Prospects for and issues with mapping the
Object-Role Modeling language into DLR g

C. Maria Keet

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
keet@inf.unibz.it

Abstract. Object-Role modellers miss the advantages of automated
reasoning over their ORM conceptual models, which could be addressed
by DL reasoners. DLs are not considered user-friendly and could benefit
from the easy to use ORM diagrammatic and verbalization interfaces
and modelling methodologies. Relating the two would greatly expand
the scope for automated reasoning with additional scenarios to improve
quality of software systems. Given that none of the extant DL languages
are as expressive as ORM or its successor ORM2, the ‘best-fit” DLR jgy
was chosen to map the formal conceptual modelling language ORM2.
For the non-mappable constraints, pointers to other DL languages are
provided, which could serve as impetus for research into DL language
extensions or interoperability between existing DL languages.

1 Introduction

Description Logic (DL) languages have been shown useful for reasoning both
over conceptual models like ER and UML [2, 4, 12] and ontology languages such
as OWL-DL, OWL-Lite [27], its proposed successor OWL 1.1 [26] that is based
on the DL language SROZQ [22], and DL-Lite [7]. In particular, we are inter-
ested in the notion of using DLs as unifying paradigm for conceptual modelling
to enable automated reasoning over conceptual data models, which, be it due
to legacy, preference, or applicability, are made with different conceptual mod-
elling languages. A tool such as iCOM [15] already supports automated reasoning
over UML or EER diagrams, which may have cross-conceptual model assertions.
What is lacking, however, is a mapping from Object-Role Modeling (ORM) into
a DL. One may wonder: why yet another mapping? There are three main reasons
for this. First, ORM is a so-called “true” conceptual modelling language in the
sense that it is independent of the application scenario and it has been mapped
into both UML class diagrams and ER. That is, ORM and its successor ORM2
can be used in the conceptual analysis stage for database development, applica-
tion software development, requirements engineering, business rules, and other
areas, e.g., [3,5, 14, 17, 24]. Thus, if there is an ORM-to-DL mapping, the possible
applications for automated reasoning services can be greatly expanded. Second,
an important aspect of ORMing is to have great consideration for the user and
therefore ORM tools such as CaseTalk and NORMA are very user-friendly, so
that even domain experts unfamiliar with formalisms can start modelling after

half an hour training. ORM tools have both diagrammatic and textual interfaces
(the latter through so-called verbalizations, which are pseudo-natural language
renderings of the axioms), thereby accommodating different user preferences to-
ward modelling. Third, ORM is more expressive than either UML or EER and
is more expressive than the extant DLs as well. Most ORM constraints are sup-
ported in one DL language or another, but none supports all ORM constraints.
The proposed ORM-to-DLR jry mapping may provide some élan to examine DL
language extensions not only based on interest and particular user requests from
domain-modelling scenarios, but toward those (combinations of) extensions that
are already known to be useful, or to find an implementable solution where for
different (sections of) conceptual models, different languages can be used within
one application interface.

The remainder of this paper is organised as follows. Subsections 1.1 and 1.2
contain brief introductions to ORM and DLR, respectively. The main part is
devoted to the assessment of the mapping (Section 2). Finally, some reflections
and conclusions are included in Section 3.

1.1 Brief introduction to Object-Role Modeling (ORM)

The basic building blocks of the ORM language are object types, value types—at
the conceptual level no subjective distinction has to be made between classes and
attributes—relations, roles, and a plethora of constraints. A role is that what
the object or value type ‘plays’ in the relation. ORM supports n-ary relations,
where n is a finite integer > 1. An example of a fact type is shown in Fig.1, which
was made with the NORMA CASE tool [25]: the diagrammatic representation
of the relation —rectangle divided into three roles, one for each participating
object or value type— in the ORM model has 1) the name of the relation, which
is displayed in the properties box of the relation and is generated automatically
by the software (called “PatientAdmittedToHospitalAtDateDate” in the example), 2)
role names, such as “[hospitalAdmission]” for the the role that object type Patient
plays, and 3) a label attached to the relation, “... admitted to ... at date ...”, which
is used for the verbalization. ORM models can be mapped into, among others,
ER and UML diagrams, IDEFX logical models, SQL table definitions, C, Visual
Basic, and XML. More information on these mappings can be found in e.g. [17].
The ORM basics can be summarised as follows: an n-ary predicate (relation) R,
with n > 1, is composed of rq, ..., 7, roles where each role has one object type,
denoted with C4,...,C),, associated with it. Roles and predicates are globally
unique (although the ‘surface labeling’ for the modeler may suggest otherwise).

