
Modularity in DL-Lite

Roman Kontchakov1, Frank Wolter2, and Michael Zakharyaschev1

1 School of Computer Science and Information Systems, Birkbeck College, London,
{roman,michael}@dcs.bbk.ac.uk

2 Department of Computer Science, University of Liverpool, U.K.,
frank@csc.liv.ac.uk

Abstract. We develop a formal framework for modular ontologies by
analysing four notions of conservative extensions and their applications in
refining, re-using, merging, and segmenting ontologies. For two members
of the DL-Lite family of description logics, we prove important meta-
properties of these notions such as robustness under joins, vocabulary
extensions, and iterated import of ontologies. The computational com-
plexity of the corresponding reasoning tasks is investigated.

1 Introduction

In computer science and related areas, ontologies are used to define the meaning
of vocabularies designed to speak about some domains of interest. In ontology
languages based on description logics (DLs), such an ontology typically consists
of a TBox stating which inclusions hold between complex concepts built over the
vocabulary. An increasingly important application of ontologies is management
of large amounts of data, where the ontology is used to provide flexible and
efficient access to repositories consisting of data sets of instances of concepts
and relations of the vocabulary. In DLs, such repositories are typically modelled
as ABoxes.

Developing ontologies for this and other purposes is a difficult task. When
dealing with DLs, the ontology designer is supported by efficient reasoning tools
for classification, instance checking and some other reasoning problems. However,
it is generally recognised that this support is not sufficient when ontologies are
not developed as ‘monolithic entities’ but rather result from importing, merging,
combining, re-using, refining and extending existing ontologies. In all those cases,
reasoning support for analysing the impact of the respective operation on the
ontology would be highly desirable. Typical reasoning tasks in this case may
include the following:

– If we add some new concepts, relations and axioms to our ontology, can
new assertions over the vocabulary of the original TBox be derived from the
extended TBox?

– When importing an ontology, do we change the meaning of its vocabulary?
– When looking for a definition of some concepts, what part of the existing

ontology defining them should be used?

Recently, the notion of conservative extension has been identified as fundamental
for dealing with problems of this kind [1–5]. Parameterising this notion by a lan-
guage L, we say that a TBox T is a conservative extension of a TBox T ′ w.r.t. L
if T |= α implies T ′ |= α, for every α from L which only uses the vocabulary of
T ′. In these papers, the main emphasis has been on languages L consisting of
TBox axioms over some description logic (such as ALC) and the much stronger
notion of model conservativity which corresponds to the assumption that α can
be taken from any language with standard Tarski semantics (e.g., second-order
logic). Considering TBox axioms is motivated by the fact that ontologies are
developed and represented via such axioms. They are the syntactic objects an
ontology designer is working with, and a possibility to derive some new axioms
appears therefore to be a good indicator as to whether the meaning of symbols
has changed in any relevant sense. The notion of model conservativity is moti-
vated by its flexibility: whatever language L is chosen, no new consequences in
L will be derivable [5, 4]. A third option (which lies between the two above as
far as expressivity is concerned) is as follows: if the main application of the on-
tologies T and T ′ is to provide a vocabulary and its meaning for posing queries
to ABoxes, then it appears to be of interest to regard T as a conservative ex-
tension of T ′ if, for every ABox A and every (say, positive existential) query q
in the vocabulary of T ′, any answer to q given by (T ,A) is given by (T ′,A)
as well. It can thus be seen that there is a variety of notions of conservativity
which can be used to formally define modularity in ontologies. The choice of the
appropriate one depends on what the ontologies are supposed to be used for, the
computational complexity of the corresponding reasoning tasks, and the relevant
meta-properties and ‘robustness’ of the notion of conservativity.

Here we investigate these and related notions of conservative extensions for
the DL-Lite family of description logics [6–8]. DL-Lite and its variants are weak
descriptions logics that have been designed in order to facilitate efficient query-
answering over large data sets. We introduce four different notions of conservativ-
ity for two languages within this family, motivate their relevance for modularity
and re-use of ontologies, study their meta-properties, and determine the compu-
tational complexity of the corresponding reasoning tasks. All the proofs can be
found in the Appendix available at http://www.csc.liv.ac.uk/~frank.

