
Madalina Croitoru
Robert Jäschke
Sebastian Rudolph (Eds.)

Conceptual Structures
Tools and the Web
Third Conceptual Structures Tool Interoperability Workshop 2008

O programmer why seekest thou to hide
The mellow fruits of craftmanship and wit,
Sweets with sweets war not, coupled side by side,
Will software grant the greatest benefit.

Each single tool might let the user down,
Another look and feel, another trait,
To spread CGs’ and FCA’s renown
There is no choice but: interoperate.

Mark how one tool, good fellow to another,
Connected through a pleasant API
As forged to gladly complement each other,
The user’s happiness will multiply,

Their seamless interaction, seeming one,
Conveying this: ’Thou single wilt prove none.’

Preface

The Third Conceptual Structures Tool Interoperability Workshop
(CS-TIW 2008) was held in Toulouse, France on the 7th of July 2008,
collocated with the 16th International Conference on Conceptual Struc-
tures (ICCS 2008) “Knowledge, Visualization and Reasoning”. Infor-
mation about the workshop can be found at: http://www.kde.cs.uni-
kassel.de/ws/cs-tiw2008/.

The title of this year’s workshop, “Conceptual Structures Tools and
the Web” was chosen to emphasize the need for interoperability for
building comprehensive, effective knowledge systems that are useful to
communities and organizations. While the ongoing goal of the work-
shop is to explore how to improve the interoperability of Conceptual
Structures (CS) tools amongst each other and with other established
knowledge representation and reasoning technologies, this year, in par-
ticular, the focus has shifted specifically on the interaction of such tools
with Web technologies.

The workshop brought together researchers from diverse communi-
ties with the common goal of a fruitful discussion on the above men-
tioned interoperability issues by raising mutual awareness of ongoing
research and existing technologies from which each community could
benefit.

All papers appearing in this volume were refereed by at three ref-
erees. The final decision to accept the papers was arbitrated by the
Program Chairs based on the referee reports. We wish in full to ex-
press our appreciation to all the authors of submitted papers and to
the members of the Program Committee for all their work and valuable
comments.

July 2008 Madalina Croitoru
Robert Jäschke

Sebastian Rudolph

Workshop Organization

Programme Chairs

Madalina Croitoru
Robert Jäschke
Sebastian Rudolph

Programme Committee

Oscar Corcho
Raul Garcia-Castro
Peter Haase
Nathalie Hernandez
Marie Laure-Mugnier
Heather D. Pfeiffer
Camille Roth
Gerd Stumme

Local Organization

Nathalie Hernandez

Table of Contents

Implementing Interoperability through an Ontology Importer
for Amine . 1

Saleh Abdulrub, Simon Polovina, Ulrik Sandberg-Petersen, Richard
Hill

The Role of FLIPP Explainers as a Tool to Assist the Visual
Composition of Web Services for Enterprise Systems 7

Neil Adams, Simon Polovina, Richard Hill

Towards Conceptual Structures Interoperability Using
Common Logic . 13

Harry S. Delugach

Pseudo-conceptual text and web Structuring 22
Ali Jaoua

FcaStone - FCA file format conversion and interoperability
software . 33

Uta Priss

A visual mapping tool for database interoperability: the
HealthAgents case . 44

Roman Roset, Miguel Lurgi, Madalina Croitoru, Bo Hu, Magi
Lluch, Paul Lewis

Implementing Interoperability through an

Ontology Importer for Amine

Saleh Abdulrub1, Simon Polovina1,
Ulrik Sandberg-Petersen2, and Richard Hill1

1 Faculty of Arts, Computing, Engineering & Sciences,
Sheffield Hallam University, Sheffield, United Kingdom

Saleh.Abdulrub@student.shu.ac.uk,{s.polovina, r.hill}@shu.ac.uk
2 Kaj Munk Research Center,

Department of Communication & Psychology,
Kroghstræde 3,

Aalborg University, DK-9220,
Aalborg, East Denmark
ulrikp@hum.aau.dk

Abstract. This paper investigates the need for tools that will facilitate
a higher-order demand for interoperability between disparate systems.
An ontology importer for Amine is described which enables ontologies
written in linear form to be used with Amine version 4. Furthemore,
the ontology importer is shown as an intermediary between CharGer
and Amine, thus demonstrating interoperation between two conceptual
structures tools, as well as discussed in a wider context by means of a
Web service or by interoperating with Protégé-OWL.

1 Introduction

The Amine platform provides a comprehensive software suite for symbolic pro-
gramming, intelligent system programming and intelligent agents programming[7].
It is primarily based on Conceptual Graphs (CG)[8]. As a core component it in-
cludes an ontology builder that is based upon a graphical user interface (GUI).
The role of an ontology is key as it describes the concepts in a domain and
any relationships between these concepts in this particular domain[3]. An ontol-
ogy thus describes an existence of some particular objects in some domain and
work can be derived from studying this domain. In CG an ontology consists of a
type hierarchy that contains types that represent groups of entities with similar
traits[5].

2 The Need

Whilst Amine’s ontology builder is sophisticated, the technique used to develop
an ontology using the Amine GUI can be quite time consuming as it involves
much manual mouse pointing and clicking by the user. There are two further

1

possible ways an ontology that on first sight appear to be more attractive. The
first of these is generating or writing XML that is compatible with Amine. This
method however is rather intricate as the XML needs to match the atypical on-
tology storage structure of Amine. Thus even with XSLT, in practical terms this
is too low-level[1], [4]. The second way is by building an ontology programmati-
cally by using Amine’s API. Again this method is difficult and time consuming
as, like the XML option, it requires the Amine-specific structure. The ontology
importer addresses these concerns. It provides easier ontology development by
giving, in contrast to Amine’s current ontology builder, the ability to develop an
ontology directly in CG in its linear form.

3 The Ontology Importer

The importer addresses the desire for CG software tools to interoperate. To have
these tools in some sense compatible and functioning with each other is a key goal
that would be welcomed by many in the CG community. This ontology importer
is a small experiment that could be taken further in the future to achieve the
end goal of interoperability between other CG tools.

3.1 As an Implementation

Currently the ontology importer consists of a GUI with a text-editor. An input
in straight ASCII format is complied and accepted, then linking it to Amine’s
APIs. The ontology importer is fully functioning with error handling facilities.
It is a Java library, and as such can be accessed from any Java application. One
application that comes with the ontology importer for example is a text editor to
input the text, which also contains output for informative messages. Currently
the prototype accepts the input as a Java String. However the ontology importer
will soon provide the facility for a user to enter the URL of a file and have the file
compiled and if there are no errors in the input create an ontology. It is significant
that the input to the ontology importer is a Java String. This is useful for the
following reasons; firstly it enables easy creation of ontologies that have been
automatically constructed from other sources, thereby enabling interoperability
between Amine and other knowledge representation software. Secondly it enables
quicker and easire creation of ontologies by using the keyboard rather than the
mouse.

4 Prolog+CG 2.0

The syntax used by the ontology importer is modelled upon that of Prolog+CG
2.0 (hereafter referred to as Prolog+CG). Prolog+CG is a GC tool built in
Java. It is similar to Prolog except it has extensions for handling CG. Profes-
sor Adil Kabbaj, the creator of Amine, was also the creator of Prolog+GG[6].
Prolog+CG’s extensions enable it to handle CG ontologies that can be created,

2

queried and results given. Prolog+CG is thus a CG programming environment.
In Prolog+CG for example the following ontology could be written into a Pro-
log+CG text editor without any further programming:

Universal > Male, Female, Adult, Child.

Male > Man, Boy.

Female > Woman, Girl.

Child > Boy, Girl.

Adult > Man, Woman.

Instances can also be created easily in Prolog+CG. For example the following
instances can easily be created in Prolog+CG:

Boy = Sam, Richard, Gary.

Girl = Greta, Rebecca, Sheila.

Like the ontology importer, Prolog+CG enables ontologies to be entered in CG
linear form. However it is not interoperable in that it lacks a cohesive, distinct
component for creating and interoperating ontologies. It also does not return
an Amine API ontology or lexicon object that can then be used by Amine’s
ontology builder. Given all these factors, the ontology importer was designed
as a distinct component from the outset rather than to retro-fit Prolog+CG’s
legacy version to the problem in hand.

5 Creating an Ontology with the Ontology Importer

As in Amine the topmost type and the topmost relation type must be specified
at the start of the ontology. This is achieved by simply entering the word ‘TOP’
and specifying its identifier after the ‘::=’ assignment of symbol. This process
is the equivalent to the dialogue box that appears on Amine’s ontology builder
GUI that asks for the topmost type in the hierarchy. The topmost relation in
the hierarchy must also be specified by entering ‘RELATION TOP’ and passing
the identifier name after the ‘::=’ assignment symbol. The ontology importer
then expects these to be the first types in the hierarchy. (NB If an identifier
other than the TOP’s identifier is the first in the hierarchy an error is flagged. If
RELATION TOP’s identifier is a subtype of any type other than TOP’s identifier
an error is flagged. Similarly if TOP and RELATION TOP are omitted the
ontology would not compile). Adding an ontology using the prototype is thereby
much simpler than using Amine’s GUI; indeed one can simply paste an ontology
into the text editor. The following ontology can then be created as shown in
Figure 1:

TOP ::= Universal.

RELATION_TOP ::= Relation.

Universal > Male, Female, Adult, Child.

Male > Man, Boy.

Female > Woman, Girl.

3

Child > Boy, Girl.

Adult > Man, Woman.

Boy = Sam, Richard, Gary.

Girl = Greta, Rebecca, Sheila.

Fig. 1. Importing an ontology.

