
Towards Automated Testing of Abstract Syntax
Specifications of Domain-Specific Modeling Languages

Daniel A. Sadilek and Stephan Weißleder

Humboldt-Universität zu Berlin
Department of Computer Science

Rudower Chaussee 25
12489 Berlin, Germany

{sadilek|weissled}@informatik.hu-berlin.de

Abstract: The abstract syntax of domain-specific modeling languages (DSMLs) can
be defined with metamodels. Metamodels can contain errors. Nevertheless, they are
not tested systematically and independently of other artifacts like models or tools de-
pending on the metamodel. Consequently, errors in metamodels are found late—not
before the dependent artifacts have been created. Since all dependent artifacts must
be adapted when an error is found, this results in additional error correction effort.
This effort can be saved if the metamodel of a DSML is tested early. In this paper, we
argue for metamodel testing and propose an approach that is based on understanding a
metamodel as a specification of a set of models. Example models are given by a user
to test if the set of models specified by a metamodel is correct. We present an example
from the domain of earthquake detection to clarify our idea.

1 Introduction

Metamodels are a common way to describe the structure of domain-specific modeling
languages (DSMLs). Tools for a DSML like editors, interpreters, or debuggers base on this
metamodel. Like every other artifact, metamodels contain errors (e.g. wrong specification
of classes or associations between them). When errors in a metamodel are found late,
dependent models and tools must be adapted. Hence, detecting errors in a metamodel
early can save time and money.

In software engineering, testing is the primary means to detect errors. In this paper, we
advocate testing metamodels and present an approach for automated testing based on the
specification of positive and negative example models.

In Sec. 2, we describe how to specify metamodel tests with example models and we de-
scribe how to execute them in Sec. 3. In Sec. 4, we substantiate our approach with an
exemplary development process of a simple DSML. We discuss related work in Sec. 5.
We conclude and give an overview of future work in Sec. 6.

2 How to Test Metamodels?

2.1 Example Models and Test Models

How can a metamodel be tested? To answer this question, we have to consider the nature
of metamodels. A metamodel is the specification of a set of possible or desired models.
What does it mean that a metamodel contains an error? It means that the specified set of
models either contains a model that is undesired or that it does not contain a model that is
desired.

The set of models specified by a metamodel is a subset of all instances of all possible meta-
models expressible as instances of the meta-metamodel used1. Figure 1 shows an Euler
diagram visualizing this idea. To test a set specification, one could give all elements of the
set and check if the set does contain these and only these elements. Since metamodels gen-
erally specify an infinite set of models, this is impossible. Instead, representative elements
can be given. Each representative element can be either an element or not an element of
the set.

All models

Models specified
by the metamodel

under test (MMUT)

(a)
Single positive
example-model

Positive/negative
example-model pair

(c)

Positive example-model with
multiple negative example-models

(d)

(b)
Single negative
example-model

Figure 1: Metamodel as a set specification; example models as elements.

In the following, we describe the relationship between such representative elements and a
Metamodel Under Test (MMUT).

For metamodels, we call representative elements example models. Example models that
are elements of the set of desired models should be correct instances of the MMUT—hence

1We consider metamodels that are instances of MOF.

we call them positive example models (Fig. 1a). Example models that are not elements of
the set of desired models should not be instances of the MMUT—we call them negative
example models (Fig. 1b).

Single example models can be anywhere inside or outside the set specified by the MMUT.
But, for high discriminatory power of the tests, we propose to give example models as
pairs of a positive and a negative example model that differ only in one aspect, for ex-
ample by an attribute value or by the existence of some object or reference. The posi-
tive/negative example model pairs then demarcate the boundary of the set specified by the
MMUT (Fig. 1c). The more example model pairs are given by a user, the more precise
the boundary is demarcated. This resembles the common testing technique of boundary
testing [Bei90].

A positive example model and its negative counterpart differ only slightly. If a user has
to specify them separately, this introduces a lot of redundancy. Therefore, we propose to
specify them in only one test model. A test model is a positive example model extended
with test annotations that describe which model elements have to be added or removed
to make it a negative example model. Thus, a test model allows a user to specify a posi-
tive/negative example model pair without redundancy.

We propose to allow the user to annotate more than one model element. Then, one test
model can describe one positive and multiple negative example models (Fig. 1d).