2 The DL-Lite Family

The DL-Lite family of DLs has been introduced and investigated in [6–8] with
the aim of establishing maximal subsets of DL constructors for which the data
complexity of query answering stays within LogSpace. The ‘covering’ DL of
the DL-Lite family is known as DL-Litebool [8]. As DL-Litebool itself contains
classical propositional logic, query answering in it is coNP-hard, but by taking
the Horn-fragment DL-Litehorn of DL-Litebool, one obtains a language for which
query answering is within LogSpace [8] (precise formulations of these results
are given below).

The language of DL-Litebool has object names a1, a2, . . . , concept names
A1, A2, . . . , and role names P1, P2, Complex roles R and DL-Litebool con-
cepts C are defined as follows:

R ::= Pi | P−
i ,

B ::= ⊥ | > | Ai | ≥ q R,

C ::= B | ¬C | C1 u C2,

where q ≥ 1. The concepts of the form B above are called basic. A DL-Litebool
concept inclusion is of the form C1 v C2, where C1 and C2 are DL-Litebool
concepts. A DL-Litebool TBox is a finite set of DL-Litebool concept inclusions.
(Other concept constructs like ∃R, ≤ q R and C1 t C2 will be used as standard
abbreviations.)

As mentioned above, we also consider the Horn fragment DL-Litehorn of
DL-Litebool: a DL-Litehorn concept inclusion is of the form

l

k

Bk v B,

where B and the Bk are basic concepts. In this context, basic concepts will also
be called DL-Litehorn concepts. Note that the axioms

d
k Bk v ⊥ and > v B are

legal in DL-Litehorn. A DL-Litehorn TBox is a finite set of DL-Litehorn concept
inclusions. For other fragments of DL-Litebool we refer the reader to [6–8]. It is
worth noting that in DL-Litehorn we can express both global functionality of a
role and local functionality (i.e., functionality restricted to a (basic) concept B)
by means of the axioms ≥ 2 R v ⊥ and B u ≥ 2 R v ⊥, respectively.

Let L be either DL-Litebool or DL-Litehorn. An L-ABox is a set of assertions
of the form C(ai), R(ai, aj), where each C is an L-concept, R a role, and ai, aj

are object names. An L knowledge base (L-KB) is a pair (T ,A) consisting of an
L-TBox T and an L-ABox A.

An interpretation I is a structure of the form (∆I , AI
1 , . . . , P I

1 , . . . aI1 , . . .),
where ∆I is non-empty, AI

i ⊆ ∆I , P I
i ⊆ ∆I × ∆I and aIi ∈ ∆I such that

aIi 6= aIj , for ai 6= aj (i.e., we adopt the unique name assumption). The extension
CI ⊆ ∆I of a concept C is defined as usual. A concept inclusion C1 v C2 is
satisfied in I if CI

1 ⊆ CI
2 ; in this case we write I |= C1 v C2. I is a model for a

TBox T if all concept inclusions from T are satisfied in I. A concept inclusions
C1 v C2 follows from T , T |= C1 v C2 in symbols, if every model for T satisfies
C1 v C2. A concept C is T -satisfiable if there exists a model I for T with
CI 6= ∅. We say that I is a model for an L-KB (T ,A) if I is a model for T and
every assertion of A is satisfied in I.

An (essentially positive existential) L-query q(x1, . . . , xn) is a formula

∃y1 · · · ∃ymϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is constructed, using only ∧ and ∨, from atoms of the form C(t) and
P (t1, t2), with C being an L-concept, P a role, and ti being either a variable from
the list x1, . . . , xn, y1, . . . , ym or an object name. Given an L-KB (T ,A) and an

L-query q(x), with x = x1, . . . , xn, we say that an n-tuple a of object names
is an answer to q(x) w.r.t. (T ,A) and write (T ,A) |= q(a) if, for every model
I for (T ,A), we have I |= q(a). The data complexity of the query answering
problem for DL-Litehorn knowledge bases is in LogSpace, while for DL-Litebool
it is coNP-complete [8].

3 Types of Conservativity and Modularity

In this section, we introduce four different notions of conservative extension for
DL-Litebool and DL-Litehorn, discuss their applications, investigate their meta-
properties, and determine the computational complexity of the corresponding
reasoning tasks. By a signature we understand here a finite set Σ of concept
names and role names.3 Given a concept, role, TBox, ABox, or query E, we
denote by sig(E) the signature of E, that is, the set of concept and role names
that occur in E. It is worth noting that the symbols ⊥ and > are regarded as
logical symbols. Thus, sig(⊥) = sig(>) = ∅. A concept (role, TBox, ABox, query)
E is called a Σ-concept (role, TBox, ABox, query, respectively) if sig(E) ⊆ Σ.
Thus, P− is a Σ-role iff P ∈ Σ. As before, we will use L as a generic name for
DL-Litebool and DL-Litehorn.