6 Automating across Applications

An example of how to automate the ontology importer can be illustrated using
CharGer as an example. CharGer is a CG software tool[2]. CharGer is used
for CG operations similar to Amine. CharGer creates ontologies in graphical
form and generates a linear form ontology from this graphical form. In CharGer
instances are created by having the link in text format. Instances are shown in
a rectangular box with the concept type name and the instance as the referent.
The link is produced by giving the name of the concept type, thus in text format.
The following linear form ontology is generated by CharGer:

Type Man is a kind of Male

Type Boy is a kind of Child

Type Female is a kind of Universal

Type Adult is a kind of Universal

Type Relation is a kind of Universal

Type Male is a kind of Universal

4

Type Child is a kind of Universal

Type Woman is a kind of Adult

Type Man is a kind of Adult

Type Boy is a kind of Male

Type Woman is a kind of Female

Type Girl is a kind of Female

Type Girl is a kind of Child

There is a Proposition where Boy Sam Boy Richard Girl Rebecca Girl

Sheila Boy Gary Girl Greta

The above code can be either automatically transformed or manually edited to
produce the type hierarchy in the format accepted by the ontology importer.
One current shotcoming of the ontology importer is that it requires the types to
be specified top-down. Hence we need to reorder the list before processing with
the ontology importer.

TOP ::= Universal.

RELATION_TOP ::= Relation.

Universal > Female.

Universal > Male.

Universal > Child.

Male > Man.

Child > Boy.

Universal > Adult.

Universal > Relation.

Adult > Woman.

Adult > Man.

Male > Boy.

Female > Woman.

Female > Girl.

Child > Girl.

Boy = Sam, Richard, Gary.

Girl = Rebecca, Sheila, Greta.

The above ontology now can be accepted and compiled by the ontology importer.
Achieving the goal of automation across applications has been met, though there
were some amendments that need to be done to the ontology in order for it
compile. This is clearly a shortcoming which we intend to address in the near
future.

7 Automating as a Web Service

The primary goal for this work was to be able to use Amine ontologies in Web Ser-
vices, without using a mouse for data entry. Part of this goal has been achieved;
since the ontology importer is a Java library, it can be incorporated into any Java

5

Web Service together with Amine. Similarly it would be useful to enable the cre-
ation of Amine ontologies as a web service. Once implemented this will achieve
the goal of interoperability. Any application can then add a reference specifying
the location of the Web Service and connect to the ontology importer’s API.
When connected to the importer’s API the user is indirectly accessing Amine’s
APIs to create an ontology. An Amine ontology would then be returned, thus
achieving the goal which was originally formulated.

8 Conclusion

The ontology importer presented in this paper provides Amine with a convenient
plug-in tool for its ontology builder. This extends to Web Services and main-
stream non-CG ontology tools such as Protégé-OWL. Future research would
include the following. First, the restriction on the order of the lines needs to be
lifted. Second, a convenient method needs to be added, such that a URL can be
given to the ontology importer, which is then fetched and used as the input to
the method which accepts a String. Third, a Web Service needs to be created
which provides Amine ontology creation services through a Web Service inter-
face. The ontology importer will be released as Open Source software, thereby
benefitting the CG and broader knowledge representation communities.

References

1. Brady, N., Polovina, S., Shadija, D., Hill, R., (2006) ‘Experiences and Lessons from
the Practical Interoperation of CharGer with SeSAm’, Proceedings of the First Con-
ceptual Structures Tool Interoperability Workshop (CS-TIW 2006), July 16, 2006,
Aalborg, Denmark. de Moor, A., Polovina, S., Delugach, H., (Eds.), Aalborg Uni-
versity Press (ISBN: 87-7307-769-0), 32-47.

2. Delugach, H., (2006). ‘CharGer - Conceptual Graph Editor’. [online] last accessed
8 April 2008 at: http://sourceforge.net/projects/charger/

3. Horridge, M.,(2008). ‘A Practical Guide To Building OWL Ontologies Using Protégé
4 and CO-ODE Tools’, [online] last accessed 25 March 2008 at: http://www.co-
ode.org/resources/tutorials/ProtegeOWLTutorial-p4.0.pdf

4. Maybery, P., Polovina, S., (2007). ‘The Extent to which Interoperability between
CG and non-CG Tools can be Assessed against the Semiotic Ladder’, Proceedings
of the 2nd Conceptual Structures Tool Interoperability Workshop (CS-TIW 2007),
July 2007, Sheffield, UK. Pfeiffer, H., Kabbaj, A., Benn, D., (Eds.), Research Press
International (ISBN: 1-897851-16-2), 35-44.

5. Petersen, U., (2008). Online Course in Knowledge Representation using Conceptual
Graphs [online] last accessed 22nd March 2008 at http://www.huminf.aau.dk/cg/.

6. Petersen, U., (2004-2007). Prolog+CG 2.0 website. last accessed Accessed 26 March
2008 at: (http://prologpluscg.sourceforge.net/.

7. Pfeiffer, H., Kabbaj, A., & Benn, D., (2007). Proceedings of the 2nd Conceptual
Structures Tool Interoperability Workshop (CS-TIW 2007), July 2007, Sheffield, UK.
Pfeiffer, H., Kabbaj, A., Benn, D., (Eds.), Research Press International (ISBN: 1-
897851-16-2), 65-70

8. Sowa, J.F., (1984). Conceptual Structures, Addison-Wesley.

6

The Role of FLIPP Explainers as a Tool to

Assist the Visual Composition of Web Services

for Enterprise Systems

Neil Adams, Simon Polovina, and Richard Hill

Faculty of Arts, Computing, Engineering & Sciences,
Sheffield Hallam University, Sheffield, United Kingdom

neil.g.adams@gmail.com,{s.polovina, r.hill}@shu.ac.uk

Abstract. This work considers process orchestration for software devel-
opment on Service-Oriented Architectures (SOA). In this research the
concept of FLIPP explainers are introduced to the web service com-
munity. The FLIPP explainer is a conceptual structure providing mass
simplification to otherwise complex logic without the use of text or sym-
bols. In this research the FLIPP explainer has been transformed into
a workable tool to develop composite applications alongside SOAs as a
direct alternative to some of the current products being offered by SAP
and Oracle. Tests indicate that the tool has potential to assist in the
development of applications but offers more real promise for the visual-
ization of complex systems and processes. Also, the work highlights the
fundamental issues that the FLIPP has for software development, includ-
ing the initial complexity of designing the diagrams. Finally, guidelines
for future enhancements and potential work are provided.

1 FLIPP Explainers and Service Composition

Part of SAP’s strategy for improving the way enterprise applications are con-
structed requires a faster and more flexible development process [8]. With the
major manufacturers now introducing Service-Oriented Architectures (SOA),
tools are being provided that allow business analysts to create applications by
dynamically composing web services in order to quickly produce systems.

It is only now that service-oriented architectures are a viable solution for
enterprise computing that visual development has any real chance of succeeding
due to the increased abstraction offered by the services as they are now seman-
tically closer to the business than ever before[4]. SAP consider their NetWeaver
suite to be the market leader in SOA systems and therefore Visual Composer
(VC) to be the pioneering application for business analysts to use. This work
aims to improve visual development through the use of FLIPP Explainers as a
direct comparison the the SAP alternative.

FLIPP explainers are a logical method to provide massive simplification to
complex systems[1]. Cox explains that the diagrams allow complex systems to
be visualized “without language, symbols or formulae”. He proposes that the

7

diagrams achieve this by creating ‘scenarios’ which portray the unambiguous
options to the user. Sowa [7] comments that each diagram provides the user
with an acrylic and-or graph in rectangular blocks, nested together to form the
system. Cox and Polovina [2] imply that by using the diagram frames, it is
possible to represent ideas that are not easily conveyed through semantics alone.

The most convenient way to describe FLIPP Explainers is through example
and Figure 1 shows a sample FLIPP diagram by Sowa[7]. Cox explains how to
read the diagrams as “read down, don’t cross verticals”. From this example it

Fig. 1. A sample FLIPP diagram
from Sowa[7]

Fig. 2. Relationships of various languages
to common logic, Sowa[7]

is possible to analyse the characteristics of the FLIPP diagrams. Sowa[7] notes
that the 11 boxes, marked A to K, are grouped vertically, by implicit (AND)
symbols, and horizontally, by implicit (OR) symbols. Therefore, according to
Sowa, figure 1b can be represented logically through the following equivalent
formula:

A ∧ ((B ∧ ((D ∧G) ∧ (E ∧H))) ∧ (C ∧ F ∧ (I ∧ J))) ∧K (1)

In English the above diagram can be read as follows: “Start with A, if you proceed

to B as opposed to C then use D followed by G or E then followed by H. If you

follow A with C then use F followed by either I or J. Regardless of route, finally

finish with K.”

It is by this reasoning that it seems that web services can be modelled through
these diagrams in order to improve user understanding and also to provide a
logical framework for semi-automated decision making. Although the concept
of FLIPP diagrams in relation to user interfaces has not been investigated yet,
Sowa[7] has researched them in their original context. Figure 2 shows Sowa’s
positioning of FLIPP diagrams in relation to common logic and other structures

8

related to the semantic web. By mapping a FLIPP diagram to formats such as
controlled English, processing can occur upon the logic by existing languages.
What is attractive about the FLIPP explainer in relation to this work is the
impact that it has upon data visualization. FLIPP diagrams immediately convey
complex information to people without the need to learn symbols or notation.

Fig. 3. Sample application modelled inside the FLIPP interface.

2 Discussion

The results of this research have been collated from a number of business and
process analysts working at British Airways. In order to ascertain the results, the
users were subjected to a range of case studies and asked for opinions regarding
the usability and relevance of the interface for their current jobs. These results
are outlined in the section below.