Halpin’s first order logic formalization [16] was taken as basis for the mapping
into DLR sy, because it was the first formal characterisation of ORM and is
relatively comprehensive in its treatment of constructors; other formalizations
of ORM [13, 20, 21] do not differ significantly from Halpin’s version. [20, 21] make
clearer distinctions between roles and predicates and the relation between them
and the naming and labeling of ORM elements, but they cover fewer constraints.

Hospital
(name)

[hospitalAdmission] =
Patient I pm———— N Coﬁstl§|ntD|S|3IayPDS|t|0n Top
(D) T 11 :\ Date ': DerivationFule
. admitted to ... at date .. DizplapOrientation Haorizontal
Patient is an entity type. DizplayR oleM ames Uszer Diefault
|sE sternal Falze

Reference Scheme: Patient has Patient_ID.
Reference Mode: ID. Hospital is an entity type. PatientAdmitted T oHozpitalAtD ateD ate
Reference Scheme: Hospital has Hospital_name. T
Reference Mode: name. Date is a value type. Portable data type: Temporal: Date & Time.
Patient admitted to Hospital at date Date.
It is possible that more than one Patient admitted to the same Hospital at date the same Date
and that the same Patient admitted to more than one Hospital at date the same Date
and that the same Patient admitted to the same Hospital at date more than one Date.
Each Patient, Hospital, Date combination occurs at most once in the population of Patient admitted to Hospital at date Date.

Fig. 1. Top left: an ORM2 model with two object types, a value type, a ternary relation,
label for the reading, and name of the first role in “[]”; top-right: properties box of the
fact type, displaying the name of the relation; bottom-half: verbalization of the fact
type, its object and value types, and uniqueness constraint (line above the rectangle).

1.2 DLs for conceptual modelling languages

DL languages are decidable fragments of first order logic and are used for logic-
based knowledge representation. Basic ingredients of all DL languages are con-
cepts and roles (an n-ary predicate where n > 2). In addition, a DL has several
constructors, giving greater or lesser expressivity and efficiency of automated
reasoning over a logical theory. The Terminological Box (TBox) contains axioms
at the concept-level and the ABox contains assertions about instances. A TBox
corresponds to a formal conceptual data model or can be used to represent an
ontology. More information and its usage can be found in [2].

For conceptual modelling, we introduce DLR first [8], and subsequently the
“itd” extension [4,9]. Take atomic relations (P) and atomic concepts A as the
basic elements of DLR. We then can construct arbitrary relations with arity > 2
and arbitrary concepts according to the following syntax:

R— T, P|$i/n:C)| -R|RiN R

C— T A|-C|CiNCy| ISR | < k[$I]R
1 denotes a component of a relation; if components are not named, then inte-
ger numbers between 1 and n,,.,; are used, where n is the arity of the relation.
k is a nonnegative integer for multiplicity (cardinality). Only relations of the
same arity can be combined to form expressions of type RiM Rg, and i < n,
i.e., the concepts and relations must be well-typed. The semantics of DLR is
specified through the usual notion of interpretation, where Z= (A%, -%), and the
interpretation function - assigns to each concept C a subset CT of AZ and to
each n-ary R a subset R? of (A%)", s.t. the conditions are satisfied following
Table 1. T1 denotes the interpretation domain, T,, for n > 1 denotes a subset
of the n-cartesian product of the domain, which covers all introduced n-ary re-
lations; hence “—” on relations means difference rather than the complement.
The ($i/n : C) denotes all tuples in T, that have an instance of C' as their