Definition 1 (deductive conservative extension). Let T1 and T2 be L-TBoxes and
Σ a signature. We call T1 ∪ T2 a (deductive) conservative extension of T1 in L
w.r.t. Σ if, for every L-concept inclusion C1 v C2 with sig(C1 v C2) ⊆ Σ, we
have T1 |= C1 v C2 whenever T1 ∪ T2 |= C1 v C2.

This notion of deductive conservative extension is appropriate in the following
situations; see also [2]. (i) Suppose that T1 is a TBox which does not cover
part of its domain in sufficient detail. An ontology engineer, say Eve, decides
to expand it by axioms T2, but wants to be sure that by doing this she does
not interfere with the derivable inclusions between Σ-concepts. Then she should
check whether T1 ∪ T2 is a conservative extension of T1 in L w.r.t. to Σ. (ii) If
the designer of an ontology T2 imports an ontology T1 and wants to ensure that
no extra inclusions between sig(T1)-concepts are derivable after importing the
ontology, then again she should check whether T1∪T2 is a conservative extension
of T1 in L w.r.t. sig(T1). Observe that in DL-Litebool, T1 ∪ T2 is a deductive
conservative extension of T1 iff every T1-satisfiable DL-Litebool concept C with
sig(C) ⊆ Σ is also T1 ∪ T2-satisfiable.

Theorem 1. For any DL-Litehorn TBoxes T1, T2 and any signature Σ, the
following two conditions are equivalent:

– T1 ∪ T2 is a conservative extension of T1 in DL-Litebool w.r.t Σ;
– T1 ∪ T2 is a conservative extension of T1 in DL-Litehorn w.r.t. Σ.

3 In the languages we consider, object names do not occur in TBoxes. Therefore, in this
paper, we assume that signatures do not contain object names. When considering
languages with nominals one would have to allow for object names in signatures.

For DL-Litehorn TBoxes, the problem of deciding whether T1 ∪T2 is a conserva-
tive extension of T1 in DL-Litehorn w.r.t Σ is coNP-complete. For DL-Litebool
TBoxes, this problem is Πp

2 -complete.

Observe that the complexity lower bounds follow immediately from the same
lower bounds for the corresponding reasoning problems in classical proposi-
tional (Horn) logic. The upper bounds are proved in the Appendix. We remind
the reader that conservativity is much harder for most DLs: it is ExpTime-
complete for EL [9], 2ExpTime-complete for ALC and ALCQI, and undecidable
for ALCQIO [2, 4]. To explain, at a very high level, the reason for these results
we consider the notion of a conservative extension in DL-Litebool: let T1 and T2

be TBoxes and Σ a signature with Σ ⊆ sig(T1). T1 ∪T2 is not a conservative ex-
tension of T1 in DL-Litebool w.r.t. Σ if, and only if, there exists a concept C with
sig(C) ⊆ Σ such that C is satisfiable relative to T1 but not relative to T1 ∪ T2.
We call such a concept C a witness-concept. Thus, a decision procedure for con-
servativity can be regarded as a systematic search for such a witness-concept. In
standard description logics such as DL-Litebool, EL, ALC, etc. the space of all
possible witnesses is infinite. (This observation implies that from the decidability
of the problem whether a concept is satisfiable w.r.t. a TBox it does not neces-
sarily follow that conservativity is decidable.) Now, we prove in the Appendix
that for DL-Litebool the existence of some witness concept implies the existence
of a witness concept of size polynomial in the size of T1 and T2 and which uses
only the numeral parameters which occur in number restrictions from T1 ∪ T2.
In contrast, in EL one can construct examples in which minimal witnesses for
non-conservativity are of double exponential size in the size of T1 and T2 [9].
In ALC, one can even enforce minimal witness concepts of triple exponential
size [2]. The reason for this difference is the availability of qualified quantifica-
tion in those language, and its absence in DL-Litebool. The result on the size of
witness concepts for DL-Litebool is easily converted into a decision procedure for
non-conservativity which is in Πp

2 : just (non-deterministically) guess a concept
C of polynomial size in the size of T1 and T2 and with sig(C) ⊆ Σ and check, by
calling an NP-oracle, whether (i) C is satisfiable w.r.t. T1 and (ii) not satisfiable
w.r.t. T1∪T2. Because of the larger size of minimal witnesses, no such procedure
exists for EL or ALC.

