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Abstract. Description Logics (DLs) have been widely used in the last years as
formal language for specifying ontologies. In several contexts, as ontology-based
data integration, it may frequently happen that data contradict the intensional
knowledge provided by the ontology through which they are accessed, which
therefore may result inconsistent. In this paper, we analyze the problem of con-
sistent query answering (CQA) over DL ontologies, i.e., the problem of provid-
ing meaningful answers to queries posed over inconsistent ontologies. We pro-
vide inconsistency-tolerant semantics for DLs, and study the computational com-
plexity of CQA under such semantics for the case of conjunctive queries posed
over ontologies specified in DL-LiteF , a DL specifically tailored to deal with
large amounts of data. We show that the above problem is coNP-complete w.r.t.
data complexity. We then study the problem of consistent instance checking for
DL-LiteF ontologies, i.e., the instance checking problem considered under our
inconsistency-tolerant semantics, and we show that such problem is in PTIME

w.r.t. data complexity.

1 Introduction

Description Logics (DLs) have been widely used in the last years as formal language
for specifying ontologies, for their ability of combining modelling power and decidabil-
ity of reasoning [10]. Recently, besides expressive DLs, which suffer from inherently
worst-case exponential time behavior of reasoning [3], also DLs that allow for tractable
reasoning have been proposed for ontology modelling [2, 7]. Such DLs are particularly
suited for management of large amounts of data (e.g., from thousands to millions of
instances). Then, a challenging use of them is represented by ontology-based data in-
tegration, an issue that has recently received a growing attention in the Semantic Web
community [15]. Indeed, integrating data in the Semantic Web context mainly means
accessing, collecting, and exchanging data distributed over the web through mediated
schemas given in terms of ontologies (i.e., DL TBoxes).

Due to the dynamic nature of the setting described above, it may frequently happen
that data contradict the intensional knowledge provided by the ontology through which
they are accessed, especially in those cases in which the ontology provides a conceptual
view of a number of autonomous data sources, heterogeneous and widely distributed.

? The present work is an extended abstract of [12].



In the above situation, ontologies may result inconsistent, and reasoning over them ac-
cording to classical of DLs may become meaningless, since whatever conclusion may
be derived from an inconsistent theory. Then, besides handling inconsistency at the ter-
minological/schema level, which has been a subject recently investigated for ontology-
based applications [14, 11], the need arises in this context to deal with inconsistency at
the instance/data level. In the present paper we study this problem.

The approach commonly adopted to solve data inconsistency is through data clean-
ing [5]. This approach is procedural, and is based on domain-specific transformation
mechanisms applied to the data. One of its problems is incomplete information on how
certain conflicts should be resolved. This typically happens in systems which are not
tailored for business logic support at the enterprise level, like systems for informa-
tion integration over the web. In the last years, an alternative declarative approach has
been investigated in the area of consistent query answering (CQA) [1, 4, 6]. Such an
approach relies on the notion of repair for a database instance that may violate integrity
constraints (ICs) specified over its schema. Roughly speaking, a repair is a new data-
base instance which satisfies the constraints in the schema and minimally differs from
the original one. In general multiple repairs are possible. Then, CQA amounts to com-
pute those answers to a user query that are in the evaluation of the query over each
repair. It is well-known [6, 9] that CQA of Conjunctive Queries (CQs) expressed over
database schemas with (even simple forms of) ICs is a coNP-complete problem in data
complexity, i.e., the complexity measured only with respect to the size of the database
instance.

In this paper, we study CQA over DL ontologies. In particular, we provide a new se-
mantic characterization for DLs, based on the notion of repair. We focus on DL-LiteF ,
a DL of the DL-Lite family [7, 8]. The DL-Lite family comprises a series of DLs that
are specifically tailored to deal with large amounts of data and reasoning over queries.
While the expressive power of the DLs in the DL-Lite family is carefully controlled to
maintain low the complexity of reasoning, such DLs are expressive enough to capture
the main notions of both ontologies, and conceptual modelling formalisms used in data-
bases and software engineering (i.e., ER and UML class diagrams). We study CQA for
the class of union of conjunctive queries (UCQs), which is the most expressive class of
queries for which decidability of query answering has been proved in DLs [13]. Notably,
standard query answering of UCQs over DL-LiteF can be solved by means of evalua-
tion of suitable first-order logic queries over the underlying DL-Lite ABox considered
as a flat relational database [7, 8]. This allows for using well established Relational Data
Base Management System technology for reasoning over queries in such DLs.