T Cah" AT C AT

Pt C Ty (—=C)F = AT\ C*
(-R)* =TL\R” (CinG)t =ctnct
(Ri MRy =RINRE ($i/n: C)F ={(di,...,dy) € TE|d; € C*}
T = AT (J[$i|R)T = {d € AT|3(d, ..., dn) € RT.d; = d}

(< k[$i]R)T = {d € AT||{(d1,...,dn) € RT|d; = d|} <k}
Table 1. Semantic rules for Dﬂ’R,ifd.

i-th component. DLR is a proper generalization of ALCQZ, where the usual
DL constructs can be re-expressed in DLR as: IP.C as I[$1](P M ($2/2 : C)),
IP~.C as 3[$2](P M ($1/2 : C)) and so forth (see [8] for details). The following
abbreviations can be used: Cy U Cy for —(—C; M —=Cy), C1 = Cy for =Cy U Co,
(> k[{)R) for ~(< k —1[i)R), 3[i]R for (> 1[{]R), V[{|R for —3[i]~R, R1 U Ry for
—(=R1 M =Ry), and (i : C) for (i/n : C) when n is clear from the context.

DLR sy supports identification assertions on a concept C, which has the
form (id C[i1] Ry, ..., [in]Rp), where each R; is a relation and each i; denotes one
component of R;. Then, if a is an instance of C' that is the 7;-th component of
a tuple t; of Rj, for j € {1,...,h}, and b is an instance of C that is the ¢;-th
component of a tuple s; of R;, for j € {1,...,h}, and for each j, t; agrees with
s; in all components different from i;, then a and b are the same object. DLR jgy
supports functional dependency assertions on a relation R for operations, which
has the form (fd R iy, ...,i;, — j), where h > 2, and 4y, ..., 45, j denote compo-
nents of R.

Other relevant DL languages There are three other DLR flavours. DLR,,
supports fixpoint constructs for recursive structures over single-inheritance trees
of a role [10] and thereby can represent acyclicity, transitivity, asymmetry, and
(ir)reflexivity. DLRreg adds support for regular expressions over roles (includ-
ing the role composition operator and reflexive transitive closure) [11], and
DLRys for temporal EER [1]. It has not been investigated if combining DLR j¢y,
DL‘Rreg, and DLR,, remains within EXPTIME or leads to undecidability. In the
other direction toward expressive DL-based ontology languages, OWL and draft
OWL 1.1 [26] are based on SHOZN (for OWL-DL), SHZF (OWL-Lite), and
SROIQ, respectively. SROZQ supports local (ir)reflexivity, (a)symmetry, and
transitive roles [22], but does not have constructors for acyclic roles, datatypes,
id, and has no ‘access’ to elements of a DL-role.

2 Mapping issues

We now proceed to the mapping, which considers all components and constraints
of ORM2, except deontic constraints (compared to ORM in [16], ORM2 also sup-
ports exclusive total covering of subtypes, role values, and deontic constraints).
As basis, we used the ORM formalisation in first order logic by [16]. Graphical
notation of ORM constrains and more explanation is deferred to [23] due to

space limitations; e.g., the ternary relation in Fig.1 is reified in DLRj¢y as:

PatientAdmittedToHospitalAtDateDate T 3[1]rq M (< 1[1]rq) N V[1](r1 = (2 :Patient
NA 3[1]re M (< 1[1)re) MV[1])(re = (2 : Hospital)M J[1]rs (< 1[1]rs) OV[1](rs =
(2 : Date)) and the identification of Hospital either as (id Hospital [1]Hospital-
HasHospital_-name) or through a 1:1 relation (abbreviated as HHH-n) HHH.n C (1:
Hospital) M (2: Hospital_-name), Hospital C (< 1 [1]HHH_n), and Hospital_name C (<
1 [2]HHH_n) with mandatory Hospital C 3 [1] HHH_n. The interesting problematic
constraints are addressed in this section. The main problems concern ORM ring
constraints, which are DL-role properties (Fig.2), and constraints with patterns
of the type “constraint x over kK ORM-roles” over an n-ary relation where k < n.

A. ORM Ring constraints/DL-role properties B. Subset over k roles

Fig. 2. A: ring constraints (after [17]); B: example of constraint over k& ORM-roles.