Consider now the situation when the ontology designer is not only interested
in preserving derivable concept inclusions, but also in preserving answers to
queries, for both DL-Litebool and DL-Litehorn TBoxes.

Definition 2 (query conservative extension). Let T1, T2 be L-TBoxes and Σ a
signature. We call T1 ∪ T2 a query conservative extension of T1 in L w.r.t. Σ
if, for every L-ABox A with sig(A) ⊆ Σ, every L-query q with sig(q) ⊆ Σ,
and every tuple a of object names from A, we have (T1,A) |= q(a) whenever
(T1 ∪ T2,A) |= q(a).

It is easy to see that query conservativity implies deductive conservativity
for both logics DL-Litebool and DL-Litehorn. Indeed, let L be one of DL-Litebool
and DL-Litehorn. Suppose that we have T1 6|= C1 v C2 but T1 ∪ T2 |= C1 v C2,

for some L-concept inclusion C1 v C2 with sig(C1 v C2) ⊆ Σ. Consider the
ABox A = {C1(a)} and the query q = C2(a). Then clearly (T1 ∪ T2,A) |= q,
while (T1,A) 6|= q. Note that in DL-Litehorn, C1 = B1 u · · · u Bk and C2 = B,
where B,B1, . . . , Bk are basic concepts.

The following example shows, in particular, that the converse implication
does not hold.

Example 1. (1) To see that there are deductive conservative extensions which are
not query conservative, take T1 = ∅, T2 = {A v ∃P,∃P− v B} and Σ = {A,B}.
Then T2 is a deductive conservative extension of T1 (in both DL-Litebool and
DL-Litehorn) w.r.t. Σ. However, it is not a query conservative extension: let
A = {A(a)} and q = ∃y B(y); then (T1,A) 6|= q but (T2,A) |= q.

(2) Note also that query conservativity in DL-Litehorn does not imply query
conservativity in DL-Litebool. Indeed, let T1 = ∅, T2 = {A v ∃P,A u ∃P− v ⊥}
and Σ = {A}. Then T2 is not a query conservative extension of T1 in DL-Litebool
w.r.t. Σ: just take A as before and q = ∃y ¬A(y). But it is a query conservative
extension in DL-Litehorn.

In the definition of essentially positive existential queries for DL-Litebool
above, we have allowed negated concepts in queries and ABoxes. An alternative
approach would be to allow only positive concepts. These two types of queries
give rise to different notions of query conservativity: under the second definition,
the TBox T2 from Example 1 (2) is a query conservative extension of T1 = ∅
w.r.t. {A}, even in DL-Litebool. We argue, however, that it is the essentially pos-
itive queries that should be considered in the context of this investigation. The
reason is that, with positive queries, the addition of the definition B ≡ ¬A to T2

and B to Σ would result in a TBox which is not a query conservative extension
in DL-Litebool of T1 any longer. This kind of non-robust behaviour of the notion
of conservativity is clearly undesirable. Obviously, the definitions we gave are
robust under the addition of such definitions. Moreover, two extra robustness
conditions hold true.

Definition 3 (robustness). Let Σ be a signature and consΣ a ‘conservativity’
relation between TBoxes w.r.t. Σ. (For example, consΣ(T1, T1∪T2) can be defined
as ‘T1 ∪ T2 is a deductive conservative extension of T1 in DL-Litebool w.r.t. Σ’).

– We say that consΣ is robust under joins if (T0, T0 ∪T1), (T0, T0 ∪T2) ∈ consΣ

and sig(T1) ∩ sig(T2) ⊆ Σ imply (T0, T0 ∪ T1 ∪ T2) ∈ consΣ ;
– consΣ is robust under vocabulary extensions if (T1, T1 ∪ T2) ∈ consΣ implies

(T1, T1 ∪ T2) ∈ consΣ′ , for all signatures Σ′ with sig(T1 ∪ T2) ∩Σ′ ⊆ Σ.