When comparing FLIPP explainers with SAP Visual Composer some of the
claims made by Cox regarding FLIPP explainer appear to be subjective. Analyst
1 found that lines were easier to decipher than the box system whereas Analyst
2, although understanding the methodology, failed to see a real advantage at
this stage. However, Analyst 3 found that reading the processes was much eas-
ier on the FLIPP interface than on VC. Therefore it appears that there are
two distinct phases of using the FLIPP diagram in process orchestration; soft-
ware composition, creating a FLIPP, and software modification, reading from a
FLIPP.

Cox’s[1] main claim, regarding FLIPP’s simplicity of reading, is certainly
shared by Analysts 2 and 3. Both users felt that it is simple to track processes

9

through the FLIPP grid yet they both struggled to produce the diagrams ini-
tially. Parush et al.’s [5] work note that the use of graphic stimuli in a structured
interface help to create a ‘holistic’ view that users can interpret at a glance. This
effect was enhanced significantly amongst inexperienced users which is also ev-
ident in the FLIPP testing analysis. Analyst 3 had little knowledge of the are
prior to experimentation and afterwards understood the purpose of both the
diagrams and the systems perfectly.

However, Analyst 1 had plenty of knowledge of reading diagrams from UML
and other experience but failed to see the benefit of the holistic view. However,
when it came to developing the interfaces all the users had at least some initial
problems. There appear to be two obvious explanations for this trend. Firstly it
could be down to the lack of a finalised interface that caused the user frustration
with simple problems such as limitations with the colours or deleting items.
However it is more likely that it is harder to plan a system in one’s head prior
to expressing it on a FLIPP interface. The development process of a FLIPP
explainer is not covered in detail in Cox’s material yet it is a fundamental part
of the process. Therefore with this part of the process proving challenging it may
deter other users as well.

A common criticism of the interface in the results is the inability for the user
to create a series of loops or to use iteration to reach a particular goal. Analyst
3’s suggestion of using bolder borders, seems like a particularly interesting idea,
especially when compared to the idea of having linking arrows, thus effectively
detracting much of the simplification from the diagram. However even this leads
to some questions regarding usability as Cox[1] champions the FLIPP diagrams
to reduce the complexity of standard arduous textual descriptions. Other sys-
tems, such as SAP’s Visual Composer, have the luxury of being able to simple
connect an arrow back to the start of the loop which is activated when a guard
condition is met. Interestingly in the SAP system it is not possible to mark the
guard condition on the line thus limiting the visualization that is available.

Analyst 2 raised the point that between cells in the process there is no method
for identifying the condition that is met to trigger a certain path through the
system. Inside the SAP interface there is generally either a description on a
connecting line or the inputs/outputs to be connected are clearly shown. How-
ever, inside the FLIPP interface at present this information isn’t available which
causes uncertainty. Pautusso and Alonso[6] conclude that a visual approach is
the natural complement to service selection only when the correct amount of
information is provided in the visualization.

In order to read the FLIPP explainers the creator has derived a top to bottom
methodology as standard. However it was commented on by Analysts 2 and
3 that processes are traditionally expressed from left to right and Analyst 1
automatically began developing in the left hand corner. Analyst 2, in particular,
found that the processes should be expressed this way to promote usability
amongst differing sets of people. Many of the results taken from the analysts
appear to represent the FLIPP interface in a bad light. However the analysts
didn’t report that the interface contained any fundamental problems. All the

10

analysts agreed that the interface was easy to read from and many of the points
mentioned above are purely improvements that would be necessary to use the
interface for on a full scale implementation.

One major problem that has become apparent with the FLIPP explainer
when used in this context is related to the connection of inputs and outputs.
Each of the analysts liked the simple method of connection that the interface
utilised by combining the inputs via a single screen. However the problems be-
come apparent in the modification of the grid layout. When the grid is moved
with the web services attached it can effectively disconnect any connections that
have been made when the web services were placed in the grid.

3 Conclusions

The principle contribution is that the FLIPP explainer appears to have a fu-
ture role in the composition of web services, assuming that some of the initial
limitations can be resolved. In response to the original question, of whether it
is possible to portray more information through a simpler visualization, the re-
sults indicate that it is possible to convey more information through a FLIPP
based interface than through the current implementations. This is substantiated
as follows:

– Although the results suggest that it is easier to read data from FLIPP dia-
grams, it is not clear whether it is a tangible effort or time saving approach
for the user;

– Being able to compile FLIPP diagrams quickly and accurately appears to be
an ability that requires some degree of skill;

– The benefit of process visualization via FLIPP diagrams also depends on the
person involved to a certain extent. However it appears to be less important
than when creating systems.

It is apparent that the FLIPP explainers original claim by Cox[1] that users
prefer complex logic to be portrayed without ‘language, symbols or formula’ is
partially true when used for developmental purposes. Users have a desire to feel
empowered by the application and not restricted or frustrated with functional
limitations. Therefore the challenge for implementing a successful FLIPP inter-
face is to understand the balance between usability and simplicity. Building a
FLIPP interface true to Cox’s guidelines [1] would provide a logically superior
product which would excel at demonstrating systems to people unaware of the
method. However, as noted by Halipern and Tarr[3], too much simplification
restricts the purpose of the interface, particularly for experienced users, thus
negating any advantages that might have been achieved.

One of the limitations of the FLIPP interface is that it still fails to provide
an adequate method in assisting users to select the correct services for their
applications. In its current form it serves simply as a tool in the armory of
the Visual Composer user, and would best be used as an optional construct
dependent upon the developer’s preferences.

11

However, the tool still has a much greater potential when assisting informa-
tion visualization. Ultimately, this is the strength of the FLIPP explainer, and
by implementing a system where the grid is used to assist in modifying pre-
vious composite applications, or for identifying useful components from other
processes, its potential will be maximised.

4 Future Work

This work represents the first stages of a topic that could potentially lead in many
disparate directions. Firstly, the immediate future would be to create an interface
with sufficient functionality that it could be used inside an SOA environment
to provide genuine ‘like for like’ tests. This, followed by more detailed analysis
of user behaviour in the environment would provide a detailed insight into the
real benefits of FLIPP diagrams for a variety of users. Another possible use
of the FLIPP diagram is to combine the interface with other Common Logic
tools. This would enable users to quickly and easily search for a process that
would meet their exact needs whilst communicating the relevant output via
the FLIPP interface. Sowa[7] describes a link between FLIPP Explainers and
Common Logic, thus suggesting that this approach has potential. Since it is
possible to represent the FLIPP data inside common logic notation, it would
therefore be feasible to expose the composed service for placement within other
conceptual structures. Future work involving FLIPP Explainers is to be focused
around improving service composition and visualizing the processes for future
modifications.

References

1. Cox, D. (2005) Explanation by Pattern Means Massive Simplification (an E-book),
[online] Last accessed 20th June 2007 at http://www.flipp-explainers.org/

2. Cox, D. and Polovina, S (2007) Helping System Users to Be Smarter by Repre-
senting Logic in Transaction Frame Diagrams , In Proceedings: of15th International
Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22-27, 2007.

3. Hailpern and Tarr (2006) Model-driven development: The good, the bad, and the
ugly, In IBM Systems Journal, Vol 45, No 3.

4. Norton, D (2007) SOA is a Catalyst for Model-Driven Development, Gartner Re-
search

5. Parush, A., Hod, A. and Shtub, A. (2006) Impact of visualization type and contex-
tual factors on performance with enterprise resource planning systems, Computers
& Industrial Engineering, 52, 133-142.

6. Pautasso, C. and Alonso, G. (2003) Visual Composition of Web Services, In: Pro-
ceedings of the 2003 IEEE Symposia on Human Centric Computing Languages and
Environments, Auckland, New Zealand, October 2003.

7. Sowa, J. F. (2007) FLIPP Diagrams, [online] Last Accessed 20th November 2007
at: http://www.jfsowa.com/logic/flipp.htm

8. Woods, D & Mattern, T. (2006) Enterprise SOA: Designing IT for business innova-
tion, O’Reilly.

12

Towards Conceptual Structures Interoperability
Using Common Logic

Harry S. Delugach

Computer Science Department
Univ. of Alabama in Huntsville

Huntsville, AL 35899
delugach@cs.uah.edu

Abstract. The Common Logic (CL) ISO standard has been officially published and
available. While its focus goes beyond the conceptual structures community, one of
its components is an interchange format for conceptual graphs. Now the community
has an opportunity to leverage the standard for tool usage. Current tools that support
pre-ISO versions must now support the standard. Future tools will be much more
useful if they too support the standard. This paper describes the CL effort, outlines
its main features and issues a call to action.

Keywords: Common Logic, conceptual graph interchange format, CGIF,
international standard

1 Introduction
Over the years, a number of knowledge representations have been proposed, e.g., the

Knowledge Interchange Format (KIF) [1], conceptual graphs (CGs) [2, 3], the W3C’s
Resource Description Framework (RDF) [4], various forms of the W3C’s Web Ontology
Language (OWL) [5] and there have been occasional efforts to establish ways to translate
between them, or else to develop techniques for interoperability between systems that use
the various representations. Recently one such effort – Common Logic (CL) – has reached
the status of an officially published international standard [6]. This standard is freely
available to the public.

While the focus of CL goes beyond just the conceptual structures community, one of
its components is an interchange format for conceptual graphs. Now for the first time the
conceptual graph research community has an opportunity to leverage the standard for tool
interoperability and further promulgation of CGs. Current tools that support pre-ISO
versions should be updated to support the standard. This paper describes the effort, its
main features and then suggests some of the potential benefits of its use.

