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Abstract. In many organizations, relevant data is distributed across multiple pri-
mary data sources using different data models, schemas, and vocabularies which 
prevents effective knowledge management at an organizational level. As a result, 
it is very cumbersome to retrieve and integrate relevant data necessary to answer 
specific business questions. We propose a semantic lifting architecture that lifts 
primary data resources into a single corporate knowledge graph, implemented 
following FAIR and Linked Data principles, which assigns unique URIs to enti-
ties and maps the data using a uniform shared vocabulary. This structure supports 
integration of heterogeneous and distributed data sources to enable advanced 
search and analysis. In this paper we consider the case of field trial data collected 
and managed by Bayer, present an example of our architecture, and describe an 
application using this architecture that provides semantic search and visual ex-
ploration of field trial data to relevant stakeholders. As a main benefit, our archi-
tecture allows domain experts and analysts to retrieve timely and consistently 
labeled data originating from multiple primary sources while maintaining data 
context to enable cross-domain analytics. This provides the means to answer 
more complex questions with minimal data preparation, improving speed and 
precision by driving decisions with semantically lifted data. 
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1 Introduction 

In modern and agile organizations, a key challenge is to exploit data and related 
knowledge assets to support timely and informed decision making. Data analytic solu-
tions, however, require consistent, integrated and semantically well-defined data. Such 
integrated data are often not available in large organizations due in large part to the fact 
that data are typically confined to siloed legacy storage systems where the primary data 
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was captured1. Among other things, conflicting database schemas, aggregation levels, 
and disparate terminologies hinder seamless data science solutions when working 
across data repositories.  

At Bayer CropScience - as in many other similar organizations - multiple and heter-
ogeneous datasets exist which are stored in raw data repositories to fit the needs of the 
different steps within the research and development process. This data ranges from 
early molecule research, greenhouse- and field-testing, all the way to regulatory, mar-
keting and administrative data. Working with these core data assets has a huge potential 
for value generation using translational data science approaches: the potential to gener-
ate novel insights to improve current business models, streamline and optimize R&D 
processes, and support data-driven decision-making at a whole company level. Trans-
lational data science approaches help prevent duplications of effort, optimize invest-
ments with organizational learning from previous experiences, and drive better cost and 
risk evaluations. 

In this paper, we focus on the case of lifting and organizing field trial data to support 
semantic exploration and discovery of those data. A common existing use case by prod-
uct development managers includes searching and filtering by various trial properties 
and statistically analyzing the resulting data – a process we have streamlined and im-
proved with semantically integrated data. The data are stored in different primary data 
sources that use different schemas, different coding conventions, and different aggre-
gation levels. For example, a single chemical can be referred to by various names across 
data sources. This makes querying the data across data sources challenging and time 
consuming. In addition, there are misspellings and missing values in the data, and dif-
ferent column and field naming conventions are used across departments and groups, 
rendering the problem of seamless data exploitation every more challenging. 

In this paper we propose a semantic lifting approach which we have implemented to 
harmonize and integrate field trial data from multiple primary data resources to support 
uniform access and querying using controlled vocabularies. For this, we propose a se-
mantic lifting architecture that supports data cleaning and data normalization by map-
ping data to a corporate knowledge graph.  As a net result, domain experts and product 
managers can answer queries over all the primary data sources in an integrated fashion. 
The semantic lifting approach further increases the interoperability of the data and sup-
ports a unified quality assessment strategy that allows to improve the quality of the 
data, thus increasing the reusability of the data, and supports the application of data 
mining and analytics technology on the integrated data.  

Our semantic lifting approach relies on a semantic data layer that integrates the dis-
parate resources into a company-wide knowledge graph for field trials. This approach 
integrates a variety of sources, uses a collection of domain-specific, semantic vocabu-
laries to foster harmonization, and supports multiple output formats to enable unparal-
leled flexibility in data utilization. In section 2 we describe our approach to semantic 
data lifting, in section 3 we demonstrate the benefits of this semantic integration in 
facilitating semantic search and exploration of field trial data, we discuss further bene-
fits of our approach in the conclusion, and finally, we point toward future work. 

                                                           
1 https://www.elderresearch.com/blog/42-v-of-big data, last accessed 2019/02/20 
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2 A knowledge graph enabled approach to semantic data 
normalization and lifting 

 
Fig. 1. Field trial data model snapshot based on the selected use case: Overview of pseudo-
schema used to define semantic ontologies over the data, categorized into different domains (ge-
ospatial, chemistry, provenance, experiment, and biology). Red objects denote external, regulated 
ontological libraries and terminology (Table1 for more details). Dotted objects are category 
placeholders for connections to entities not relevant to this paper. 
 