Intransitivity over an ORM ring constraint is, obviously, supported in DLR j¢y,
but not transitivity, for which we need either DLR,, or DLRreg. Antisymmetry
in ORM is reflezive antisymmetry (Vz,y(R(z,y) A R(y,z) — x = y)), which
no DL language supports. (Observe from Fig.2 that SROZQ’s irreflexive an-
tisymmetry is asymmetry.) The irreflexive ring constraint on a binary relation
(Vo= (R(x,x))) is an open issue for DLR gy, but already possible with DLR,,
thanks to least/greatest fixpoint construct and in SROZQ with Self. The sym-
metric (Vz,y(R(z,y) — R(y,x))) and asymmetric (Vz,y(R(z,y) — - R(y,z)))
ring constraints are not supported either, but both are supported in SROZQ and
the latter is supported in DLR,, through the stronger notion of well-foundedness.
The last ‘basic’ ring constraint, acyclicity (“R is acyclic iff Va—(x has path to
x)” in [17]), probably can be added to DLRfy with the repeat PDL (tran-
sitive closure of roles, R, i.e., |, -, (R%)") using the least fixpoint construct
pX.C (i.e., IR*.C = pX(C U3IR.X) [8,10]). ORM also permits combinations
of ring constraints: intersecting acyclicity and intransitivity, antisymmetry with
intransitivity, intransitive symmetry, and irreflexive symmetry.

The second main problem concerns constraints over k roles in an n-ary rela-
tion, which are: Subset over k roles in two n-ary relations (depicted in Fig.2-B, A
below with abbreviation that underlined variable stands for a sequence x1, ..., x,
in an n-ary relation [23]), k < n, where the corresponding roles must match in
domain, Set-equality over k roles (B), Role exclusion over k roles (C) in two n-
ary relations R; and R;, and Multi-role frequency spanning i roles of an n-ary

relation, ¢ > 2, and ¢ < n (TFC5 in [16]), with formalisms as follows [16].

A Vo, 2,3y (Rj(y) Avr = yj, Ao Ay = y5,) — 3z (Ri(z) Ny =
Ziy N .. NTp = 2;,)) // Subset over k roles

B. Voy,..2,(3 y (Rj(y) Ae1 = yju Ao A = y5,) = 3 2 (Ri(z) Aoy =
Zig N Ny = 25))) // Set-equality over k roles

C. Var,..,n~(Jy(Ri(y Ax1 = Yy Ao Nz = w3,) N3 2 (Rj(2) ANy =
Zjy N Ny = Z]n)) // Role exclusion over k roles

The problem is that these constraints lead to undecidability if those k roles do
not exactly make up the primary key (spanning uniqueness), as in a relational
table (A)-(C) correspond to arbitrary projections. If one does not consider an
additional key constraint, a partial mapping of (4)-(C) can be made on a ORM
role-by-role basis (DL-role element by DL-role element). This can be reduced
to a minor issue for Multi-role frequency (D) spanning roles r;, r; in an n-ary
relation, n > 2, and 1 < a < b and subsequently assesses it in combination with
permissible uniqueness constraints.

D. Vz,y(3z1 R(x,y,21) — F22, ..., 2a(21 # 22 N oo A 2g—1 # 2a A R(2,y,22) A oo A
R(z,y,24))) AVZ, Y, 21, ooy 2b41 (R(Z, Yy, 21) A oo AR(2,y, 2p41) — 21 = 22V 21 =
23V ..V 2p = 2pt1) // Multi-role frequency

Given that an elementary fact type must have uniqueness over n-1 roles, then
either 1) r; or r; is part of a single role uniqueness constraint but not both, 2)
r; or 1; is part of a multi-role uniqueness constraint but not both, 3) multi-role
uniqueness includes r;, 7;, and > 1 other role in the relation, or 4) the relation
is not an elementary fact type and ought to be remodelled to be elementary.
Option 1 implies that either i) a = 1 or ii) b = 1, and then the constraint can be
reduced to 1:n and m:n uniqueness, respectively; options 2-4, however, reduce
to the same problem of undecidability as with (C) (see [23]).