2.2 Test Metamodel

2.2.1 Motivation for an Additional Metamodel

Technically, models cannot be created and stored without a corresponding metamodel.
Which metamodel should be used for test models? Can we use an existing one, for example
the MMUT or the metamodel of UML object diagrams?

Unfortunately, the MMUT cannot be used. The reason is that the MMUT does not allow
to express test annotations. Also, a user may want to create test models before the MMUT
exists—for example, to sketch how instances may look like or to follow a test first approach
like in test-driven development [Bec02].

Test models describe instances of the MMUT. UML object diagrams can be used to de-
scribe instances of arbitrary classes. Could they be used to describe instances of the
MMUT’s classes? Unfortunately, the metamodel for UML object diagrams does not con-
tain elements to express test annotations, i.e. there is no way to describe a combination
of several example models in one object diagram. Also, UML object diagrams explicitly
reference the classes that the modeled objects instantiate. This again forbids to create test
models before the MMUT exists.

Therefore, another metamodel for test models is needed. We call it test metamodel. Fig-
ure 2 shows the test metamodel we propose and other artifacts of our approach: A test
model is an instance of the test metamodel and it specifies one positive example model

Test Meta Model

Test Model

<<instance of>>

Meta Model
Under Test

Positive
Example Model

<<instance of>>

specifies

references elements
by name

Test-modelTest-modelNegative
Example Models

<<not instance of>>

specifies

Figure 2: Relations between artifacts of our approach.

and an arbitrary number of negative example models. A test model references elements of
the MMUT by name (explained below). For each MMUT, there can be various test models
that are all instances of the test metamodel. The test metamodel is fixed, i.e. test models
for different MMUTs are all instances of the same test metamodel.

2.2.2 Structure of the Test Metamodel

Figure 3 shows the test metamodel: Instances of classes are given with their class name
and an optional object name. An instance can have an arbitrary number of attributes. Each
attribute has a name and a value, which is given generically as a string literal. Instances
can be connected by references. Reference ends can be named. The name must match an
attribute of the instance’s class at the opposite end of the reference.

All model elements (instances, attributes, and references) have an existence specification
that can be arbitrary (default value), enforced, or forbidden. All model elements with
existence specification arbitrary or enforced are part of the specified positive example
model. If an element is enforced, removing this element from the model leads to a negative
example model. If an element is forbidden, it is not part of the positive example model
and adding it leads to a negative example model.

+ existence: ExistenceSpec

ModelElement Conjunction

+ name: String
+ value: String

Attribute

TestModel

arbitrary
enforced
forbidden

«enumeration»
ExistenceSpec

+ className: String
+ objName: String [0..1]

Instance
+ end1Name: String
+ end2Name: String

Reference

elements
2..*

attributes
0..*

conjunctions
0..*

instances0..* references0..*

end1
1

end2
1

Figure 3: The test metamodel.

If multiple elements in a test model are enforced or forbidden, one test model describes
multiple negative example models. If two or more elements should be enforced or forbid-
den conjunctionally, i.e. they should describe just one negative example model, then they
can be connected by a conjunction.

3 Test Execution

In this section, we briefly describe how test models are used to test metamodels. The test
execution consists of 5 steps:

1. Resolve references to the MMUT.
The test model references the elements of the MMUT by name. In the first step, it
is checked whether all references can be resolved. If a reference of a not forbidden
element cannot be resolved, the test fails.

2. Derive example models from the test model.
Each test model specifies one positive example model and multiple negative example
models. The positive example model is derived from the test model by leaving out
all forbidden elements. A negative example model is derived for each conjunction
in the test model and for each enforced or forbidden element that is not connected
to a conjunction. Let e be a conjunction of elements or a single element for which a
negative example model is to be derived. Then all forbidden elements except e are
left out when constructing the model. If e itself is a forbidden element, it is added
to the negative example model; if e is enforced, it is left out.

3. For all example models: Create an instance of the MMUT according to the example
model.

4. For all example models: Check multiplicities and constraints of the created MMUT
instance.

5. For all example models: Decide test outcome.
If the current example model is a positive one, constraints must not be violated in
the previous steps; if it is a negative one, at least one constraint must be violated.

