
Resource Metrics for Service-Oriented
Infrastructures

Dmytro Rud1, Andreas Schmietendorf1,2, and Reiner Dumke1

1 Software Engineering Group, Department of Distributed Systems,
Faculty of Computer Science, Otto von Guericke University of Magdeburg,

Universitätsplatz 2, 39106 Magdeburg, Germany
{rud, schmiete, dumke}@ivs.cs.uni-magdeburg.de

2 Berlin School of Economics, Faculty of Company-Linked Programmes,
Neue Bahnhofstr. 11-17, 10245 Berlin, Germany

schmiete@fhw-berlin.de

Abstract. Resource quality is one of the dimensions of software quality
assessment and must be appropriately addressed in service-oriented ar-
chitecture. In this paper some resource metrics for distributed systems
that conform to the service-oriented concepts will be proposed. Simi-
larities and differences between service-oriented, component-based and
web-based software engineering approaches will be analysed in the con-
text of involved resources and their quality impact.

1 Introduction

Software quality assessment is an important objective of software engineering
and has big relevance in the context of SOA as well. The three dimensions
of software quality are product, process and resources. In this paper we will
present our view on significant run-time resource properties in service-oriented
infrastructures.

Note that service-oriented architecture is an approach/an ideology, not a
product. Therefore it is impossible to attribute neither resources nor resource
metrics to it. Instead of that, the metrics introduced in this paper relate to dis-
tributed software systems built in accordance with SOA – i.e. implementations
of the SOA principle. These distributed systems will be hereinafter referred to
as “service-oriented infrastructures” or “service-oriented systems” (simply “sys-
tems” for short).

We will consider the following resources in service-oriented systems:

Network infrastructure. Its concrete logical topology can be point-to-point,
bus (e.g. when a Enterprise Service Bus is used as an intermediate access
layer), or some combination of them.

Service provider nodes. Each node is connected to the network and hosts a
software infrastructure (application server(s)) that runs the services (service
instances) and provides access to service endpoints and service metadata.



Services – pieces of software running on the nodes, whose functionalities and
metadata are uniformly accessible for clients through the network.

Service functionalities (reactions to classes of incoming messages).
Under RPC3-oriented interaction style this corresponds to operations’ in-
vocations, but the dominant interaction style today is document-oriented
(i.e. asynchronous messaging), therefore the term “functionality” seems to
be more correct here. Note also that some service design approaches con-
sider every service to possess only one functionality (i.e. to provide a single
operation when adhering to the RPC-oriented style). In this case the terms
“service” and “service functionality” are synonymous.

There are also a few generalized metrics which relate to the system as a whole.
Due to dynamic nature of service-oriented systems, the boundary between

product and resource, i.e. between design-time (static) and run-time (dynamic)
properties, is somewhat diffused. For example, message sizes can be considered
as either product or resource metrics.

Metrics proposed in this paper are intended to help answer the following
questions:

– What is the current utilization of network and nodes?
– How much is it influenced by an invocation of a service’s functionality?
– Are service versions managed well?
– What is the performance behavior of elementary and composite services?

The rest of the paper is organized as follows. The next section gives a review
of related work. Section 3 discusses the question of the applicability of resource
metrics from other distributed software architectures in the context of SOA. Our
metrics are introduced in Section 4. Section 5 concludes the paper.

2 Related Work

Quality assessment and assurance of service-oriented infrastructures constitute
an actual research topic. The product quality aspect, in particular service design
guidelines, is well discussed in [1, 2]. We had presented a set of product metrics
in [3]. As mentioned in the introduction, some product metrics can be relevant
in the resource context as well, therefore some metrics from [3] will appear in
this paper too. A formal quality model of single web services is described in [4],
web services availability and performance problems are examined in [5].

Although there exist many tools on the market that monitor and analyse
resource utilization in service-oriented systems, this subject is practically not in
the least reflected in scientific literature. One of likely causes for this situation is
the fact that there are many ways to implement SOA, and it is thus complicated
to develop a resource quality model that would fit for all of them.

Explanation of resources’ impact on performance and availability of web ap-
plications and client-server systems is given in [6]. Caching and XML processing
3 Remote procedure call



issues are discussed in [7]. Author of [8] asserts that the rate of valid transaction
completion should be considered as the key run-time performance metric for
SOA environments.

Resource metrics are actually used by service management frameworks which
provide functionalities like service performance monitoring or service matchmak-
ing. These frameworks include, for example, WSLA [9], WSOI [10], WSMN [11],
WS-QoS [12], and many other industrial and academical research projects [5].