Roughly speaking, robustness under joins means that an ontology can be safely
imported into joins of independent ontologies if each of them safely imports the
ontology: if the shared symbols of T1 and T2 are from Σ, and both T1 ∪ T0 and
T2 ∪ T0 are conservative extensions of T0 w.r.t. Σ, then the join T1 ∪ T2 ∪ T0

is a conservative extension of T0 w.r.t. Σ. In practice, this property supports
collaborative ontology development in the following sense: it implies that if two

(or more) ontology developers extend a given ontology T0 independently and do
not use common symbols with the exception of those in a certain signature Σ
then they can safely form the union of T0 and all their additional axioms provided
that their individual extensions are safe for Σ (in the sense of deductive or,
respectively, query conservativity). This property is closely related to the well-
known Robinson consistency lemma and interpolation (see e.g., [10]) and has
been investigated in the context of modular software specification [11] as well.
We refer the reader to the Appendix for a more detailed discussion.

Robustness under vocabulary extensions is even closer to interpolation: it
states that once we know conservativity w.r.t. Σ, we also know conservativity
with respect to any signature with extra fresh symbols. The practical relevance of
this property is as follows: when specifying the signature Σ for which an ontology
developer wants to check conservativity, the developer only has to decide which
symbols from T1 and T2 she wants to include into Σ. The answer to the query
does not depend on whether Σ contains fresh symbols or not.

Theorem 2. Both deductive and query conservativity in both DL-Litebool and
DL-Litehorn are robust under joins and vocabulary extensions.

Actually, in DL-Litehorn and DL-Litebool we even have a much stronger form
of interpolation which is known as the uniform interpolation property [12, 13].
Let T be a TBox and Σ a signature. A TBox T ′ is called a uniform interpolant
for T w.r.t. Σ in L if T ′ is an L-TBox, sig(T ′) ⊆ Σ, T |= T ′, and for all L-
concept inclusions C1 v C2 with T |= C1 v C2 and sig(C1, C2)∩ sig(T) ⊆ Σ, we
have T ′ |= C1 v C2.

Intuitively, a uniform interpolant for T w.r.t. Σ contains exactly the same
information about Σ in terms of concept inclusions as T without using additional
symbols. For most DLs, such as ALC, uniform interpolants do not necessarily
exist [2].

Theorem 3. Let L be DL-Litehorn or DL-Litebool. Then for every L-TBox T
and every signature Σ there exists a uniform interpolant for T w.r.t. Σ in L.

We note that one has to be very careful when interpreting the meaning of
uniform interpolants. Consider, for instance, T = {A v ∃P, Au ∃P− v ⊥} and
Σ = {A}. The TBox T ′ = ∅ is a uniform interpolant of T w.r.t. Σ in DL-Litebool.
However, as we saw in Example 1, the TBoxes T and T ′ behave differently with
respect to queries in Σ: (T , {A(a)}) |= ∃x¬A(x) but (T ′, {A(a)}) 6|= ∃x¬A(x).

As sketched above, one application of deductive and query conservativity is to
ensure that, when importing an ontology T , one does not change the meaning
of its vocabulary (in terms of concept inclusions or answers to queries). We
now consider the situation where the ontology T to be imported is not known
because, for example, it is still under development or because different ontologies
can be chosen. In this case, T should be regarded as a ‘black box’ which supplies
information about a signature Σ. To ensure that the meaning of the symbols in
Σ as defined by this black box is not changed by importing it into T1, one has
to check the following condition:

Definition 4 (safety). Let Σ be a signature and T1 an L-TBox. We say that T1

is safe for Σ w.r.t. deductive (or query) conservativity in L if, for all L-TBoxes T
with sig(T)∩sig(T1) ⊆ Σ, T1∪T is a deductive (respectively, query) conservative
extension of T in L w.r.t. Σ.

This notion has been introduced in [3] where the reader can find further dis-
cussion. A natural generalisation of safety, considered in [5], is the following
property:

Definition 5 (strong deductive/query conservative extension). Let T1 and T2 be
L-TBoxes and Σ a signature. We call T1 ∪T2 a strong deductive (query) conser-
vative extension of T1 in L w.r.t. Σ if T1 ∪ T2 ∪ T is a deductive (respectively,
query) conservative extension of T1 ∪ T in L w.r.t. Σ, for every L-TBox T with
sig(T) ∩ sig(T1 ∪ T2) ⊆ Σ.

