxes for rdf. Technical report, Institute For Learning And
Research Technology, Bristol (2004)

7. Rector, A., W.D., S., W.A., N., T.W., R.: A terminology server for medical lan-
guage and medical information systems. Methods of Information In Medicine 34
(1994) 147–157

8. Sun: Javadoc. (http://java.sun.com/j2se/javadoc/)
9. ‘Sreeni’: Java compiler compiler [tm] (javacc [tm]) - the java parser generator.

(https://javacc.dev.java.net)
10. Bechhofer, S., Volz, R., Lord, P.: Cooking the semantic web with the owl api (2003)