13

2 A (partial) interoperability history of conceptual graphs
The story of conceptual structures interoperability has several chapters. Since

conceptual graphs were first proposed [2], efforts have been made to support its
interoperability. Indeed, that introduction of conceptual graphs contained a set of
“standard” concept and relation types, along with a text-based format known as the “linear
form” of conceptual graphs (LF). This linear form had the twin goals of being able to be
automatically parsed by software and the ability to be understood by human readers.
Consider the conceptual graph example in Figure 1:

Cat: Albert Date: "May 1, 1984"

Color: greenattrMat

pt_in_timeSit

location

agent

Figure 1. Example Conceptual Graph.

One linear form of this graph is the following:

[Cat: Albert]-> (agent) -> [Sit] –
 -> (pt-in-time) -> [Time: “May 1984”]
 -> (location) -> [Mat] -> (attr) -> [Color: green]

The linear form has been useful and versatile within online discussions and emails
where small graphs need to be shown unambiguously.

The need for interoperable tools was already well understood even before the first
ICCS conference. Gerard Ellis and Bob Levinson began an effort known as PEIRCE
which was to create a standard workbench for conceptual graphs such that its tools could
interoperate with each other [7]. The effort never realized its full potential, for several
reasons; one of those was the lack of a standard (other than the LF). John Sowa began to
explore options for a more interoperable standard.

A few years after CGs became popular, the Knowledge Sharing Effort (KSE) of the
U.S. DARPA research agency was using another knowledge representation language.
Their language, known as the Knowledge Interchange Format (KIF) was also a first-order
logic language, with extensions for non-monotonic reasoning and definitions [1].

Around 1994, it became clear to researchers in both the CG and KIF communities
that they were both addressing issues of interoperability. They realized it was in their best
interests to work toward standardizing both CGs and KIF so that (a) they would be
interoperable with each other and (b) they would express the same semantics. This effort
became known as the Common Logic effort, but it was not successful in reaching the
status of an approved standard.

14

A side effort during these activities was the creation of the CharGer CG editing
package [8], along with a published XML version of conceptual graphs which included
some meta-information such as graph layout, creation time-date, etc. for a conceptual
graph.

One result of that early Common Logic effort was a new textual form of conceptual
graphs, known as the Conceptual Graph Interchange Format (CGIF). This version was
widely publicized by being available on John Sowa’s website for many years
(www.jfsowa.com). In fact, many people in the CG community are unaware that this
version (which is still online) has been superceded by the ISO standard. Furthermore,
many researchers are building tools that still support this superceded standard.

The graph in Figure 1 can be denoted in CGIF as follows:

[Cat: Albert] [Sit: *s] [Date: *d “May 1, 1984”]
[Mat: *m] [Color: *c green]
(agent ?s Albert) (pt_in_time ?s ?d) (location ?s ?m)
(attr ?m ?c)

The main obstacle preventing the creation of the original Common Logic standard
was that participants had different ideas about what features beyond strict first-order logic
(modalities, sorts, etc.) ought to be included. In 2003, therefore, a new standardization
effort was organized, led by Pat Hayes, Chris Menzel and John Sowa. This new effort was
originally called Simplified Common Logic (SCL), which represented both the
inauguration of the new effort, as well as a new philosophy of creating a standard with a
smaller set of features that could be more easily agreed upon. This effort was aimed
toward establishing an international standard, in conjunction with the W3C’s desire to
create a standard for interoperability of ontology information in conjunction with OWL
and RDF.

In June 2003, I was asked to serve as editor for the Common Logic ISO standard.
The project was once again called Common Logic (CL, not SCL) in order to match the
standard’s title. In October 2007, the ISO Common Logic standard became a full-fledged
International Standard now designated as ISO/IEC 24707:2007. In April 2008, the
standard was designated a publicly available standard, so that one copy can be
downloaded from ISO by anyone who wants to use it.

15

Here is a brief summary of the CG representations discussed in this paper.

Name Referred to
in this
paper

Source Status

Linear Form Linear Form
(LF)

[2] de facto
standard

Sowa’s CGIF Pre-ISO
CGIF

http://www.jfsowa.com/cg/cgsta
ndw.htm (still online as of 1 Apr
2008)

Superceded

Conceptual
Graph
Interchange
Format

CGIF ISO/IEC 24707:2007
[6]

ISO
standard
freely-
available

CharGer-
format

CGX http://projects.sourceforge.net/
charger

Freely
available

3 Description Of Common Logic
The Common Logic Standard is not just for conceptual graphs; indeed, its main

purpose is to provide interoperability for both syntax and semantics for a family of first-
order logic languages. The standard’s main sections prescribe a set of syntactic and
semantic categories: any language dialect that provides both the syntax and semantics is
eligible for conformance. The semantics are based on well-understood model theory [9].

3.1 Common Logic Semantics

Common Logic semantics are based on model theory such that any CL text is
required to be based on model theoretic interpretations. Simply put, a CL text is associated
with a set of individuals, the “universe of discourse,” that the text is “about”. Because CL
also allows functions and relations to be asserted, there is a (potentially larger) set of all
things to which the text may refer (including functions and relations); this potentially
large set is called the “universe of reference”. According to the model theoretic
requirements, every symbol in CL is assumed to have some procedure (outside of the
model itself) that associates that symbol with specific element(s) in the universe of
reference. This association is referred to as the interpretation of the symbol.

This means that every model that claims CL conformance must have a model
theoretic interpretation over a set of individuals called the universe of discourse (UD). For
CGs, that requirement is addressed by having a set of individual markers in a CG model,
each of which denotes a specific individual in UD. Every concept has associated with it an

16

(explicit or implicit) individual marker, denoting the individual. Regardless of whether the
marker is explicit or implicit, it is required for a CG model that there exist some consistent
means of distinguishing the individual to which a marker refers. For example, the
procedure must associate marker #483 with some individual in UD; whenever marker
#483 appears, it must be associated with that same individual.

The impact of the model theory on the use of CG models is straightforward: every
concept denotes an individual in some UD, so that there must always be a UD assumed
for any given CG model. The impact on interoperability is more subtle: when a CG model
is transferred, its particular UD is not explicitly included. Any other system that uses the
model may only assume that there exists such a UD. This is further explained below.

An important feature for interoperability is CL’s ability to incorporate comments in a
CL text. These can serve much the same purpose as in any programming or formal
specification language – as uninterpreted human-readable text to aid in understanding –
but they can also serve as a means to include extra-logical information (i.e., beyond CL
semantics). For example, a CGIF text could include any of the following (suitably
structured for automated processing, of course) as comments:

• Information about the graphical layout of graph elements (relative page locations,
color, fonts, etc.),

• Knowledge about the provenance, origin or custodian of the knowledge being
represented

• Executable code for the specification of actors
Though CL comments are necessarily uninterpreted, CL’s semantics nevertheless

allow comments to be attached to particular phrases in a text. This means they can
effectively annotate concepts, relations, or contexts.

3.2 Common Logic Dialects

The Common Logic standard does not prescribe a single syntax, but instead
prescribes a common abstract semantics for CL syntaxes. Three separate concrete
syntaxes are specified in the CL standard as appendices (each called an “annex” in ISO
style).

Common Logic Interchange Format (CLIF)
This dialect is based on KIF and resembles LISP syntax. It is specified in Annex A
of [6].

Conceptual Graph Interchange Format (CGIF)
This dialect is based on CGs; its syntax is based on the original pre-ISO CGIF which
somewhat resembles the linear form but carefully crafted so that is can be parsed in
one pass. It is specified in Annex B of [6].

17

Extended Common Logic Markup Language (XCL)
This is a new dialect expressed in XML but developed especially for this standard. It
is specified in Annex C of [6].

As for all ISO/IEC standards, there is an expected review every five years. This
gives a nice time frame during which we can explore the standard and have a better idea
of how it might be revised.

3.3 Relationship to other representations

Since Common Logic grew partly out of the W3C community, it fills a technical
niche that positions it next to the most popular representations of RDF [4] and OWL [10]
[5]. In brief, since RDF expresses only binary relations, CL is more expressive. For two of
the three main “species” of OWL, the comparison is straightforward. OWL Lite is
primarily for describing classification hierarchies while OWL DL is based on description
logics [11] which are a set of languages, each of which is a decidable subset of first-order
logic. CL is therefore more expressive than any of these.

The third OWL species, OWL Full, is meant to be more expressive and therefore
possess no computational guarantees; i.e., some queries on an OWL knowledge base are
undecidable in polynomial time. OWL Full’s expressiveness is comparable to CL’s, but
without the benefit of a century of study in dealing with first-order logic.

One difficulty with the OWL species is that practitioners must decide which of them
to use for their purposes. Given a limited domain, it is certainly preferable to use a less
expressive (and thereby more computable) representation, if that’s all that is needed. It is
often the case, however, that a domain’s limited purposes may become expanded over
time, requiring some rework of the knowledge base into some more expressive form.

Expressivity is obviously important for interoperability: if we transfer some text to
another knowledge system that is less expressive, then we either must accept that some of
our knowledge will be lost or (worse) that it will be misinterpreted in the less expressive
system and lead to incorrect inferences. CL’s expressiveness means that we can be sure
that the meaning of any RDF, OWL Lite or OWL DL representation can be preserved.
Efforts to accommodate OWL Full are ongoing.

4 Interoperability Issues
There are some significant differences between Common Logic and the CG theory

as described in [2]. These differences may affect some current semantics of CG tools as
they are currently constituted.

18

Implicit UD
It was mentioned above that when a CG model is transferred, its particular UD is not
explicitly included. Any other system that uses the model may only assume that
there exists such a UD. For example, if a CG model is transferred from its origin to a
new system, the marker #483 must denote some individual in the originating
system’s assumed UD, but the new system cannot “know” to what individual (e.g.,
some actual person, location, point-in-time, etc.) the marker refers. If the new
system performs logical inferences on the model, e.g., inferring that the individual
denoted by marker #483 has the color green, then the results of that inference must
be true in the originating system as well. Thus CL’s semantics under interoperability
are limited to knowing that there is some model theoretic interpretation that is valid
for the model, without knowing exactly what that interpretation is.