The contributions of the present paper can then be summarized as follows.

– We provide an inconsistency-tolerant semantics for DLs, which relies on the notion
of repair of a DL ontology, and allows for meaningful reasoning in the presence of
inconsistency (Section 3);

– We study computational complexity of CQA for conjunctive queries expressed over
DL-LiteF ontologies, and show that such a problem is coNP-complete w.r.t. data
complexity (Section 4);

– Towards identification of tractable cases of CQA for DL-Lite, we study consistent
instance checking over DL-LiteF ontologies, i.e., the instance checking problem



under our inconsistency-tolerant semantics. and show that such a problem is in
PTIME w.r.t. data complexity (Section 5).

2 The Description Logic DL-LiteF

In this section we present the syntax and the semantics of DL-LiteF [7]. DL-LiteF
concepts and roles are defined as follows:

B −→ A | ∃R R −→ P | P− C −→ B | ¬B

where A denotes an atomic concept, P an atomic role, and P− the inverse of the atomic
role P . B denotes a basic concept, i.e., a concept that can be either an atomic concept or
a concept of the form ∃R, and R denotes a basic role, i.e., a role that is either an atomic
role or the inverse of an atomic role. Finally, C denotes a (general) concept, which can
be a basic concept or its negation. Let B1 and B2 be basic concepts, we call positive
inclusions (PIs) assertions of the form B1 v B2, whereas we call negative inclusions
(NIs) assertions of the form B1 v ¬B2.

A DL knowledge base (KB) K is a pair 〈T ,A〉 which represents the domain of
interest in terms of two parts, a TBox T , specifying the intensional knowledge, and an
ABoxA, specifying extensional knowledge. A DL-LiteF TBox is formed by: (i) a finite
set of concept inclusion assertions, i.e., expressions of the form B v C, meaning that
all instances of the basic concept B are also instances of the generic concept C, and (ii)
a finite set of functionality assertions on roles or on their inverses of the form (funct P )
or (funct P−), respectively, meaning that a relation P (resp. P−) is functional. DL-
LiteF ABoxes are formed by a finite set of membership assertions on atomic concepts
and atomic roles, of the form A(a) and P (a, b), stating respectively that the object
denoted by the constant a is an instance of the atomic concept A and that the pair of
objects denoted by the pair of constants (a, b) is an instance of the role P .

The semantics of a DL is given in terms of interpretations, where an interpretation
I = (∆I , ·I) consists of a non-empty interpretation domain ∆I and an interpretation
function ·I that assigns to each concept C a subset CI of ∆I , and to each role R a
binary relation RI over ∆I . In particular we have:

AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}

(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬B)I = ∆I \BI

Furthermore, an interpretation I is a model of a concept inclusion assertion B v C,
if BI ⊆ CI , and is I is a model of an assertion (funct P ) if (o, o1) ∈ P I and
(o, o2) ∈ P I implies o1 = o2. Analogously for (funct P−).

To specify the semantics of membership assertions, we extend the interpretation
function to constants, by assigning to each constant a a distinct object aI ∈ ∆I . Note
that this implies that we enforce the unique name assumption on constants [3]. An
interpretation I is a model of a membership assertion A(a), (resp., P (a, b)) if aI ∈ AI

(resp., (aI , bI) ∈ P I).
Given an (inclusion, functionality, or membership) assertion α, and an interpretation

I, we denote by I |= α the fact that I is a model of α, and also say that α is satisfied by



I. Given a (finite) set of assertions κ, we denote by I |= κ the fact that I is a model of
every assertion in κ. A model of a DL-Lite KB K = 〈T ,A〉 is an interpretation I such
that I |= T and I |= A. With a little abuse of notation, we also write I |= K. A KB is
satisfiable if it has at least one model, otherwise it is unsatisfiable.