3 SOA’s Resemblances to Component- and Web-Based
Applications

From the resource consumption point of view, service-oriented infrastructures
share some properties with component-based [13, 14] and web-based [6] applica-
tions. Therefore arises the question of whether and to what extent is it possible to
apply existing resource metrics from the component-based software engineering
(CBSE) and web applications domains in the context of SOA. This applicability
seems to be substantial, but the following conceptual differences between the
respective approaches must be taken into account:

– Services can be composite (i.e. represent structured collaborations of other
services, possibly with many “cascading” levels), while component-based and
web-based applications do not support this technique as a rule.

– In CBSE it is impossible that many versions of a component are available
simultaneously (in web engineering there is no version concept at all), but
this can be the case in a service-oriented system.

– Unlike components, services involved in a transaction (in a composite service
invocation, a business process, a workflow) can reside on different nodes in
the network (thus possibly in different responsibility domains) and do not
share single address space. Communication between services is thus unreli-
able and relatively slow, and the data transferring time cannot be neglected.

– Services represent functionalities and are generally stateless by design (like
web resources, but unlike components)4, therefore replication and load balan-
cing can be arranged. Replication mechanisms give the possibility to recover
a service collaboration in the case of partial failure.

– Unlike both component-based and web-based applications, service interac-
tions can proceed asynchronously. Therefore performance metrics like re-
sponse time are not always available.

– Non-functional run-time properties of services are often explicitly and for-
mally (i.e. machine-readably) described in form of service or operational level
agreements (SLA or OLA, respectively). Service providers are responsible for
SLA fulfillment. This approach is rather uncommon in component-based and
web-based environments.

– An especial resource in service-oriented systems is services’ metadata.
4 Some types of services, e.g. web services, can use session management mechanisms,

but this approach is not widely adopted.



4 Introduction of the Metrics

In this section we describe our resource metrics for service-oriented infrastruc-
tures. The following three resource quality aspects will be considered in this
connection: performance, service versioning, and reliability. Each aspect will be
discussed in its own subsection.

4.1 Performance

The main performance characteristic of the network is its (current) throughput.
It depends on the network topology. When a centralized bus like ESB is used,
the throughput can be considered to be consistent in the whole system; in this
case, the perfomance is determined for the most part not by throughputs be-
tween connected components and the ESB, but by the ESB’s internal processing
mechanisms like XSLT transformations, intermediate storage, security, transac-
tion management, ans so on. However, if the ESB is used in an inter-enterprise
environment, network latencies for the communication links between the bus and
(external) components can have to be considered as well.

In the latter case, as well as in the absence of a centralized middleware, i.e.
when every link between a pair of nodes has its own throughput value, network
performance metrics relate to point-to-point throughput.

For these two variants we correspondingly introduce the following metrics:

CTY – Consistent Throughput in the System,
T2N [n1, n2] – Throughput between 2 Nodes n1 and n2.

Unit of measurement for them is bytes/sec.
Performance of a node is first of all characterized by its (current) utilization,

defined as fraction of time during which the node is busy with serving incoming
requests. Other performance indicators are message rates and network traffic
processed by the node. These properties are covered by the metrics:

UN [n] – Overall Utilization of the Node n,
IMRN [n] – Incoming Message Rate of the Node n (messages/sec),
OMRN [n] – Outgoing Message Rate of the Node n (messages/sec),
ITN [n] – Incoming Traffic of the Node n (bytes/sec), and
OTN [n] – Outgoing Traffic of the Node n (bytes/sec).

(The four latter metrics have been already introduced in [3].)
As mentioned above, utilization of nodes constitutes from fractions of time

used to serve individual requests (to execute certain functionalities in response
to incoming messages). Average sizes of such fractions (“processing costs” of
average individual requests) can be considered as performance metrics on deep
specification level. In the network throughput context, every service functionality



is characterized by sizes of input and – in the case of RPC interaction style –
output messages5. In order to be compatible with notational conventions used
in our product metrics proposal [3], we will use here the term “operation” in the
sense of “service functionality”. Corresponding metrics are:

AUO[m] – Average Utilization (of the node that provides the
corresponding service) caused by the Operation m (seconds),

AIMSO[m] – Average Input Message Size for the Operation m (bytes),
AOMSO[m] – Average Output Message Size for the Operation m (bytes).

If the service under consideration is composite, invocation of its functionali-
ties imply a number of cascading calls to subordinate services. These calls cause
additional utilization of corresponding nodes. To have an exact picture of the
influence of an invocation upon utilizations of all N nodes of the system, the
tuple

〈AUO1[m], AUO2[m], . . . , AUON [m]〉

should be analysed instead of the consideration of the single node. However it is
obvious that the white-box view is necessary to obtain these value.

One of possible scenarios of SOA implementation is a system consisting of a
set of service providers, a business process integrator and a set of clients of the
latter, i.e. business process consumers. The mission of the integrator is to select
an optimal set of third-party services, to orchestrate a composite service from
them by filling out a business process description template with all information
necessary to start the process – i.e. with partner links, addresses, etc., and finally
to provide the latter to the customers.