The main goal of our proposed semantic approach to knowledge organization is to sup-
port advanced data analytics facilitating better reusability, explainability and discover-
ability of contextualized business data. Generally, data analytic approaches often re-
quire the ability to consume a huge amount of data (e.g. in order to train learning models 
properly [1]). Hence, a common bottleneck is still the time needed for ad-hoc data prep-
aration and curation, leading to the claim that 80% of a data scientist’s time is invested 
in data integration, cleansing, and alignment – colloquially known as the 80/20 rule2 – 
and surveys confirm that the actual time investment is at least 50%3. Fortunately, se-
mantic data and knowledge representations can easily deliver the necessary quantity of 
data and can significantly reduce the amount of preparation time by integrating and 
cleaning the data once for many later applications. Linked Data offers an agile, flexible 
solution for data integration by using a schema-less graph-based data representation 
[2]. The general approach for semantic lifting consists in lifting data from individual 
data silos into a knowledge graph representation guided by a semantic data “domain 
model” and re-using identifiers from predefined shared vocabularies (example Fig.1). 
For this purpose, the data needs to be organized and governed over their lifecycle in 
such a way that different key quality aspects, such as completeness, validity, accuracy, 
granularity, and consistency are met4. Central to our proposal are four key elements: (a) 
a corporate knowledge graph representing all the knowledge available within the or-
ganization harmonized over (b) domain-specific vocabularies as keys to (c) polyglot 
knowledge management [3] while following Linked Data principles to support data 

                                                           
2 https://www.infoworld.com/article/3228245/the-80-20-data-science-dilemma.html  
3 https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport.pdf 
4 https://www.blazent.com/seven-characteristics-define-quality-data/, last accessed 2019/09/10 
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FAIRness5 [4] and generate (d) multiple views orchestrated by various knowledge rep-
resentations. Those representations provide task-specific workspaces with cross-do-
main sets of lenses to view and to analyses data from different perspectives. 
 
2.1 Approach to semantic lifting 

 

Fig. 2. Decision-making across the development pipeline: (I) Semantic Lifting: semantic data 
modeling across domains, augmenting internal and external data resources, ensuring data quality, 
and generating knowledge assets on top of different backend data solutions; (II) Advanced Data 
Science: data retrieval and exploration, visual analytics [6], machine learning and statistical mod-
els, all encapsulated within an iterative approach [7] resulting in data-driven decision making by 
utilizing the generated interpretations, implications, and conclusions. 

Our approach lifts data assets from their primary sources into a semantic knowledge 
layer with contextual meaning and establishes connections to other related datasets. 
This makes the data easily searchable, analyzable, and reusable [4]. Data lifting relies 
on the domain model structure and internally agreed upon controlled vocabularies (Ta-
ble1), which capture the semantic meaning of each datum and allow us to generate 
domain-specific knowledge representations that are seamlessly linked. Following the 
common standard applied by organizations such as Google6 or by public data resources 
such as Wikidata7, we implement knowledge graphs to construct the semantic 
knowledge layer. Knowledge graphs rely on a graph data structure to represent 
knowledge, whereby nodes are connected to each other by edges to capture the relations 
between data entities. We include properties and metadata from the original source data 
as well as external sources. Although there currently is no web standard for property 
graph representations, there are ongoing W3C activities8 to close this gap and to push 
labeled property graphs towards standardization as well as other solution implementa-
tions bridging between those solutions [5]. 

                                                           
5 https://www.force11.org/group/fairgroup/fairprinciples, last accessed 2019/02/20 
6 https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html 
7 https://www.wikidata.org/, last accessed 2019/02/20 
8 https://www.w3.org/Data/events/ data-ws-2019/, last accessed 2019/02/20 
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Our semantic lifting pipeline is embedded in our end-to-end technology stack (Fig.2) 
and is composed of producers, transformers, and consumers within the correspond-
ing data layer (Fig.3). The data layer contains a variety of distinct components accord-
ing to requested user requirements and is connected to an application layer through a 
service layer. The service layer uses micro- and web-service technology to provide 
standardized exchange formats and functionality for integration, curation, interaction, 
and analytics. It also provides direct consumption by end user applications (such as in 
visual analytics tools) and serves data scientists. The primary focus of the paper is 
demonstrated in part I of Fig.2, whereas the provided use case is going one step further 
by accessing the generated knowledge representations through the API layer, demon-
strating some of the aspects of the data science cycle of part II. 