Example 1. Consider the atomic concepts Cat , Dog , Pet and Person and the roles
hasOwner and feeds . The following TBox T is an example of DL-LiteF TBox:

Dog v Pet ∃hasOwner− v Person
Cat v Pet Cat v ¬Dog
Pet v ∃hasOwner (funct hasOwner).

In the TBox above we say that cats and dogs are pets, every pet has an owner, a cat
is not a dog, the owner of an animal is a person, and that a pet cannot have more then
one owner. Finally, we show a simple DL-Lite ABox A: Person(John), Dog(Bruto),
hasOwner(Tom, Leo).

A union of conjunctive queries (UCQ) q over a DL-LiteF KB K is an expression of
the form

q(x) ←
∨

i=1,...,n

∃yi.conj i(x,yi), (1)

where each conj i(x, yi) is a conjunction of atoms and equalities, with free variables x
and yi. Variables in x are called distinguished, and the size of x is called the arity of q.
The right-hand side of the Formula (1) is called the body of q. Atoms in each conj i are
of the form A(z) or P (z1, z2), where A and P are respectively an atomic concept and an
atomic role ofK, and z, z1, z2 are either constants inK or variables. A Boolean UCQ is
a query with arity 0, written simply as a sentence of the form

∨
i=1,...,n ∃yi.conj i(yi).

A UCQ with a single conjunction of atoms, i.e., with n = 1 in the Formula (1), is called
conjunctive query (CQ).

Let q be a Boolean UCQ over a DL-LiteF KBK. We say that q is entailed byK, and
write K |= q, if, for every model M of K, M |= q, where |= is the standard evaluation
of first-order sentences in an interpretation. The instance checking problem corresponds
to entailment of a Boolean ground CQ consisting of a single atom, i.e., a membership
assertion of the form A(a) or P (a, b). Let q be a non-Boolean UCQ of arity n over
K, and let t be an n-tuple of constants. We say that t is a certain answer to q in K
if K |= q(t), where q(t) is the sentence obtained form the body of q by replacing its
distinguished variables by constants in t. We denote by Ans(q,K) the set of certain
answers to q in K.

Example 2. Let us consider the DL KB K = 〈T ,A〉 where the TBox T and the
ABox A are as defined in Example 1. The following query q is a CQ over K:
q(x) ← Person(x). It is easy to see that the set of certain answers to q in K is
Ans(q,K) = {John, Leo} where John can be directly derived from the membership
assertions of A, whereas Leo is implied by the inclusion assertion ∃hasOwner− v
Person and by the role membership assertion hasOwner(Tom, Leo).



3 Inconsistency-tolerant Semantics

Let us now consider the case in which a DL KB K is unsatisfiable, i.e., K does not have
any model. As already said in the introduction, reasoning over such a K is meaning-
less, since whatever consequence can be deduced from K. In this section, we provide a
new semantics for DL KB that is inconsistency-tolerant, i.e., it allows for “meaningful”
reasoning over KBs that are unsatisfiable according to the classical first-order based
semantics, as that considered in Section 2 for DL-LiteF . In particular, our semantics
is tolerant to the inconsistency that arises in a DL knowledge base K = 〈T ,A〉 in
which a satisfiable TBox T may be contradicted by the extensional assertions in the
ABox A, thus resulting in possibly unsatisfiable KBs. This situation frequently hap-
pens in those systems that provide access to data (possibly integrated from autonomous
sources) through DL ontologies, as in Semantic Web applications.

Formally, let I be an interpretation and let A be an ABox. We denote by Sat(I,A)
the set of membership assertions from A that are satisfied in I, i.e., Sat(I,A) = {α |
α ∈ A and I |= α}.

Definition 1. Let K = 〈T ,A〉 be a DL KB and R an interpretation. We say that R is
a repair of K if: (i) R is a model for T ; (ii) there exists no interpretation R′ such that
R′ is a model for T and Sat(R′,A) ⊃ Sat(R,A).