The current and maximal possible numbers of simultaneously running busi-
ness processes (“top-level transactions”) can be important generalized indicators
for the integrator. Therefore we introduce two corresponding metrics:

ANBPY – Average Number of Business Processes in the System,
BPCY – Business Processes’ Capacity of the System.

To calculate the business processes’ capacity of the system, deep analysis of
the processes and their environment is necessary. An initial approach for such
analysis was proposed in [15].

Other generalized metrics (already mentioned in [3]) give a “bird’s-eye view”
on the system’s performance:

MRY – Overall Message Rate in the System (messages/sec),
NTY – Overall Network Traffic in the System per one unit of time

(bytes/sec).

5 Fault messages should be taken into account as well



Note that we do not take into account possible use of caching mechanisms.
Firstly, it is complicated to determine caching impact on resources utilization
in technology-independent manner. Secondly, it is not very clear at all what the
caching can mean under asynchronous document-oriented interaction style (as
opposed to synchronous RPC-oriented style). For roughly the same reason we
do not discuss scalability issues here.

4.2 Service Versioning

The possibility of different versions of the same service to be active simultane-
ously is a distinguishing feature of service-oriented systems. Version management
has its quality aspects and thus must be addressed by software engineering in
order to avoid negative consequences of poor versioning organization. In particu-
lar, a service with many short-lived versions can complicate both its maintenance
and development of clients.

Two types of resources are appropriate in this context – there are installed
service versions per se and services’ metadata, i.e. formal (machine-readable)
descriptions of services’ functional and non-functional properties. A metadata
repository (or registry) is an essential component of service-oriented infrastruc-
tures, serving for loose coupling and dynamic binding, and enabling agility in
that way.

For individual services, the following versioning metrics may be relevant:

CV S[s] – Count of (simultaneously deployed) Versions of the Service s,
ALTV S[s] – Average Life Time of Versions of the Service s.

Their counterparts on the system level are:

ACSV Y – Average Count of Services’ Versions in the System,
ALTSV Y – Average Life Time of Services’ Versions in the System.

In the absence of any versioning mechanisms, the only possible metric is

MCFS[s] – Metadata Change Frequency of the Service s.

Service’s metadata instability can break the work of existing clients and
should be avoided. Proper versioning mechanisms should be used instead.

One of possible services’ metadata types are service level agreements (SLAs),
which have been already mentioned in this paper. The next subsection discusses
SLA fulfillment issues and introduces a few SLA-related metrics.

4.3 Reliability

Service-level agreements are parts of service contracts and uniformly describe
non-functional properties of the services. Sustained fulfillment of the SLA guar-
antees can be considered as the main quality criterion of a service.

Three conventional SLA fulfillment states can be distinguished:



Green area – All SLA conditions are consistently met,
Yellow area – Although SLA conditions are met, indicators (for example, some

aggregated performance indices) come near to the prescribed threshold,
Red area – SOA conditions are not met.

On the basis of these areas we define the following metrics:

– SLACS[s] – SLA Compliance of the Service s, measured as the fraction of
time during which all SLA fulfillment indicators of the service lie in green
and/or yellow areas,

– SLAV DS[s] – SLA Violation Danger of the Service s, measured as

fraction of time in yellow area
fraction of time in green and yellow areas

.

Faults (improper or missing reactions to incoming messages) are one of the
most probable causes of SLA violations. Possible fault manifestations are:

– The service is unable to receive the incoming message,
– The service responds with a fault message,
– The service sends no response at all (for RPC-styled interaction),
– The non-fault response comes too late.

Alternatively to the SLA-related metrics described above, the following met-
rics can be used to describe faults which happen in the system, i.e. to address a
narrower and more technical view on SLA fulfillment (and to avoid subjectivity
caused by the choice of SLA fulfillment states’ boundaries):

FRO[m] – Fault Rate of the Operation m per one unit of time. This value

can be calculated as
count of faults

count of received messages
, and

FRY – Overall Fault Rate in the System.

Turning back to the business process integrator scenario (see Subsection 4.1),
we can draw a parallel between these fault metrics and the rate of valid top-level
transactions (composite business processes) completion metric proposed is [8].
Fault rates of the composed services can be considered as most important quality
indicators of the business process integrator’s work.

5 Conclusions

In this paper we have presented some resource metrics for service-oriented in-
frastructures. From the viewpoint of resource utilization, there are not so much
differences between service-oriented, component-based and web-based applica-
tions, but their nevertheless exist, and we have tried to take them into account
in our analysis.