4 Example: Testing the Metamodel of a Stream-Oriented DSML

In this section, we describe the first step of an exemplary iterative development process of a
simple stream-oriented DSML for the configuration of an earthquake detection algorithm:
A sensor source generates a data stream that can be filtered and that finally streams into a
sink. For this example, we use the prototypical implementation of our approach: MMUnit
(http://mmunit.sourceforge.net).

http://mmunit.sourceforge.net

The development of the stream-oriented DSML involves a language engineer and an ex-
pert of the domain, a seismologist. As a first step, seismologist and language engineer
discuss some example uses of the new language. For the beginning, they concentrate on
one specific detection algorithm called STA/LTA [Ste77]. They sketch their ideas in an
informal ad hoc concrete syntax. Figure 4 shows the resulting model they have drawn on
a whiteboard.

STA/LTA Detection Filter
STA Time = 1000 ms
LTA Time = 10,000 ms

Acceleration Sensor

Detection Time Filter
Wait Time = 5,000 ms

Detection Warning
ff Sound Level

Figure 4: A first whiteboard sketch of a model expressed in a stream-oriented DSML.

The intention behind this model is as follows: Sensor readings from an acceleration sensor
are piped through a filter that realises the STA/LTA detection. The filter forwards sensor
readings that are considered to be the beginning of an earthquake and blocks all others.
The frequency of sensor readings is limited by another filter, detection time filter, before
they stream into a stream sink that generates an earthquake detection warning whenever a
sensor reading streams in, for example by activating a warning horn. The filters and the
sink contain attributes influencing their behavior.

The language engineer prefers a test-driven development. Therefore, he creates a meta-
model test before he creates the metamodel. For this, he derives a test model from the
model he and the seismologists sketched on the whiteboard. The result is shown in Fig. 5.2

The four instances on the left reproduce the model sketch. The positive example model
specified with the test model consists of only these objects. The test model also specifies
three negative example models: (1) Each sink must have a reference to a stream source.
Therefore, the language engineer sets the existence specification of the reference from
oWarning to oTimeFilter to “enforced”. This describes a negative example model in which
the reference is missing. (2) Seismologist and language engineer discussed but discarded
the idea of a motion detector filter. To ensure that the final metamodel does not support a
motion detector, the language engineer adds the forbidden instance oMotionDetector. The
corresponding negative example model contains this additional instance. (3) Each source
must be referenced by exactly one sink. To test this, the language engineer adds the for-
bidden instance oWarning2. Again, the corresponding negative example model contains
this additional instance.

2The notation we use for test models is similar to that of UML object diagrams. Additionally, enforced
elements are marked with a thick border, forbidden elements with a dashed one.

Figure 5: Screenshot of the test model for the earthquake detection metamodel. (The test model
editor is part of our prototype implementation MMUnit.)

After specifying the test model, the language engineer creates a metamodel for the stream-
oriented language (Fig. 6). In order to execute the tests specified by the test model, the
language engineer uses MMUnit to generate corresponding JUnit test cases. The generated
JUnit tests use a library that implements the test process as described in Sec. 3. Executing
the JUnit tests reveals an error: The negative test model that contains the additional in-
stance oWarning2, case (3), is not rejected as an instance of the metamodel. The language
engineer realizes that he forgot to set the multiplicity of the association between Source
and Sink to 1 on the Sink end. He corrects the error and executes the tests again. Now, all
tests pass.

SinkSource

SensorSource

Filter

DetectionWarning
+warningLevel: SoundLevel

StaLta
+staTime: int
+ltaTime: int

DetectionTimeFilter
+waitTime: int

«enumeration»
SoundLevel

{pp, p, f, ff}

source
1

Figure 6: A proposal for a domain-specific metamodel.

5 Related Work

In model-based testing, many approaches use models as specifications to generate test
cases for a system under test (SUT) [NF06, PP05, OA99, AO00]. The tests check if the
SUT satisfies all constraints of the model. The models themselves are assumed to be
correct, whereas we want to test the correctness of (meta-)models.

Tests for model transformations are handled in [Küs06, WKC06, BFS+06]. They all as-
sume that the used metamodels are correct and they focus on testing the transformation
process between them. Our approach is complementary to their approaches as it tests the
metamodels they assume to be correct.

In grammar testing [Pur72], character sequences are used to test a developed grammar
[Läm01]. This generic approach permits to define both words that conform to the grammar
and words that do not. While our metamodel also allows to generically describe instances,
we target metamodels, not grammars.