In the following, we denote by Rep(K) the set of repairs of K. It is easy to see that
when a KB K is satisfiable, repairs of K coincide with models of K. Also, when the
TBox of K is satisfiable, K has always at least one repair.

Following the line of research of CQA [1, 4, 6], in our semantics, intensional knowl-
edge specified by the TBox of a knowledge base is considered stronger than data, i.e.,
the extensional knowledge provided by the ABox. Indeed, a repair R of a knowledge
base K = 〈T ,A〉 is an interpretation that needs to satisfy T and that at the same time
satisfies a maximal set Am of the membership assertions in A, i.e., R is a model of the
knowledge base 〈T ,Am〉.

Let q be Boolean UCQ over a DL-Lite KB K, we say that q is consistently entailed
by K, and write K |=cons q if, for every R ∈ Rep(K), R |= q. Then, given a non-
Boolean UCQ q of arity n over K, we say that an n-tuple t of constants is a consistent
answer to q in K if K |=cons q(t). We denote by ConsAns(q,K) the set of consistent
answers to q in K. Furthermore, the consistent instance checking problem corresponds
to consistent entailment of a membership assertion.

We finally notice that, when a DL knowledge base K = 〈T ,A〉 is a DL-Lite KB,
K may result unsatisfiable only if the ABox A contradicts the intensional knowledge
of the TBox T . Indeed, it is possible to show that a DL-Lite TBox admits always at
least one model. As a consequence, we have that our inconsistency-tolerant semantics
ensures that every DL-Lite KB has always at least one repair.

Example 3. Let us consider again the DL-LiteF TBox T described in Example 1
and the ABox A′ containing the facts Person(John), hasOwner(Tom, John), and
hasOwner(Tom, Leo). It is easy to see that the knowledge base K′ = 〈T ,A′〉 is un-
satisfiable, since the functionality assertion on hasOwner is violated. Then, each repair
R of K′ is such that R |= T , and either Sat(R,A′) = {hasOwner(Tom, John)},



or Sat(R,A′) = {hasOwner(Tom, Leo)}. Let us now consider the Boolean CQ
q′ = ∃y.hasOwner(Tom, y) over K′, asking whether Tom is owned by someone.
It is easy to see that q is consistently entailed by K′. However, for the query q′′ =
{x | hasOwner(Tom, x) }, we have that ConsAns(q′′,K′) = ∅. In words, we cannot
establish who is the owner of Tom, but we can state that Tom has an owner.

4 Consistent Query Answering

In this section we consider the problem of CQA for CQs over DL-LiteF KBs and show
that such a problem is coNP-complete w.r.t. data complexity, i.e., the complexity mea-
sured w.r.t. the size of the ABox only.

Theorem 1. Let K be a DL-LiteF KB, q a CQ of arity n over K, and t an n-tuple
of constants. Then, the problem of establishing whether t ∈ ConsAns(q,K) is coNP-
complete with respect to data complexity.

Proof (sketch) CoNP hardness can be proved by a reduction from the 3-colorability
problem, whereas membership in coNP follows from the results in [9].

The above result tells us that CQA over DL-LiteF KBs is in general intractable
w.r.t. data complexity, differently from the problem of (standard) query answering over
DL-LiteF KBs [7]. Notice that tractability of query answering (and of classical DL
reasoning services) is a crucial property for DLs of the DL-Lite family which makes
them particularly suited for dealing with big amounts of data. Then, to preserve this
nice behavior, we aim at identifying interesting cases in which CQA is tractable. As
we will show in the next section, consistent instance checking is in fact tractable over
DL-LiteF KBs.

5 Consistent Instance Checking

We now address consistent instance checking over DL-LiteF KBs, and show that such
a problem is in PTIME w.r.t. data complexity. To this aim, we define a polynomial time
algorithm that takes as input a membership assertion α and a DL-LiteF KBK = 〈T ,A〉
and returns true if α is consistently entailed by K, false otherwise.