Untyped logic
CL does not support types (technically referred to as “sorts” in logic; see [12]), nor
any notion of a type hierarchy. In theory, we can treat a type as simply a function on
individuals that returns their type; e.g., type(Albert) would return Cat. This
does not, however, address the issue of how to declare type symbols in the first
place, how to associate those type names with particular individuals, how to specify
subsumption rules or how to specify reasoning with subsumption. All these issues
need to be addressed.

Functions
CL includes the ability to specify functions, which are not specifically supported in
CGs. A CL function is a formula whose evaluation results in a denotation of some
individual in the UD (i.e., it “returns” that individual’s identity). It is likely that CG
actors can provide this capability, but this still must be clearly demonstrated to the
research community, which has been reluctant to adopt actors into most CG tools.

5 Community Research Challenges
Considerable effort has been expended toward the creation of the standard. A dozen

or so people have contributed or made substantive technical critique. Some dozen or so
meetings in several countries have considered various aspects of the standard. A number
of other organizations and initiatives have expressed interest in CL as a useful component
for ontologies, knowledge-based systems, automated reasoners, metadata registries, etc.

Explore the standard!
There are some issues with respect to the standard that will need addressing. For
example, do CGs provide a model theoretic interpretation of conceptual relations in
accordance with the model theory prescribed? Do actors truly provide the capability
to represent functions as specified in the standard? How should types and type

19

hierarchies be specified in a standard way, since they are not covered in CL? These
and other questions will need the attention of the research community.

Support the standard!
Many researchers are interested in using CGIF (or already are!) as an interchange
format. Obviously the more people who are interested, the more tools and software
will emerge that support the standard. A standard is not like a legal statute – it is
actually an agreement and a commitment: an agreement that it provides useful
features and a commitment to adhere to the standard so that its utility can be
realized. While the approval of a standard may seem like the end of a process
(especially to those involved in the meetings and discussions!), in fact, it is really a
beginning.

Critique the standard!
Users of a standard sometimes see it as a “done deal” – a process that takes place out
of sight and whose participants are trying to persuade others to buy into their ideas.
But a standard is only as good as its users think it is. Since this is the first version of
CL, there are no doubt some issues to be identified and discussed.

Contribute to the standard!
One of the things I have learned is that anyone may contribute to the making of a
standard. If you are interested, you can easily communicate with the people involved
in the standard’s development. Most standards really have only a few people
involved in the technical details; if these interest you, then you are encouraged to get
involved.

6 Conclusion
The completion of the CL effort is an exciting development for conceptual

structures. Now that a completed standard is widely available, the conceptual structures
community, especially those interested in conceptual graphs, have an opportunity to build
on its potential. One measure of success in a community is whether it supports tools and
interoperability. It is therefore imperative that the community rises to the challenge and
show all that a standard can help us accomplish.

Acknowledgements. I would to thank the anonymous reviewers for their helpful
comments and suggestions. I would also like to thank Pat Hayes, John Sowa and Chris
Menzel for their guidance and patience during the lengthy standardization process, in both
helping me understand the standard itself and also understanding the power and pitfalls of
logic.

20

References

1. M.R. Genesereth and R.E. Fikes, Knowledge Interchange Format Version 3.0 Reference
Manual, Technical Report KSL-92-86, Computer Science Department, Stanford University,
1992.

2. J.F. Sowa, Conceptual Structures: Information Processing in Mind and Machine, Addison-
Wesley, 1984, p. 481.

3. J.F. Sowa, Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks/Cole, 2000.

4. D. Brickley and R.V. Guha, “RDF Vocabulary Description Language 1.0: RDF Schema,” 2004;
http://www.w3.org/TR/2004/REC-rdf-schema-20040210.

5. G. Antoniou and F. van Harmelen, “Web Ontology Language: OWL,” Handbook on Ontologies,
S. Staab and R. Studer, eds., Springer, 2004, pp. 67-92.

6. ISO/IEC, “ISO/IEC 24707:2007 - Information technology - Common Logic (CL) - A framework
for a family of logic-based languages,” 2007;
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007(E).zip.

7. G. Ellis and R. Levinson, “The Birth of PEIRCE: A Conceptual Graphs Workbench,”
Conceptual Structures: Theory and Implementation, H. D. Pfeiffer and T. E. Nagle, eds.,
Spinger-Verlag, 1992, pp. 219-228.

8. H. Delugach, “CharGer: Some Lessons Learned and New Directions,” Working with Conceptual
Structures: Contributions to ICCS 2000, G. Stumme, ed., Shaker Verlag, 2000, pp. 306-309.

9. W. Hodges, A Shorter Model Theory, Cambridge University Press, 1997.
10. M.K. Smith, et al., “OWL Web Ontology Language Guide,” 2004; http://www.w3.org/TR/owl-

guide/.
11. F. Baader, et al., “Description Logics,” Handbook on Ontologies, S. Staab and R. Studer, eds.,

Springer, 2004, pp. 3-28.
12. M. Davis, “First Order Logic,” Handbook of Logic in Artificial Intelligence and Logic

Programming1, D. M. Gabbay, et al., eds., Oxford Univ. Press, 1993, pp. 31-65.

21

 Pseudo-conceptual text and web Structuring

Ali Jaoua

Computer Science and Engineering Department
College of Engineering, Qatar University

jaoua@qu.edu.qa

Abstract: Structuring huge documents with a high speed is still a challenge. In
this paper, we propose a heuristic based on pseudo-concepts to derive a tree of
words reflecting in decreasing "importance" order the semantic macro-structure
of the space of documents or the micro-structure of a document. Both macro
and micro structures are used to browse inside the space of documents. The
advantage of the proposed methods with respect to previous ones using exact
formal concepts [2,4,11], is that by only selecting approximate formal concepts
associated to the different pairs of a binary relation linking documents or
sentences inside a document to indexing words, we improve the structuring
process in terms of time complexity while keeping acceptable meaning of
generated text structure. Experimentation [12] realized with documents with big
size showed that response time of the structuring system as well as the
browsing trees are very helpful for users to get the global structured view of the
space of documents and the detailed view inside a selected document. Starting
from an already created conceptual meta-search engine merging Google and
Yahoo search results [4,11], we now have a way to compile more web pages in
much shorter time.

Keywords: Macro and micro document structuring, pseudo formal concepts,
approximate associations, pseudo Galois connection

1 Introduction

While browsing through a documentary database, Internet or simply in a text, the
most important need for the user is to find pertinent information in the shortest
possible time, or the main structure of significant keywords related to the content.
Generally, extracting pertinent information from data requires mainly the two
following tasks: first read and classify data, second select the most suitable
information related to the user interest. Most of previous systems using conceptual
analysis are only able to analyze a small number of documents or web pages [2,4],
because most of classification methods are NP-complete and are not able to compile a
high number of documents in an acceptable time for the users, at real time. Computers
and communication systems are mainly used to search and retrieve URLs with very

22

high speed from allover the world, creating obviously the need for developing a layer
of information engineering software (i.e. “intelligent software”) which main task is to
read and organize data for the user, at real and acceptable time. These intelligent
systems have the precious task to classify dynamically and incrementally new arriving
URLs or data. They are dedicated to make repetitive classification activities,
preparing the work to the human browser, and presenting it with a more
understandable and structured view. During the last three years, two text structuring
systems for English and Arabic languages have been implemented [9,10], and a meta-
search engine for English "Insighter" [4,11]. These systems are based on the
following steps: first, creation of a context from the text by decomposing the text into
different sentences, and the sentence into non "empty" words, where two similar
words are assimilated to only one representative word; second the coverage of the
context by a minimal number of concepts[1] with the greatest density; third
associating to each concept a significant title (i.e a word with a maximum weight
selected from the domain of the concept), finally organizing the words into a heap (i.e
an almost complete binary tree where words with greater weight appear at the higher
level in the tree). Because of the nature of conceptual clustering (NP-complete
problem), even if we used a branch and bound algorithm, the system was only able to
process efficiently texts with small size. However the quality of the derived tree of
words is very good and reflects in most of the tested texts their main ideas. In this
paper, we propose an approximate approach for documentary database or a text
structuring that should only require a linear time in terms of the size of the binary
context C linking documents to indexing words or sentences inside a same document
to words indexing these sentences. The proposed method is based on a heap data
structure ordering pairs (d,w) of binary relation C in decreasing strength order, where
d is a reference to a document and w is an indexing word.

The next section includes some relational algebra, and formal concept analysis, the
mathematical foundations used in this work. We also give a definition of the strength
of a pair (d,w) in the next section. As a matter of fact, we often merge the two
backgrounds through the context that we assimilate to a binary relation.
 In the third section, we present an approximate algorithm to build a heap of words
through which user can browse easily to find the most pertinent documents. In
section 4, we present some experimental results of the heuristics for text structuring
[12] on a developed system. We also anticipate its utilization for improving our
conceptual meta-search engine last[11].