Observe that safety is indeed a special case of strong conservativity: it covers
exactly the case where the TBox T1 in the definition of strong conservativity is
empty. A typical application of strong conservativity for ontology re-use is as
follows (see [5]). Suppose that there is a large ontology O and a subset Σ of
its signature. Assume also that the ontology designer wants to use what O says
about Σ in her own ontology T she is developing at the moment. Then instead
of importing O as a whole, it would be preferable to find a small subset T1 of O,
which says precisely the same about Σ as O does, and import only this small T1

rather than the large O. But then what are the conditions we should impose on
T1? An obvious minimal requirement is that by importing T1 into T we obtain
the same consequences for subsumptions/queries over Σ as by importing O into
T . Depending on whether concept inclusions or answers to queries are of interest,
one therefore wants O = T1 ∪ T2 to be a strong deductive or query conservative
extension of T1 w.r.t Σ. We refer the reader to [5] for further discussion and
algorithms for extracting such TBoxes from a given TBox.

Example 2. (1) Let us see first that strong deductive conservativity is indeed a
stronger notion than deductive conservativity, for DL-Litebool and DL-Litehorn.
Consider again the TBoxes T1 = ∅, T2 = {A v ∃R, A u ∃R− v ⊥}, and
Σ = {A}. Then T1 ∪ T2 is a deductive conservative extension of T1 w.r.t. Σ.
However, T1∪T2 is not a strong deductive conservative extension of T1 w.r.t. Σ.
Let T = {> v A}. Then we have T1 ∪ T2 ∪ T |= > v ⊥ but T1 ∪ T 6|= > v ⊥.

(2) We show now that an analogue of Theorem 1 does not hold for strong
deductive conservativity. Let T1 and T2 be the following DL-Litehorn TBoxes

T1 =
{
A uB v ⊥, > v ∃P1, > v ∃P2, ∃P−

1 v A, ∃P−
2 v B

}
,

T2 =
{
> v ∃R, A u ∃R− v ⊥, B u ∃R− v ⊥

}
,

and let Σ = {A,B, P1, P2}. T2 says that > 6v A t B. Now, in DL-Litebool,
T1 ∪T2 is not a strong deductive conservative extension of T1 w.r.t. Σ: just take
T = {> v AtB}. However, T1∪T2 is a strong deductive conservative extension
of T1 in DL-Litehorn.

Obviously, the robustness conditions introduced above are of importance for the
strong versions of conservativity as well.

Theorem 4. Both strong deductive and strong query conservativity are robust
under joins and vocabulary extensions for DL-Litebool and DL-Litehorn.

In addition to these types of robustness, the following condition, which is
dual to robustness under joins, is of crucial importance for iterated applications
of the notion of safety for a signature. Suppose that T is safe for Σ1 ∪ Σ2

under some notion of conservativity and Σ1 ∩ Σ2 = ∅. Then, for any T1 with
sig(T1)∩ (sig(T)∪Σ2) ⊆ Σ1, the TBox T ∪T1 should be safe for Σ2 for the same
notion of conservativity. Without this property, one might have the situation
that a TBox is safe for a signature Σ1 ∪Σ2, but after importing a TBox for Σ1

the resulting TBox is not safe for Σ2 any longer, which is clearly undesirable.

Theorem 5 (robustness under joins of signatures). Let L be either DL-Litebool
or DL-Litehorn. If an L-TBox T is safe for a signature Σ1 ∪ Σ2 w.r.t. deduc-
tive/query conservativity in L, Σ1 ∩Σ2 = ∅ and T1 is a satisfiable L-TBox with
sig(T1) ∩ (sig(T) ∪Σ2) ⊆ Σ1, then T ∪ T1 is safe for Σ2 w.r.t. deductive/query-
conservativity in L.

This result follows immediately from the fact that any two satisfiable L-
TBoxes in disjoint signatures are strong query conservative extensions of each
other. This property fails for a number of stronger notions of conservativity, for
example, model conservativity.

The next theorem shows that in all those cases where we have not provided
counterexamples the introduced notions of conservativity are equivalent:

DL-Litehorn deductive � query � strong deductive ≡ strong query

DL-Litebool deductive � query ≡ strong deductive ≡ strong query

It also establishes the complexity of the corresponding decision problems.

Theorem 6. Let L be either DL-Litebool or DL-Litehorn, T1 and T2 L-TBoxes,
and Σ a signature.

For L = DL-Litebool, the following conditions are equivalent:

(1) T1 ∪ T2 is a query conservative extension of T1 in L w.r.t. Σ;
(2) T1 ∪ T2 is a strong deductive conservative extension of T1 in L w.r.t. Σ;
(3) T1 ∪ T2 is a strong query conservative extension of T1 in L w.r.t. Σ.

For L = DL-Litehorn, conditions (2) and (3) are equivalent, while (1) is strictly
weaker than each of them.