Table 1. Used ontologies and terminologies for the selected use case. 

Context Terminology Source 

Provenance and 

Metadata 

Provenance Ontology (PROV-O) 

Terms for field trial provenance description 

W3.org 

Internal 

Environment (general, 

soil, climate zone, geo-

location, field, plot, 

etc.) 

EPPO Climatic Zone 

Ontology of Soil Properties and Processes (OSP) 

GeoNames Terminology  

Soil Triangle Terminology  

Terms describing trial sites, field, plots, etc. 

EPPO.int 

Du et al., ISWC 2016 

GeoNames.org 

USDA.gov 

Internal  

Crop (species, variety, 

etc.) 

NCBI Taxonomy of Species  

EPPO Code 

NCBI.NLM.NIH.gov 

EPPO.int 

Experiment (experi-

mental design, setup, 

protocol, results, etc.) 

Plant Experimental Conditions Ontology (PECO) 

Crop Ontology (CO) 

OECD guidelines & Harmonised Templates 

EXperimental ACTions (EXACT) 

JERM Ontology 

Terms describing field trial experiments 

BioPortal.BioOntology.org 

cropontology.org 

OECD.org 

BioPortal.BioOntology.org 

jermontology.org 

Internal 

 
Producers: The semantic workflow starts with the ingestion of relevant data to in-

corporate into the corporate knowledge graph. We have developed various source con-
nectors, called producers, which allow us to communicate with each of the different 
data sources. Thus, we interact with the data from the original source, which remains 
fully disparate and federated, and we format it to allow for easy manipulation by down-
stream transformers. Additionally, we implement a feedback process to ingest results 
from prior analysis and related decisions through an additional producer to augment the 
primary data.  

The data are cleaned by, for instance, formatting numeric and date fields to fit the 
defined needs in the domain model, some missing data is simply imputed by various 
methods, and some fields are merged to match the destination formatting requirements. 
Depending on the data source, this process can be done automatically with simple 
scripts, or manually (i.e. case by case) with the help of domain experts. Manual 
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corrections and revisions are stored as explicit rules to maintain consistency over data-
base updates to ensure reusability. 

The key is creating or maintaining data consistency and cohesion across data sources 
so we can interlink the data and enrich or augment it with other resources or services 
within our life science business domain. The producers become a de facto process for 
monitoring quality of source data and help to discover inconsistencies or other data 
issues that can be flagged or forwarded to the owner of the original data to be corrected.  

Transformers: The second step in the workflow requires enforcing controlled vo-
cabularies and a common semantic data model to integrate the previously heterogene-
ous datasets. The set of used vocabularies are composed of internally collected termi-
nology lists as well as external ontologies which can be completely or only partly inte-
grated depending on our needs (Table1).  

Most incorrect or inconsistent data are detected through automatic plausibility and 
consistency checks during source data ingestion and is corrected across all the relevant 
data producers. The data are then combined and passed through a collection of semantic 
connectors to transform the source data into knowledge representation formats. The 
transformers are modular and reusable components that perform the translation, enrich-
ment, and augmentation of internal and external data resources to create the corporate 
knowledge graph. Some transformers are source specific, through which data from only 
a subset of producers are sent, while other connectors are data type agnostic using tech-
nology such as R2RML9 to map the relational data consistently to the graph structure.  

The internal ontology platform is a key element for the final data model. It hosts 
ontologies for relevant domain knowledge, terminology concepts, and structured 
metadata that describe provenance, support, evidence, and workflow (e.g. ontologies 
for instance extracted from BioPortal10). It is the primary source of semantic infor-
mation used during the lifting process. Maintaining such a reference database enables 
trust, versioning, and traceability management for the dynamic knowledge graph.  

For an explicit example, a key transformer that many downstream transformers rely 
on is our “location service” transformer. This transformer checks, cleans and corrects 
all coordinate information to ensure they match the stated location. For instance, we 
infer an approximate location for historical datapoints with no GPS coordinates based 
on trial site metrices, and, at worst, the GPS coordinates from the closest verifiable city 
are used. This kind of data is a prerequisite to obtain correctly mapped and modeled 
climate, soil, or weather details from external sources in downstream transformers.  