2. Background and Foundation

2. 1 Relational Algebra [8]

A binary relation R between two finite sets D and T is a subset of the Cartesian
product D × T. An element in R is denoted by (x,y), where x designates the antecedent
and y the image of x by R. For a binary relation we associate the subsets given as

23

follows: The set of images of e defined by: e.R= {e´ | (e, e´) ∈ R}. The set of
antecedents of e´ is defined by:

e'.R-1= R.e´ = {e |(e, e´) ∈ R};
The domain of R is defined by: Dom(R) = {e| (e, e´) ∈ R}.; The range of R is defined
by: Cod(R) = {e´ | (e, e´) ∈ R}; The cardinally of R defined by: Card(R) is the number
of pairs in R. Let R and R´ be two binary relations, we define the relative product (or
setting up) of R and R´, the relation R o R´ = {(e, e´) | It exists t in cod(R)| (e, t) ∈ R
& (t, e´)∈ R ´}, where the symbol "o" represents the relative product operator. The
inverse relation of R is given by: R-1 = {(e, e´) | (e´, e) ∈ R}. The relation I, identity
of a set A is given by: I (A) = {(e, e) | e ∈ A}.

Definition 1: Gain or economy of relation R

The gain W (R) of binary relation R is given by:

W(R) = (r/(d.c)) (r-(d+c))
Where, r is the cardinality of R (i.e. the number of pairs in binary relation R), d is

the cardinality of the domain of R, and c is the cardinality of the range of R.

Example1: If R1 is the following binary relation:
 1

2

3

4

5

6

7

8

9

10

11

12

r=16 (i.e. number of pairs in R1)
d=6 (i.e. cardinality of the domain of R1)
c=6 (i.e. cardinality of the range of R1)
W(R1)= (16/(36))(16-12)= 1.77

Remark: The quantity (r/dc) provides a measure of the density of relation R. The
quantity (r-(d+c)) is a measure of the economy of information.

2.2. Previous Developed Structuring Algorithm

In last developed tools already running with acceptable quality[11,13], implemented
algorithm was based on "optimal concept" clustering, using a branch and bound
heuristic, where at the first step we calculate "the elementary relation ER(x,y) "
associated to each pair (x,y) of relation R. ER(x,y) is given by the following relational
expression:

ER(x,y) = I(y.R-1) o R o I(x.R)

24

At the second step we calculate the weight W(ER(x,y)) of each elementary relation
ER(x,y). Third, we select the pair (xmax, ymax) such that W(ER(xmax,ymax)) is the
maximum weight and we continue to give a priority to explore ER(xmax,ymax) to
find the concept with maximum weight in R. We continue by the same way to select
other concepts until covering R. We then give a name to each concept, by selected the
word with the maximum rank in the range of the concept. We finally build a tree of
words, where each word is linked to the associated cluster of URLs.

In the following section, in order to accelerate the tree of words generation,
we will extrapolate the definition of W(ER(d,w)) to only calculate W(ER(d,w)) =
W(w.R-1 x d.R).

Example2: In the case of the following relation R2 corresponding to a complete
bipartite graph: W(R2)=(6/6)(6-5)=1.

 a 1

 b 2

 3

W(R2)=1, because we may replace the 6 pairs by only 5 pairs by the creation of an

intermediate object (i), saving one link:

a 1
 i
 2
b
 3

If we assume that a document is composed of several sentences, and that ideas are
associated to sentences in the text, then pairs (document d, word w), where w belongs
to d plays a major role for discovering the main ideas contained in the text. We may
sort all the possible pairs (d,w) in decreasing strength order, or only creating a heap of
pairs (d,w), that we can update in an incremental way, in a logarithmic time in terms
of the total number of pairs in the binary context relating each sentence to all indexing
words.

In the following definition, we use function W to define the strength s(d,w) of a
pair (d,w) in relation C (or context) as equal to W(w.C-1 x d.C), as a approximation of
the weight of the corresponding elementary relation seen in section 2.2 (i.e.
W(ER(x,y))= W(I(w.C-1) o C o I(d.C))).

25

Definition 2: Strength of a pair (d,w)

If w is indexing a document d then w is weakly associated to all words of w
contained in document d, with strength:

 s(d,w) = ((|d.C| x |w.C-1|) - (|d.C| + |w.C-1|)).

 w

d1

 w1

d2 w2
 w3
 I

d w4

d3
 Fig. 1 Strength of a pair (d,w)

In fig1, s (d,w) = (5 x 4 – (5+4))= 11. In this example, discontinued pairs linking
w.C-1 to d.C through a new created intermediate object (I): i.e. the pseudo-concept
representative replaces continued pairs of the initial elementary relation included in C
and supporting pair (d,w).

2.2. Formal Concept Analysis [5]

Formal Concept Analysis (FCA) is a theory of data analysis which identifies
conceptual structures among data sets. It was introduced by Rudolf Wille [1,5] and
has since then grown rapidly.

2.2.1 Usual Definition of the two operators of Galois Connection

Let G be a set of objects and M be a set of properties. Let C be a binary relation
defined on the set E. For two sets A and B such that A ⊆ E and B ⊆ E, we defined
two operators f(A)= AR and h(B)= BQ as follow:

 f(A) = AR = {m| ∀ g ∈ A ⇒ (g, m) ∈ C}
 h(B) = BQ = {g| ∀m ∈ B ⇒ (g, m) ∈ C}

A formal context k :=(G,M,C) consists of two sets G (objects) and M (Attributes)
and a relation C between G and M. Formal Concept of the context (G,M,C) is a pair
(A,B) with: A ⊆ G, B ⊆ M, AR = B and BQ =A . We call A the extent and B the intent
of the concept (A, B). IF (A1, B1) and (A2, B2) are two concepts of a context, (A1, B1)

26

is called a sub concept of (A2, B2), provided that A1 ⊆ A2 and B2⊆ B1. In this case,
(A2, B2) is a super concept (A1, B1) and it is written (A1, B1) < (A2, B2). The relation
“<” is called the hierarchical order of the concepts .The set of all concepts of (G, M,
C) ordered in this way is called the concept lattice of the Context (G, M, C).

2.2.2 Definition 3: Pseudo-concept associated to a pair (d,w)

Let C be a binary relation linking documents to words, then an elementary relation
associated to a pair (d,w) is defined by ER= I(w.C-1) o C o I(d.C). Where I(A) is the
identity relation restricted to set A. and o is the operator for relational composition. A
pseudo-concept is an approximation of an elementary relation by the concept: PC=
w.C-1 x d.C, (i.e. the smallest concept including RE: fig1). In order to avoid to
compute ER and calculate its economy by function W given in definition 1, we set
W(PC)=strength (d,w) = s(d,w) as the economy of PC.

In the following section, we define the two following operators f' and h' instead of
the classical ones f and h reminded in section 2.2.1.

2.2.3 Definition of two new operators f' and h'

 Galois connection operators (f,h) defined in the previous subsection 2.2.1 are of
course suitable to build the lattice of concepts, and to find associations between the
attributes, useful during the browsing process. In our case, we define a "bridging pair
(g,x) ∈ C with the strongest strength associating a set A to a another set B, such that
g.C = B and A ⊆x.C-1. The two following operators (f',h') are designed for the
purpose of generating such pair (g,x):
f'(A) = AR' = {m ∈ g.C | it exists a pair (g, x) ∈ C, A ⊆ x.C-1, (|g.C|. |x.C-1| - (|g.C| +
|x.C-1|) is maximal} where |A| is the cardinality of set A., g.C is the set of images of
g in the binary relation C, and x.C-1 is the set of antecedents of x by C the binary
relation associating a set of documents to a set of terms (or words). f(A) is defined as
the range of the most economical pseudo-concept containing A. Starting with a set A
of words, we may find some additional information as an association rule A x.C-1
with the weight s(g,x).
h'(B) = BQ' = {y ∈ x.C-1 | it exists a pair (g, x) ∈ C, B ⊆ g.C, (|g.C|. |x.C-1| - (|g.C| +
|x.C-1|) is maximal}. As additional information, we can say that B g.C with the
weight s(g,x). The set of documents g.C is associated to the set B with some strength
through the pair (g,x). Operators f' may be calculated with a quadratic time, n x m,
where n is the cardinality of A and m is the cardinality of g.C , where g is an element
in A. For example to find f'(A), we select the set of images A' of some element g of
A, then for each element x of A' we check if (A ⊆ x.C-1) and calculate the weight (
|g.C|. |x.C-1| - (|g.C| + |x.C-1|) . We finally select the maximum weight as the strength
of the association A w.C-1. The proposed definitions of (f',h') are useful because
they have a similar advantage to the classical operators (f,h), even less precise, they
define an interesting definition of the strength of an association we could use for
fuzzy reasoning. We expect to implement function h' to display some associations

27

relating the keywords of analyzed documents. The proposed new operator will be
used to give additional information to the user by adding new words to his/her
request.

In the following section 3, we present globally an efficient algorithm based
on ordering of the pairs using the heap data structure where the pair with highest
strength is stored in the root of the heap.

3. An Efficient Algorithm for building a browsing tree

The idea of the algorithm is that pairs (d,w) in the binary relation C with highest
strength should very probably be central because they are making the bridge between
a set of documents and a set of words, such that pair (d,w) may at most enable us to
save:

 (((|d.C| x |w.C-1|) - (|d.C| + |w. C-1|)) links or pairs
because it replaces the sub-relation of C pre-restricted by the set w. C-1 and post-
restricted by the set d.C (i.e. I(w.C-1) o R o I(d.C)) by the Cartesian product: w.C-1
x d.C, when this sub-relation is a complete bipartite graph.

The proposed algorithm is used twice, at the first step it generates a tree for
building a high level structure of documents through a heap of words (macro-
structuring). At the a second level, it generates a micro-structure of any selected
document. The different steps of the algorithm are the following:

3.1 Macro-structuring and browsing algorithm

1- Create a weighted matrix S corresponding to R, where if each pair (i,j) we
save its strength in S(i,j). This step is O(n) in terms of the number of pairs in
R. For that we can first calculate the number of elements in each row and
column in R.

2- Build a heap of pairs (i,j) containing the information about their strength.
This step is also known to be O(n).

3- Cleaning the heap by only visualizing the words (w) without repetitions,
avoiding to show the associated document (d) in the pair (d,w).