6 Conclusion and Future Work

Conclusion. Metamodels play an important role for the definition of the abstract syntax
of a DSML. In this paper, we argued that metamodels should be tested systematically. We
proposed an approach for testing metamodels and exemplified it with tests of a metamodel
for a stream-oriented DSML. Our approach is based on understanding metamodels as set
specifications. Our idea is to use example models that may lie either inside or outside of
the set specified by the metamodel.

We already did a prototypical implementation of our approach, which we sketched shortly
in this paper. It is based on the Eclipse Modeling Framework (EMF). The prototype is
called MMUnit (http://mmunit.sourceforge.net) and provides an editor for
test models and can generate JUnit tests from test models. Such a generated JUnit test
reads a test model and checks if the described positive example model is an instance of the
MMUT and if the described negative example models are not instances of the MMUT. If
both checks pass, the test succeeds; otherwise it fails.

Metamodel tests are possible. They can be specified quite easily. By the integration with
JUnit, metamodel tests can be executed automatically. Thus, metamodel tests can be inte-
grated into existing software development processes (e.g. metamodel tests can be executed
as part of a continuous integration build).

Future work. Currently, our implementation tests classes, attributes, and associations of
a metamodel together with their multiplicities. Usually, a constraint language like OCL
is used to constrain the set of possible models. We plan to extend our implementation to
support the evaluation of OCL constraints during test execution.

Another restriction in our current approach is that a test model always describes exactly
one positive example model. We think that one may also want to describe multiple positive

http://mmunit.sourceforge.net

example models that differ only slightly or one may also want to describe negative example
models only. For this, we could extend the test metamodel with an attribute that states
whether the test model describes a positive or a negative example model as the base case.
Furthermore, we could add another enumeration value for existence specifications that
allows for specifying that a model element can be removed or left in the example model
without influencing whether the example model is a positive or a negative one.

We left open whether metamodel tests pay off economically? To answer this question,
systematic case studies are necessary.

Acknowledgments. We would like to thank the reviewers for valuable comments. This
work was supported by grants from the DFG (German Research Foundation, research
training group METRIK).

References

[AO00] Aynur Abdurazik and Jeff Offutt. Using UML Collaboration Diagrams for Static Check-
ing and Test Generation. In UML 2000. University of York, UK, 2000.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-Wesley Professional,
November 2002.

[Bei90] B. Beizer. Software Testing Techniques. John Wiley & Sons, Inc., 1990.

[BFS+06] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon.
Metamodel-based Test Generation for Model Transformations: an Algorithm and a Tool.
In ISSRE ’06: Proceedings of the 17th International Symposium on Software Reliability
Engineering, pages 85–94, Washington, DC, USA, 2006. IEEE Computer Society.

[Küs06] Jochen M. Küster. Definition and validation of model transformations. Software and
Systems Modeling, V5(3):233–259, 2006.

[Läm01] Ralf Lämmel. Grammar Adaptation. In José Nuno Oliveira and P. Zave, editors,
FME’01, volume 2021 of LNCS, pages 550–570. Springer, 2001.

[NF06] Clementine Nebut and Franck Fleurey. Automatic Test Generation: A Use Case Driven
Approach. IEEE Trans. Softw. Eng., 32(3):140–155, 2006.

[OA99] Jeff Offutt and Aynur Abdurazik. Generating Tests from UML Specifications. In
UML’99 — The Unified Modeling Language, volume 1723 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 1999.

[PP05] Wolfgang Prenninger and Alexander Pretschner. Abstractions for Model-Based Testing.
Electr. Notes Theor. Comput. Sci., 116:59–71, 2005.

[Pur72] Paul Purdom. A sentence generator for testing parsers. bit, 12(3):366–375, 1972.

[Ste77] S. W. Stewart. Real time detection and location of local seismic events in central Cali-
fornia. In Bull. Seism. Soc. Am., volume 67, pages 433–452, 1977.

[WKC06] Junhua Wang, Soon-Kyeong Kim, and David Carrington. Verifying Metamodel Cover-
age of Model Transformations. In ASWEC’06, 2006.

	Introduction
	How to Test Metamodels?
	Example Models and Test Models
	Test Metamodel
	Motivation for an Additional Metamodel
	Structure of the Test Metamodel

	Test Execution
	Example: Testing the Metamodel of a Stream-Oriented DSML
	Related Work
	Conclusion and Future Work