Consumers: The data is virtualized into a variety of target database structures after 
it has been lifted into the semantic knowledge layer by consumer modules. The most 
flexible target database, and the one most representative of the corporate knowledge 
graph, is a graph structure stored in Virtuoso and/or Neo4j. Additionally, we implement 
a MongoDB service to provide file-based persistence for some data assets, and Elas-
ticSearch indices are produced to enable filtering and semantic (fuzzy) searching on 
content, provenance, and metadata (see section 3). Additionally, some business data 

                                                           
9 https://www.w3.org/TR/r2rml, last accessed 2019/02/20 
10 https://bioportal.bioontology.org/, last accessed 2019/02/20 
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(e.g. project information) are virtualized within PostgreSQL for easy ingestion by ex-
isting applications.  

A service layer encapsulates the knowledge base, connecting to the backend-solu-
tions of the data layer to enable consumption via provided applications or APIs using 
GraphQL11 or REST12. Thus, the consumers provide a suite of methods to access the 
knowledge base providing multiple formats for various applications. We use the 
GraphQL API and the ElasticSearch indices to feed search and visual analytics dash-
boards that management can directly interact with (e.g. Tableau, SpotFire, or scripts 
based on D3.js13). At the same time, using the same API, data scientists can refresh 
their analytical tools with the most up to date, semantically enriched data. And at any 
time, new consumers can be developed to handle novel requirements from new use 
cases without modifying the underlying corporate knowledge graph. 
 

 
Fig. 3. General semantic lifting from identified data sources via several transforming steps to 
unified polyglot semantic knowledge representations. 

3 Semantic search and exploration over enriched and 
integrated internal field trial data 

The proposed architecture has been implemented within our agricultural domain, serv-
ing decision making applications used by different stakeholders, such as scientists, pro-
ject managers, or decision makers. In the Field Solutions department, various products 
and equipment are tested on fields around the world for reasons spanning from dose-
finding and efficacy compared to current standards to market development and regula-
tory validation. Additionally, the global nature of our field trial experiments introduces 
regional operational differences that need to be fixed before cross-trial comparisons can 
be made, differences such as subjective judgement scales or measurement units. 

 We developed an in-house question-answering application to search for and ana-
lyze field trial experiments. As previously described, the knowledge representation is 
generated by ingesting data though producers from a number of distinct repositories 
and resources, such as an internal field trial database (e.g. crop, product, location, as-
sessment, observation, etc.), field sensor-data repository (e.g. Holland Scientific 

                                                           
11 https://graphql.org/, last accessed 2019/08/01 
12 https://restfulapi.net, last accessed 2019/08/01 
13 https://d3js.org/, last accessed 2019/02/20 
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CropCircle14 or various other sensors), and internal or external environmental data re-
sources (e.g. soil, climate zones, weather, disease pressure, etc.). The transformers 
implement expert knowledge to fix the inconsistencies and sanity-check the results. The 
resulting field trial knowledge graph generated by the consumer can then be accessed 
using the GraphQL API for any number of downstream applications.  

For reference, the Neo4j field trial subgraph is just a part of the entire knowledge 
graph, but it comprises 5.3 billion relations for 600 million nodes describing more than 
500,000 field trial experiments, and the graph is continuously growing. The domain 
model is an integral key to enable iterative growth since the connection points between 
nodes belonging to individual experiments are explicitly defined, and unique nodes be-
tween experiments remain unique. This methodology differs from social network 
graphs where the structure can dramatically change from week to week, whereas our 
methodology provides a stable structure as time progresses and new information is in-
crementally added. Thus, this lifted data provides opportunities for visualization and 
designing predictive models which, together with graph-based machine learning ap-
proaches, improve our R&D analytics and trial planning pipelines.  

In the past, product development managers used to interact with a single software 
access point to a cumbersome relational database to extract Excel reports that they man-
ually formatted for results meetings. However, we developed a consumer to produce a 
robust, simple relational database that is used by Spotfire to compare trials within a 
series, across multiple trial series, and even over multiple years – all without any need 
for Excel exports or manual formatting. These visual analytics tools are the basis for 
many managers’ results discussions slide decks, and there is almost no repeated effort 
to update these graphics as new trial information comes in from the field. What used to 
take up to one hour per trial to generate a human readable Excel product performance 
overview now takes less than 20 minutes for an entire trial series across multiple years. 