4- If a user decides a word for browsing then all the list of documents indexed
by this word will be proposed.

3.2 Micro-structuring and browsing algorithm

5- If a user decides to select a specific document d, then a tree of words will be
built by the same way as in the macro structuring step, but the difference is
that the sentence inside the document is used instead of the document itself.

6- The user may now browse inside the document using selected keywords to be
able to get the most suitable view corresponding to his needs, using the new

28

operators (f',h'), we can even calculate some approximate closure of the
request to expand user query.

 3.3. Incremental heap reorganization and structuring algorithm

7. If a new document is introduced in the system, then a new row is created in
relation R, updating of S will require a maximum of O(n) iterations. While
updating the heap will require a maximum of O(n) operations.

8. If we change a text, by adding, removing or updating a sentence in the text,
then we will need to update R, S and the heap H in a linear time.

9.

3.4 Illustration for a structuring in general (Macro or micro):

Here we may find a binary tree R linking documents (1,2,3,4,5,6) to words
(7,8,9,10,11,12):

 1

2

3

4

5

6

7

8

9

10

11

12

d strength, and removing word redundancy, we obtain the following heap of
words:

g
 the user clicks on 11, then references to documents 11.C-1

{1,3,5,6} are shown.

After sorting of the different pairs of R in increasing order in terms of their
calculate

(11), (9), (7), (8), (10), (12).
Which means that the most pertinent word is 11, then 9, 7, 8, 10 and 12, in decreasin
importance order. When
=

Remark: What might be considered as a good result is that the 6 first selected pairs
among 16 pairs of R, belong to the most economical concept in relation R, totally, as
you can see it in the figure below. This is a meaningful result, because greatest
concept represents the most significant cluster of documents sharing the maximum
nu ber of terms.

m

29

 6

 coverage (NP-complete problem) in a binary relation with an
cceptable time.

 Improvements of existing structuring browsing

 1

 2

 3

 4

 5

In bold you may notice that a concept is built from the 6 first pairs with the highest
strength. Therefore, the presented heuristic is promising as an alternative to find
optimal concepts
a

4.

The proposed heuristics enabled us to generate the structure of texts with big size, for
English and Arabic texts, in much better time complexity compared to previous
methods using either the lattice of concepts or a heap of concepts with respect to
function gain seen in definition1. Credo [2] is very slow because it needs the calculus
of the global latticed of concepts. In [11,4], we developed "Insighter" a running meta-
search engine that only classifies documents into a minimal coverage of the context
by the most economical concepts. But used heuristics were still not efficient, even if
the quality is acceptable. In the current approach presented in this paper, implemented
and tested with a good number of texts, in most of case the first words represent the
main keywords of the text and reflect really the main concepts discussed in the text,
with an excellent speed. However, the classification of documents behind each
representative keywords should be implemented by use a similarity distance and
threshold definition. The proposed method will be incorporated in a conceptual meta-
search engine already realized by replacing concepts with meta-concepts. For
example, if we submit as input the abstract and introduction of this paper to the
structured browser, it gives as first indexing words: "document, space, structuring,
micro, macro, data, text, selection, browsing, searching, relational, ….which are
surely among the most significant words in the paper, as you can see it in the
presented screen below. In another document about mind and brain, obtain words are:
brain, synapses,.. The new realized system is now suitable for structuring electronic
books in an acceptable time. The speed of the new developed tool is much better than
the previous one, replacing minutes with seconds, in all tested cases and allowing the
structuring of huge documents [12]. The quality of the first words is almost always
the same as the previous one. However, the new system does not classify as
accurately as the first developed one. So, we are already trying to improve the quality
of the cluster of documents related to some representative word, used as a reference to
group only documents enough close to each other. In the following two figures 2 and

1 7

8

9

10

11

12

30

3, we can find respectively a first screed related to the same text related to brain and
mind, both systems selected and recognized what was exactly the title of the
document. However the trees of words at lower levels become very different. While
our initial system takes 30 seconds, the new one takes less than a second to do a
similar task.

5. Conclusion and perspectives

trying to
prove the quality of the browsing trees to have a better clusters of URLs.

gements: We thank Qatar University for having granted this research (#
5013CS).

EFERENCES

1. mal concept analysis: mathematic

2.
tion Retrieval with CREDO. Journal of Universal Computing, 10, 8,

3.
 retrieval. In N. J. Belkin, & C. J. van Rijsbergen (Eds.), Proc . SIGIR

4.

d Their

5. s of

6.

ition Techniques and Applications, Editor Muhammad Sarfraz, Wiley,
2005.

This system employs some pseudo-formal concept analysis as an approach for
knowledge discovery and clustering. A heuristic process of finding coverage of the
domain of knowledge using the idea of concepts [1] is here replaced by pseudo-
concept ordering. Our approach is experimented for text structuring, and it will be
used to update a conceptual meta-search engine to enable it to classify more search
results. The presented methods may also be used as a base to improve proposed
heuristics for solving the NP-complete problem of binary relation coverage with a
minimal number of concepts. We should also now explore the incremental version of
these algorithms. The new methods will automatically improve the efficiency of our
developed structuring conceptual meta-search engine [11,4], however we are
im

Acknowled
0

R

Bernhard Ganter and Rudolf Wille , (1999). For
foundations. Springer, Berlin/Heidelberg, 1999.
Carpineto, C., & Romano, G. (2004b). Exploiting the Potential of Concept Lattices
for Informa
985-1013 .
Godin, R., Gecsei, J., & Pichet, C. (1989). Design of browsing interface for
information
’89, 32-39
A. Jaoua, M. Lazhar Saidi, Ahmed Hasnah, jihad M. Al-Jaam, Sahar Ahmed, Baina
Salem, Noura Rashid Shereen Shareef, Suad Zaghlan. Structured Conceptual Meta-
Search Engine, Fourth International Conference on Concept Lattices an
Applications (CLA2006), Hammamet-Tunisia 2006 , 30/10 au 1/11/2006.
Wille, R. (1982). Restructuring lattice theory: an approach based on hierarchie
concepts. In I. Rival (Ed.), Ordered sets. Reidel, Dordrecht-Boston ,445-470 .
Ahmed Hasnah, Ali Jaoua, Jihad Jaam. , Conceptual Data Classification:

Application for Knowledge Extraction. Chapter 23: Computer Aided Intelligent
Recogn

31

7. Jaoua A. and Elloumi S., Galois Connection, Formal Concepts and Galois Lattice
in Real Relations: Application in a Real Classifier, The Journal of Systems and
Software, 60, pp. 149-163,2002.

8. Schmidt, and Strohlein, Relation and Graphs, Discrete Mathematics for Computer
Scientists. EATCS-Monographs on Theoretical Computer Science. Springer, 1993.

9. T. Mosaid, F. Hassan, H. Saleh, F, Abdullah, Conceptual Text Mining: Application
for Text Summarization, Senior Project, University of Qatar, January 2004.

10.A. Jaoua, M. A. Al-Saidi, A. Othman, F. Abdulla, I. Mohsen, Arabic Text
Structuring by Optimal Concept Extraction and its Utilization for Browsing, The
fourth International Conference on the Use of Arabic Language in Computer
Science, CSPA, Doha, 31 March, 2008. pp 74-82.

11. A.Jaoua, Conceptual Structured Browsing: applications for structuring meta-
search engine, summarization and text processing. ICFCA, International
Conference on Formal Concept Analysis, Clermont Ferrand, France, February
2007.

12. Aisha A. Al Ibrahim, Mariam A. Al Abdulla, Fatma A. Al Rasheed, Mashael R.
Al-Mansouri, Automatic Structuring of Electronic Book, Senior Project, Qatar
Univesity, 2008.

32

FcaStone - FCA file format conversion and
interoperability software

Uta Priss

Napier University, School of Computing,
u.priss@napier.ac.uk
www.upriss.org.uk

Abstract. This paper presents FcaStone - a software for FCA file format con-
version and interoperability. The paper both describes the features of FcaStone
and discusses FCA interoperability issues (such as the specific difficulties en-
countered when connecting FCA tools to other tools). The paper ends with a call
to the FCA community to develop some sort of standard FCA Interchange For-
mat, which could be used for data exchange between stand-alone applications and
across the web.

1 Introduction

FcaStone1 (named in analogy to ”Rosetta Stone”) is a command-line utility that con-
verts between the file formats of commonly-used FCA2 tools (such as ToscanaJ, Con-
Exp, Galicia, Colibri3) and between FCA formats and other graph and vector graph-
ics formats. The main purpose of FcaStone is to improve the interoperability between
FCA, graph editing and vector graphics software. Because it is a command-line tool,
FcaStone can easily be incorporated into server-side web applications, which generate
concept lattices on demand. FcaStone is open source software and available for down-
load from Sourceforge. FcaStone is written in an interpreted language (Perl) and thus
platform-independent. Installation on Linux and Apple OS X consists of copying the
file to a suitable location. Installation on Windows has also been tested and is also fairly
easy.

The need for interoperability software was highlighted in discussions among ICCS
participants in recent years. Several ICCS authors expressed disappointment with the
lack of progress in conceptual structures (CS) research with respect to applications
and software (Chein & Genest (2000); Keeler & Pfeiffer (2006)) and with respect to
current web developments (Rudolph et al., 2007). Although several sophisticated CS
tools exist, each of them has different features. If a user wants to use features that are
supported by different tools, it can be difficult to move the data from one tool to the
other because each tool has different file formats. APIs are missing that would allow
for the different existing tools to interoperate. Interoperability has been discussed by

1 http://fcastone.sourceforge.net/
2 FCA stands for Formal Concept Analysis. This paper provides no background on FCA. See
http://www.fcahome.org.uk for links to FCA references, introductions and software.