For DL-Litehorn, the decision problems corresponding to conditions (1)–(3)
are all coNP-complete. For DL-Litebool, these problems are Πp

2 -complete.

We believe that the equivalences stated in Theorem 6 are somewhat surpris-
ing. For example, it can be easily seen that for ALC none of those equivalences
holds true.

4 Model-Theoretic Characterisations of Conservativity

All the results discussed above are proved with the help of the model-theoretic
characterisations of our notions of conservativity formulated below.

Let Σ be a signature and Q a set of positive natural numbers containing 1. By
a ΣQ-concept we mean any concept of the form ⊥, >, Ai, ≥ q R, or its negation
for some Ai ∈ Σ, Σ-role R and q ∈ Q. A ΣQ-type is a set t of ΣQ-concepts
containing > such that the following conditions hold:

– for every ΣQ-concept C, either C ∈ t or ¬C ∈ t,
– if q < q′ are both in Q and ≥ q′ R ∈ t then ≥ q R ∈ t,
– if q < q′ are both in Q and ¬(≥ q R) ∈ t then ¬(≥ q′ R) ∈ t.

It should be clear that, for each ΣQ-type t with ⊥ /∈ t, there is an interpretation
I and a point x in it such that, for every C ∈ t, we have x ∈ CI . In this case
we say that t is realised at x in I, or that t is the ΣQ-type of x in I.

Definition 6. A set Ξ of ΣQ-types is said to be T -realisable if there is a model
for T realising all types from Ξ. We also say that Ξ is precisely T -realisable if
there is a model I for T such that I realises all types in Ξ and every ΣQ-type
realised in I is in Ξ.

Given a signature Σ, we say that interpretations I and J are Σ-isomorphic
and write I ∼Σ J if there is a bijection f : ∆I → ∆J such that f(aI) = aJ ,
for every object name a, x ∈ AI iff f(x) ∈ AJ , for every concept name A ∈ Σ,
and (x, y) ∈ P I iff (f(x), f(y)) ∈ PJ , for every role name P ∈ Σ. Clearly,
Σ-isomorphic interpretations cannot be distinguished by TBoxes, ABoxes, or
queries over Σ.

Given a set Ii, i ∈ I, of interpretations with 1 ∈ I, define the interpretation
(the disjoint union of the Ii) J =

⊕
i∈I Ii, where ∆J = {(i, w) | i ∈ I, w ∈ ∆i},

aJ = (1, aI1), for every object name a, AJ = {(i, w) | w ∈ AIi}, for every
concept name A, and PJ = {((i, w1), (i, w2)) | (w1, w2) ∈ P Ii}, for every role
name P . Given an interpretation I, we set Iω =

⊕
i∈ω Ii, where Ii = I for i ∈ ω.

Again, it should be clear that TBoxes, ABoxes or queries (over any signature)
cannot distinguish between I and Iω.

The following lemma provides an important model-theoretic property of
DL-Litebool which is used to establish model-theoretic characterisations of vari-
ous notions of conservativity.

Lemma 1. Let J be an (at most countable) model for T1 and Σ a signature
with Σ ⊆ sig(T1). Suppose that there is a model for T1∪T2 realising precisely the
same ΣQT1∪T2-types as J , where QT1∪T2 is the set of all numerical parameters
occurring in T1 ∪ T2 together with 1. Then there is a model I∗ for T1 ∪ T2 such
that I∗ ∼Σ J ω.

In particular, I∗ |= A iff J |= A, for all ABoxes A over Σ, I∗ |= T iff
J |= T , for all TBoxes T over Σ, and I∗ |= q(a) iff J |= q(a), for all queries
q(a) over Σ.

In the case of DL-Litehorn we need some extra definitions. By a ΣQh-concept
we mean any concept of the form ⊥, Ai or ≥ q R, for some Ai ∈ Σ, Σ-role R
and q ∈ Q. Given a ΣQ-type t, let t+ = {B ∈ t | B a ΣQh-concept}. Say that a
ΣQ-type t1 is h-contained in a ΣQ-type t2 if t+1 ⊆ t+2 . The following two notions
characterise conservativity for DL-Litehorn:

Definition 7. A set Ξ of ΣQ-types is said to be sub-precisely T -realisable if
there is a model I for T such that I realises all types from Ξ, and every ΣQ-type
realised in I is h-contained in some type from Ξ. We also say that Ξ is join-
precisely T -realisable if there is a model I for T such that, for every ΣQ-type t
realised in I, Ξt = {ti ∈ Ξ | t+ ⊆ t+i } 6= ∅ and t+ =

⋂
ti∈Ξt

t+i . (It follows that
t+ ⊆ t+i , for all ti ∈ Ξt, and thus, Ξ is sub-precisely T -realisable.)