We also embedded fuzzy search (using ElasticSearch) into a web-hosted field trial 
overview application to enable real-time, type-ahead functionality to search for and fil-
ter field trials based on any of the many trial properties (such as weather or assessment 
type) in our knowledge graph. The search API feeds a visualization interface developed 
in JavaScript and Angular to provide a custom, modern, web-based experience to the 
end-user with drill-down data selection based on controlled terminologies managed 
through our ontology platform. This means that a product manager can access the same 
information by searching for the marketed product name, the in-house mixture code, or 
the active ingredient name of a formula due to the synonym repository appended by 
one of the pipeline transformers during data lifting. This web-based architecture is ver-
satile in that it allows for seamless integration of dashboards from third-party vendors 
such as Tableau or Spotfire in addition to custom, task-specific dashboards and visual-
izations – something that would have been almost impossible to achieve with the orig-
inal database landscape. Each dashboard can be access-controlled to allow users with 
various requirements (e.g. scientists, projects managers, or even members of leadership 
teams) access to appropriate organizational data, all from a single online portal. Ques-
tions varying from “how many trials are currently planned in Europe” to “what are the 

                                                           
14 https://hollandscientific.com/portfolio/crop-circle-phenom/, last accessed 2019/04/07 
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sensor measurements from trials using product A with foliar application in a field with 
a soil pH greater than 7” can be answered just as simply. In contrast, the second question 
would have required three separate data exports from two databases and some wran-
gling to merge and filter the results before the question could even be answered, let 
alone visualized. This kind of dashboarding portal reduces the effort necessary for re-
sults overview discussions, trial planning and resource allocation, and other business 
critical R&D operations. Overall, the semantic pipeline has given us a higher quality 
data standard, ensured comparability and analytical reproducibility [4], and improved 
precision and recall on search queries for our users. Other applications that we have 
developed using this pipeline blueprint include a Nanopublications [8, 9] subgraph with 
connections to key omics data and a chemical trials subgraph for small molecules ex-
periments as well as knowledge graph refinement and analytic approaches [10, 11]. 

4 Discussion and conclusion 

We described the architecture for knowledge organization used at Bayer Crop Science 
R&D as well as the status of a prototypical implementation of these principles. Our 
approach relies on a semantic data integration layer that exists on top of, and in con-
junction with, the underlying data repositories existing across the organization. The 
primary data are lifted into a semantic corporate knowledge graph layer based on a 
prescribed domain model. This enables the organization to choose which subset of data 
dimensions to lift, thus following an agile approach that limits required overhead costs 
and reduces data redundancy as much as possible. New data sources can be attached to 
the already linked data without disturbing the existing framework, and data collection 
workflows in each separate division remain unaltered.  

Semantic integration of data requires the adherence to vocabularies that are shared 
across stakeholders and organizational units to support data normalization. Adopting 
shared vocabularies between divisions increases conceptual consistency and reduces 
ambiguity, enabling analytical tools and results discussions to be shared between de-
partments. A key benefit is the unifying effect of using consistent and persistent iden-
tifiers across primary data sources which eliminates specificities inherent to single data 
sources and represents data in a source-independent way, reducing redundancy without 
losing context. Such a semantics-driven data integration approach has demonstrated 
numerous benefits: connections between data from different sources are clarified, dis-
tinct data silos are aligned, and interdepartmental data are contextually comparable. 
Knowledge is represented in a context that reflects a consistent view across the organ-
ization, allowing abstractions and aggregations that were previously infeasible. Seman-
tically lifted data are easily bundled into domain-specific data assets and exposed via 
APIs which enable existing workflows to continue working seamlessly on top of the 
lifted data landscape. Cross-functional data assets can be seamlessly accessed and used 
for machine learning, dashboarding, and visual analytics via use-case specific APIs in 
a time-saving way.  

An important benefit of a semantic integration approach is that it contributes to more 
complete, consistent and bias-free insight generation from data. Some inconsistencies 
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or gaps, such as disconnects between the needs of later regulatory trials and early prod-
uct phase trial planning, can be discovered early on in our data integration layer, at the 
knowledge graph level. Augmenting original data with new inferred data adds new 
depth and enforces the business context with derived data that is made persistent. Add-
ing simple reasoning mechanisms at the data lifting stage eliminates the need to calcu-
late such metrics regularly at the data query or analysis stages, reducing time to analysis 
and computational load. Additionally, for common calculations, this implementation 
ensures consistency between downstream analytical approaches across divisions. 

As this methodology is continually refined, further development of the outlined ap-
proaches will focus on the evolution and modification of the data and shared vocabu-
laries and on implementing a layer for quality control via semantic unit tests (e.g. using 
RDFUnit [12]) that involve the data owners. Additionally, we would like to expand on 
the topic of implementing a pay-as-you-go data lifecycle that allows project scaling and 
need-based investment increase. The next steps also include expanding and maturating 
the data model by challenging it with additional use cases, focusing on data provenance, 
analytics, machine learning on knowledge graphs, and advanced integrative reasoning. 
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