Resource Performance Versioning Reliability
metrics metrics metrics

Network CTY, T2N,
MRY, NTY

Service provider nodes UN, ITN, OTN,
IMRN, OMRN

Services CVS, ALTVS, SLACS,
MCFS SLAVDS

Service functionalities AUO, AIMSO, FRO
(operations) AOMSO

System as a whole ANBPY, BPCY ACSVY, ALTSVY FRY
Table 1. Classification of introduced metrics

Table 1 systematizes the proposed metrics and shows the correspondence
between various quality aspects covered by the metrics and corresponding re-
sources.

The proposed set of metrics is definitely not exhaustive, but it constitutes a
basis for discussion and for subsequent work in this field.

The metrics are formulated in a technology-independent manner, specific
technologies and measurement procedures are out of scope of the paper. There-
upon certain adjustment can become neccessary to make the metrics applicable
in the context of concrete systems.

One of evident possible improvements of our resource quality model can lie in
the consideration of the temporal aspect. For example, message rates and fault
rates can be time-dependent. This peculiarity can be very important if we have
to develop system performance models like the one in [15]. But standard mea-
surement scales (nominal, ordinal, interval, ratio, and absolute) do not permit to
use functions (e.g. statistical distributions) as metrics’ values. The same applies
to tuple-structured data as occurred in Subsection 4.1.

References

1. Artus, D.J.N.: SOA realization: Service design princi-
ples. IBM developerWorks (February 2006) http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-design/.

2. Hess, A., Humm, B., Voß, M.: Regeln für serviceorientierte Architekturen hoher
Qualität. Informatik Spektrum 29/6 (Dezember 2006) 395–411 (“Rules for service-
oriented architectures of high quality”, in German).

3. Rud, D., Schmietendorf, A., Dumke, R.: Product metrics for service-oriented
infrastructures. In Abran, A., Bundschuh, M., Büren, G., Dumke, R., eds.:
Applied Software Measurement. Proc. of the International Workshop on Soft-
ware Metrics and DASMA Software Metrik Kongress (IWSM/MetriKon 2006).
Magdeburger Schriften zum Empirischen Software Engineering, Potsdam, Ger-
many, Hasso-Plattner-Institut, Shaker Verlag (November 2006) 161–174

4. Thielen, M.: Qualitätssicherung von Webservices. Entwurf eines allgemeinen
Qualitätsmodells für eine Webservice-Zugriffsschicht. Master’s thesis, Universität



Koblenz-Landau (2004) (“Quality assurance of web services. Development of a
generic quality model for a web service access layer”, in German).

5. Rud, D.: Qualität von Web Services: Messung und Sicherung der Performance.
VDM Verlag Dr. Müller, Saarbrücken (2006) (“Quality of web services: Measure-
ment and assurance of performance”, in German).

6. Menascé, D.A., Almeida, V.A.F.: Capacity planning for web services: metrics,
models, and methods. Prentice Hall (2002)

7. Cohen, F.: FastSOA: The way to use native XML technology to achieve service
oriented architecture governance, scalability, and performance. Morgan Kaufmann
Series in Data Management Systems. Elsevier Books, Oxford (January 2007)

8. Noel, J.: Transaction completion: The new performance metric for ser-
vice oriented architecture environments. Technical report, Ptak, Noel
& Associates (2005) http://www.ptaknoelassociates.com/content/library/2005/
Certagon transaction completion.pdf.

9. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig,
H., Polan, M., Spreitzer, M., Youssef, A.: Web services on demand: WSLA-
driven automated management. IBM Systems Journal 43(1) (2004) 136–158
http://www.research.ibm.com/journal/sj/431/dan.pdf.

10. Tosic, V.: Service Offerings for XML Web Services and Their Man-
agement Applications. PhD thesis, Department of Systems and Com-
puter Engineering, Carleton University, Ottawa, Canada (August 2004)
http://flash.lakeheadu.ca/∼vtosic/TosicThesis-Final.pdf.

11. Machiraju, V., Sahai, A., van Moorsel, A.: Web services management network:
An overlay network for federated service management. Technical Report HPL-
2002-234, HP Labs (2002) http://www.hpl.hp.com/techreports/2002/HPL-2002-
234.pdf.

12. Tian, M.: QoS integration in Web services with the WS-QoS framework. PhD
thesis, Fachbereich Mathematik u. Informatik, Freie Universität Berlin (November
2005) http://www.diss.fu-berlin.de/2005/326/index.html.

13. Gao, J.Z., Tsao, H.S.J., Wu, Y.: Testing and quality assurance for component-
based software. Artech House (2003)

14. Szyperski, C.: Component software: Beyond object-oriented programming. Addi-
son Wesley (1998)

15. Rud, D., Schmietendorf, A., Dumke, R.: Performance modeling of WS-BPEL-based
web service compositions. In: Proc. of the IEEE Service Computing Workshops
(SCC 2006), Los Alamitos, CA, USA (September 2006) 140–147