The table below gives characterisations of our four notions of conservativ-
ity in the following form: let Σ be a signature and L be either DL-Litebool or
DL-Litehorn; then T1 ∪ T2 is an α conservative extension of T1 w.r.t. Σ in L iff
every precisely T1-realisable set Ξ of ΣQT1∪T2 types is ‘. . . T1 ∪ T2-realisable’
(QT1∪T2 is the set of numerical parameters occurring in T1∪T2 together with 1).

language L
conservativity α DL-Litebool DL-Litehorn

deductive T1 ∪ T2-realisable T1 ∪ T2-realisable

query sub-precisely
T1 ∪ T2-realisable

strong deductive
precisely

T1 ∪ T2-realisable join-precisely
T1 ∪ T2-realisablestrong query

These characterisations are proved in the Appendix, where it is also shown that
in each case it suffices to consider only those sets Ξ the size of which is bounded
by a polynomial function in the size of the TBoxes. Then, for DL-Litebool TBoxes
T1 and T2, one can decide whether T1 ∪ T2 is a not a strong deductive con-
servative extension by (non-deterministically) guessing a polynomial set Ξ of
ΣQT1∪T2-types and checking that it is precisely T1-realisable and not precisely
T1 ∪ T -realisable. The Appendix provides a polynomial non-deterministic algo-
rithm deciding whether a given set of ΣQ-types is precisely T -realisable, which
yields a Πp

2 upper bound for strong deductive conservativity in DL-Litebool.
Similarly, for DL-Litehorn TBoxes T1 and T2, one can decide whether T1 ∪ T2 is
a query (or strong deductive) conservative extension of T1 by guessing Ξ and
checking that it is precisely T1-realisable and not sub-precisely (respectively, join-
precisely) T1 ∪ T2-realisable. The Appendix provides polynomial deterministic
algorithms deciding whether a given set of ΣQ-types is precisely, sub-precisely
and join-precisely T -realisable, for a DL-Litehorn TBox T , which give coNP
upper bounds for query and strong deductive conservativity. The lower bounds
follow immediately from the corresponding lower bounds for propositional logic.

5 Conclusion

We have analysed the relation between different notions of conservative exten-
sion in description logics DL-Litebool and DL-Litehorn, and proved that the corre-
sponding reasoning problems are not harder than the same problems in propo-
sitional logic. Moreover, we have also shown that important meta-properties
for modular ontology engineering, such as robustness under joins, vocabulary
extensions, and iterated import of ontologies, hold true for these notions of con-
servativity.
Acknowledgements. This work was partially supported by U.K. EPSRC grant
GR/S63175.

References

1. Antoniou, G., Kehagias, A.: A note on the refinement of ontologies. Int. J. of
Intelligent Systems 15(7) (2000) 623–632

2. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logic. In: Proc. of KR 2006, AAAI Press (2006)
187–197

3. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modu-
larity of ontologies. In: Proc. of IJCAI 2007. (2007) 298–303

4. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. of IJCAI 2007. (2007) 453–458

5. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: Extract-
ing modules from ontologies. In: Proc. of the 16th International World Wide Web
Conference (WWW-2007). (2007)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of AAAI 2005. (2005) 602–607

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of KR 2006. (2006)
260–270

8. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light
of first-order logic. In: Proc. of AAAI 2007. (2007)

9. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic
EL. To appear in the Proceedings of 21st Conference on Automated Deduction
(CADE-21) (2007)

10. Chang, C., Keisler, H.: Model Theory. Elsevier (1990)
11. Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In

Huet, G., Plotkin, G., eds.: Logical Environments, Cambridge University Press,
New York (1993) 83–130

12. Pitts, A.: On an interpretation of second-order quantification in first-order intu-
itionistic propositional logic. J. Symbolic Logic 57(1) (1992) 33–52

13. Visser, A.: Uniform interpolation and layered bisimulation. In Hájek, P., ed.:
Gödel ’96 (Brno, 1996). Volume 6 of Lecture Notes in Logic. Springer Verlag
(1996) 139–164

14. Papadimitriou, C.: Computational Complexity. Addison Wesley Publ. Co. (1994)