In the following we only sketch our algorithm and refer the reader to [12] for a
more detailed description of it. We assume that input KB K is closed w.r.t. logical
implication of NIs by PIs and NIs specified in the TBox T , i.e., we assume that all
NIs logically implied by T are explicitly asserted in T . Furthermore, we assume that
the ABox A does not contain any membership assertion β such that the KB 〈T , {β}〉
is inconsistent, i.e., A does not contain membership assertions that not belong to any
repair of K. Notice that each DL-LiteF KB can be transformed in a KB of the above
form through simple pre-processing steps [12].

Our technique can be summarized in the two steps described below. In the first step,
we only take care of the PIs in K by means of the algorithm PerfectRef presented
in [7]. Informally, such an algorithm takes a DL-LiteF TBox T and a UCQ q as input,



and reformulates q according to the PIs in T , used as rewriting rules, iteratively applied
from right to left to the atoms occurring in q, thus producing a new UCQ qr over K. In
words, PerfectRef encodes in qr the intensional knowledge of T in such a way that the
answers to q over K correspond to the answers to qr over the DL-LiteF KB K− that is
obtained from K by removing all PIs in T . We execute the algorithm PerfectRef with
the membership assertion α and the TBox T as input. Due to the particular form of the
input query, we obtain as result a Boolean union of atoms qr over K, i.e., qr is a CQ
of the form

∨
i=1,...,n ∃yi.conj i(yi), in which every conj i consists of a single atom,

denoted in the following by atomi.
In the second step we take into account only NIs and functionalities in T . To this

aim, we use the algorithm ConsAnswer which takes as input the Boolean union of
atoms qr and the DL-LiteF KB K−, and returns true if K− |=cons qr, false other-
wise. To explain the algorithm ConsAnswer more in detail, we need two prelimi-
nary definitions. A K-opponent to a membership assertion α is a membership asser-
tion β ∈ A that together with α contradicts a functionality or a NI assertion of T ,
i.e., the KB 〈T , {α, β}〉 is unsatisfiable. Then, let q be a Boolean union of atoms∨

i=1,...,n ∃yi.atomi(yi). A membership assertion γ is an image of q if there is an
i ∈ {1, . . . , n} such that there exists a substitution σ from the variables in atomi(yi)
to constants in γ such that σ(atomi(yi)) = γ. Roughly speaking, an image of q is a
membership assertion γ such that q is entailed by the knowledge base constituted only
by the assertion γ. With these notions in place, we can intuitively describe the behavior
of ConsAnswer. The algorithm verifies whether there exists an image γ of the input
query qr that belongs to A such that either (a) γ has no K-opponents or (b) every K-
opponent β to γ is such that β has at least one K-opponent β′ which is not K-opponent
to γ and is in turn K-opponent to a different image γ′. If the condition (a) succeeds,
then the query qr is consistently entailed byK since every repair ofK satisfies the same
image of qr. As for condition (b), it ensures that if a repairR does not satisfy the image
γ, since it satisfies the K-opponent β to γ, then R satisfies another image γ′, whose
satisfaction is guaranteed by the fact that R does not satisfy β′.

It is possible to prove that the procedure described above is sound and complete
w.r.t. finding a solution to the consistent instance checking problem, and that it runs
in time polynomial in the size of the ABox A. Therefore, we can give the following
notable result.

Theorem 2. LetK be a DL-LiteF KB and α a membership assertion. Then, the problem
of establishing whether K |=cons α is in PTIME with respect to data complexity.

6 Conclusions

The work in the present paper can be extended in several directions. We are currently
developing a completely intensional technique for consistent instance checking, with
the aim of reducing this problem to query evaluation over a database instance repre-
senting the ABox of the knowledge base. Such a technique would allow us to maintain
reasoning at the intensional level, as it can be already done for standard query answering
over DL-LiteF KBs. We are also working in the direction of identifying other tractable



cases of consistent query answering over DL-LiteF KBs. In this respect, we point out
that results of the present paper immediately imply that consistent query answering of
Boolean ground unions of conjunctive queries is tractable. The same analysis is being
carried out over other DLs that allow for tractable reasoning [2]. Finally, we are also
studying the problem of consistent query answering over more expressive DLs.
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