Last, a minor mapping issue is the Role value constraint, which is new in
ORM2: object type C; only participates in role r; if an instance has any of the
values {v;,...v;}, which is a subset of the set of values C; can have. With a
binary relation, then Vz, y(z € {vi,...,vx} — (R(z,y) — Ci(z) A C;(y))) holds.
A ‘candidate approach’ is to try to use DLR sy through breaking down the
constraint by creating a new subtype C! for the set of values to which the role
is constrained, where the value can be any of {v;,...vx}, and let C! play role
ri, s.t. C/ C C; and C! C V[r;]R and then use named value types for the value
constraints on C}. Alternatively, remodelling with role values might be an option,
but, at present, this is supported only in DL-Lite 4 [6].

3 Discussion and Conclusions

As has become clear from the mapping, the ORM ring constraints/DL-role prop-
erties are most problematic for DLR jry, but most of them can be met by DLR,,
or SROZQ. On the other hand, DLR,, and SROIQ do not have a construc-
tor for non-unary primary keys, and SROZQ neither supports n-ary relations
where n > 2 nor provides a means to ‘access’ an ORM-role/DL-role element. For
these reasons, DLR gy was chosen. Another advantage of having taken DLR jry

is that the syntax of UML class diagrams have been mapped into it [4], thereby
augmenting the current informal mapping in [17] and moving closer to interop-
erability between ORM and UML through a formal correspondence between the
two conceptual modelling languages with DLR as unifying paradigm.

Looking toward implementations, EER and UML were mapped to DLR and
DLR g earlier and implemented in the iCOM tool [15], where one can use tools
like Racer, Pellet, and FaCT. Hence, it uses a SHZQ-based reasoner through
an additional transformation step; note that there are differences between theo-
retically computationally feasible and actually implemented reasoning services.
Nevertheless, reasoning over less complex ORM-models is already a considerable
advantage over no automated reasoning services at all. Moreover, if iCOM adds
a module for ORM support, the modeller would be able to describe already sup-
ported inter-model assertions between EER, UML, and, now, ORM models and
reason over any combination. Further down the line, a software developer will
benefit from a better, consistent and known to be satisfiable, conceptual model
and with e.g. NORMA would be able take advantage of the already implemented
features of automated generation of relational databases and of software code.

Concluding, most —and the most often used— ORM2 elements and constraints
can be mapped into DLRry. This already could be used for a wide range of
ORM-models that do not use its full expressive capabilities; e.g., to carry out
model checking, compute derived relations, and classification. Conversely, when
the present mapping is implemented, DLs will have a sophisticated user interface
enabling domain experts to take part in representing their Universe of Discourse.
Several approaches are possible to narrow the gap between ORM2 and DL lan-
guages, where a “DLR ul'fd” or SROZQ with n-ary relations seem close by. But
to take advantage of narrowing the gap, tools for automated reasoning services
will have to expand their features list as well. Alternatively, if this leads to un-
decidability or intractability, one could investigate modularization where a large
conceptual model can be split-up into sections (ideally, hidden from the mod-
eller) and perform the reasoning on the separate subsections. We are currently
working on formal proofs of the ‘mismatches’ between ORM and the DLRs.

References

1. Artale, A., Franconi, E., Wolter, F., Zakharyaschev, M. A temporal description
logic for reasoning about conceptual schemas and queries. In: Proc. of JELIA 02, S.
Flesca, S. Greco, N. Leone, G. Ianni (Eds.), Springer, 2002, LNAI 2424, 98-110.

2. Baader, F. Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds).
Description Logics Handbook, Cambridge University Press, 2003.

3. Balsters, H., Carver, A., Halpin, T., Morgan, T. Modeling dynamic rules in ORM.
2nd International Workshop on Object-Role Modelling (ORM 2006). LNCS 4278.
Berlin: Springer-Verlag, 2006, 1201-1210.

4. Berardi, D., Calvanese, D., De Giacomo, G. Reasoning on UML class diagrams.
Artificial Intelligence, 2005, 168(1-2):70-118.

5. Bollen, P. Using fact-orientation for instructional design. 2nd International Work-
shop on Object-Role Modelling (ORM 2006). LNCS 4278. Berlin: Springer-Verlag,
2006, 1231-1241.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati.
Linking data to ontologies: The description logic DL-Lite A. In Proc. of the 2nd
Workshop on OWL: Experiences and Directions (OWLED 2006), 2006.

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R. DL-Lite:
Tractable description logics for ontologies. In: Proc. of AAAI 2005, 602-607.

8. Calvanese, D., De Giacomo, G. Expressive description logics. In: The Description
Logic Handbook: Theory, Implementation and Applications, Baader, F., Calvanese,
D., McGuinness, D., Nardi, D., Patel-Schneider, P. (Eds). Cambridge University
Press, 2003. 178-218.

9. Calvanese, D., De Giacomo, G., Lenzerini, M. Identification constraints and func-
tional dependencies in Description Logics. In Proc. of IJCAI 2001, 2001, 155-160.
10. Calvanese, D., De Giacomo, G., Lenzerini, M. Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In: Proc. of the 16th Int.

Joint Conf. on Artificial Intelligence (IJCAI’99), 84-89, 1999.

11. Calvanese, C., De Giacomo, G., Lenzerini, M. On the decidability of query con-
tainment under constraints. In: Proc. of PODS’98, 149-158, 1998.

12. Calvanese, D., Lenzerini, M., Nardi, D. (1998) Description logics for conceptual
data modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems. Kluwer, Amsterdam.

13. Campbell, L.J., Halpin, T.A. and Proper, H.A. Conceptual Schemas with Ab-
stractions: Making flat conceptual schemas more comprehensible. Data & Knowledge
Engineering, 1996, 20(1): 39-85.

14. Evans, K. Requirements engineering with ORM. Intl. Workshop on Object-Role
Modeling (ORM’05). LNCS 3762. Berlin: Springer-Verlag, 2005. 646-655.

15. Franconi, F., Ng, G. The ICOM Tool for Intelligent Conceptual Modelling. 7th
Workshop on Knowledge Representation meets Databases (KRDB’00), Berlin, 2000.

16. Halpin, T.A. A logical analysis of information systems: static aspects of the data-
oriented perspective. PhD Thesis, University of Queensland, Australia. 1989.

17. Halpin, T. Information Modeling and Relational Databases. San Francisco: Morgan
Kaufmann Publishers, 2001.

18. Halpin, T. Objectification of relationships. 10th Workshop on Ezxploring Modeling
Methods in Systems Analysis and Design (EMMSAD’05). Porto, Portugal, 2005.

19. Halpin, T. ORM2. International Workshop on Object-Role Modeling (ORM’05).
LNCS 3762. Berlin: Springer-Verlag, 2005. 676-687.

20. Hofstede, A.H.M. ter, Proper, H.A., Weide, Th.P. van der. Formal definition of
a conceptual language for the description and manipulation of information models.
Information Systems, 1993, 18(7):489-523.

21. Hofstede, A.H.M. ter, Proper, H.A.. How to Formalize It? Formalization Principles
for Information Systems Development Methods. Information and Software Technol-
ogy, 1998, (40(10): 519-540.

22. Horrocks, 1., Kutz, O., Sattler, U. The Even More Irresistible SROZQ. In: Pro-
ceedings of KR-2006, Lake District, UK, 2006.

23. Keet, C.M. Mapping the Object-Role Modeling language ORM2 into Description
Logic language DLR jfy- Technical Report KRDB07-2, Faculty of Computer Science,
Free University of Bozen-Bolzano, Italy. 15 February 2007. arXiv:cs.LO/0702089v1.

24. Pepels, B., Plasmeijer, R. Generating applications from Object Role Models. Inter-
national Workshop on Object-Role Modeling (ORM’05). LNCS 3762. Berlin: Springer-
Verlag, 2005, 656-665.

25. NORMA. http://sourceforge.net/projects/orm/.

26. OWL 1.1 http://owll_1.cs.manchester.ac.uk/owl_specification.html.

27. OWL. http://www.w3.org/TR/2004/REC-owl-semantics-20040210/syntax.html.