3 The URLs for all tools mentioned in this paper are listed at the end of the paper.

33

Dobrev (2006) and, implicitly in Tilley’s overview of existing FCA tools and has been
the topic of ICCS tools workshops. Recently, the Griwes project4 has been developing
a framework for conceptual graph (CG) interoperability. Griwes is a very promising
project, but it focuses more on CGs than FCA and is still in its early stages.

FcaStone provides a first step towards interoperability: it allows to convert between
different FCA file formats. Ideally, this conversion should not have to be performed at
the command-line, but instead should be integrated into existing tools. But until such
APIs exist that allow full interoperability, FcaStone provides a simple workaround. Fur-
thermore, it is quite unlikely that APIs will ever be written for all possibly relevant tools,
especially if this includes other non-CS tools. Thus there may always be a need for a
file format conversion tool. It should be stressed that so far FcaStone only supports
FCA formats, not CG formats. It is planned in the future to extend FcaStone also to CG
formats, but it has to be investigated, first, in how far that is feasible, because FcaStone
focuses mainly on lattice representations which are not the main concern of CGs.

While developing FcaStone, it became apparent that there are a few non-FCA file
formats, which are also suitable for representing concept lattices. In particular, graph
formats and vector graphics formats are of relevance. The difference between graph and
vector graphics formats is that vector graphics are more general. Graph formats usually
focus on graphs consisting of nodes and edges. Graph editors normally provide graph
layout algorithms. The connection between a node and its edges is usually fixed, so that
clicking on a node and moving it around will move the connected edges with that node.
Vector graphics formats, on the other hand, can be used for any sort of graphics (not
just nodes and edges). Although vector graphics editors usually have some grouping
mechanism that allows to create complex objects which can be moved around and edited
as a whole, it is not always possible to connect edges to nodes in such a manner. While
vector graphics formats can represent graphs and provide many editing features, they
often do not provide the specific editing features that more specialised graph editors
have. Both graph and vector graphics formats are of interest to FCA, but because of the
differences between them, not all FCA features can be represented in these formats.

The following list summarises the formats and features that are currently imple-
mented for FcaStone (the URLs for the tools are at the end of this paper):

– Commonly used FCA file formats (cxt, cex, csc, slf, bin.xml, and csx).
– Conversion between FCA file formats and comma separated value (csv) files as

exported from and imported into databases and spreadsheets.
– Export into Bernhard Ganter’s latex format (only for contexts at the moment).
– Graph formats (dot, gxl, gml, ...) for use by graph editors (yEd, jgraph, ...) and

vector graphics formats (fig, svg, ...) for use by vector graphics editors (Xfig, Dia,
Inkscape, ...).

– Creating lattice diagrams (using Graphviz’s layout) from contexts.
– Serve as a component of a server-side script for generating lattices on webpages.

The emphasis of FcaStone is on converting file formats, not on fast algorithms for
lattice construction which are already provided by other FCA software. FcaStone can
convert formal contexts into lattices. It uses the Ganter algorithm (Ganter, 1984), but in

4 http://www-sop.inria.fr/acacia/project/griwes/

34

a very simple string implementation that is not efficient. FcaStone then uses Graphviz to
calculate the graph layouts. Graphviz is open source graph visualisation software, which
contains several graph layout algorithms. In this respect, FcaStone is similar to the
Colibri software, which also relies on Graphviz for lattice layouts. Because Graphviz
provides a large number of file conversion options, FcaStone only needs to produce a
single format (called “dot format”) which can then be further converted by Graphviz
into a large number of other formats.

It is possible with FcaStone to convert a formal context into a concept lattice (for
example as a gif file) by just running FcaStone on the command-line. In many cases
the resulting pictures are surprisingly good without manual editing of the diagrams -
although the diagrams do not exactly follow all of the traditional FCA style conventions.
FcaStone is a very slim program. Its interaction with Graphviz and with other scripts
(if used on a web-server) is designed to be achieved via system calls (pipes). Although
this is a fairly basic form of interaction which may not be very efficient, it should be
easy for a programmer to incorporate FcaStone into other scripts or to modify it to suit
other needs. FcaStone is work in progress. The following features are not yet available,
but are planned for future releases:

– Converting lattices between different formats in a manner that preserves the graph
layout of the lattice. (This would also mean that other FCA software such as Galicia
or Colibri could be called from FcaStone in order to obtain layouts and efficiency.)

– Database connectivity.
– Convert into other knowledge representation formats (conceptual structures, se-

mantic web), if they are suitable for representing lattices.

The remainder of this paper provides an overview of the file formats that are sup-
ported by FcaStone (Section 2); discusses the specific difficulties related to presenting
concept lattices in graph formats (Section 3); presents more details on which tools are
suitable for editing FCA data and how these are supported by FcaStone (Section 4); and,
finally, discusses FCA web applications (Section 5), which includes a call to the FCA
community to develop some sort of standard FCA Interchange Format, which could be
used for data exchange between stand-alone applications and across the web.

2 Supported formats

Fig. 1 provides an overview of the supported file formats. The top half of the figure
shows formats that are supported for input and output; the bottom half show formats
that are only supported for output. The top half of the output-only formats could also be
supported for input in future versions of the software, but only if certain constraints are
observed by the formats. This is because these formats are not FCA-specific and allow
for the representation of other graphs or vector graphics. The raster graphics and page
description formats are totally unsuitable for input, because reading those files would
require image recognition techniques.

The FCA formats should be the easiest to handle. Unfortunately, there are many
different ways to encode a formal context or concept lattice. For example, a context
can be stored as a cross table or as a two column table; a concept lattice can be stored

35

extension I/O type scope Graphivz
required? comments

cxt

input/output

FCA format

only context
no

P. Burmeister's format

con Colibri format

slf Galicia format

bin.xml Galicia format

tuples tab separated values

Tupleware format
(like csv, but tab instead of comma
+ additional first line)
only two column files supported

csv comma separated values used by databases/spreadsheets

csc

FCA format

context + lattice

F. Vogt's Anaconda format
(lattice not implemented)

cex no ConExp, lattice not yet implemented

csx no ToscanaJ, lattice not yet implemented

fig

output only

vector graphics
yes for lattice

xfig

tex latex to be used with B. Ganter's fca.sty,
lattice not yet implemented

dot

graph format

only lattice

no Graphviz format

gml no

gxl

yes format availability depends
on local Graphviz installation

svg vector graphics

jpg

raster graphicsgif

png

ps
page description format

pdf

Fig. 1. Supported formats

36

as nodes and edges at a concrete level with coordinates or at an abstract level with-
out coordinates or purely as a graph or as partial information that can only be read in
combination with the context. Thus even though all of the more modern FCA formats
are XML formats, translating between formats is not just a simple XML transaction
because different information is stored. For example, if one XML format stores only
the context and a second format only the lattice, then the complete lattice needs to be
calculated for the conversion from the first to the second format.

As mentioned before, Graphviz is used to produce the graph layouts in FcaStone.
Because Graphviz has the ability to convert its “dot” format into a variety of formats (the
ones on the bottom third of Fig. 1), the conversion into these formats is automatically
provided without FcaStone having to do any work. The disadvantage is that FcaStone
does not have control over these file types. Graphviz produces slightly different results
in different settings. For example, one user reported problems with the xfig output of
FcaStone which have not been encountered in other installations of the software. If users
do not want to install Graphviz, an alternative is provided by the gml format which is
very similar to the dot format. Software exists that can produce graph layouts for this
gml format (such as yEd).

3 The representation of lattices in non-FCA graph formats

For interoperability between FCA and non-FCA software, it is essential to represent lat-
tices in graph formats. Since there is not any graph format that is universally accepted as
a standard by a variety of tools, it is difficult to decide which graph formats to convert to.
Currently FcaStone supports the non-XML formats dot and gml. In later versions XML
formats (GraphML, XGMML) may be added. It is difficult to represent FCA lattices in
these non-FCA graph formats because concept lattices use many labels per node (ob-
jects and attributes), which require special placement (below or above the node). Other
graph applications usually only have one label per node. Thus the placement of several
labels per node is a challenge.

The default in FcaStone is to concatenate all objects belonging to the same node into
one string which is then cut off after 30 characters. The same is done with the attributes.
If the -c option is used, the objects and attributes are ”clarified”, i.e., only at most one
object and at most one attribute of each node is represented. The -t option places the
objects of each node (and, separately, the attributes of each node) on top of each other.
This is only useful if the output file is of type fig or svg and the file is afterwards edited
in a vector graphics editor.

Two lattice designs are available5: Using the -b option, each node is represented as
a box (see Fig. 2). This is similar to the Graphviz files generated by Colibri. The objects
are listed in the bottom half, the attributes in the top half. The advantage of this format
is that the labels never overlap because Graphviz will adjust the box sizes depending on
the label sizes. The disadvantage is that this is not the standard FCA way of representing
lattices. Also, some boxes in Fig. 2 are too large and the text is too close to the left

5 The data for Fig. 2 and Fig. 3 and for a few other examples is available at http://www.
upriss.org.uk/fca/examples.html together with sample pictures produced with
FcaStone and Graphviz.

37

side. This is because in the particular Graphviz installation that was used to create this
diagram, Graphviz had problems with some fonts, which seemed to affect some output
formats more than others. Fig. 2 shows the default output. The output can be modified
by changing Graphviz’s attributes. But such modifications depend on the settings of the
specific computer that is used. Most users will find that they need to experiment with
their particular Graphviz installation in order to determine which combination of fonts
and output formats works best.

Fig. 2. An example of a layout with Graphviz (using data from Wille (1992)).

The other design (in Fig. 3) is more similar to traditional FCA lattices, with the
disadvantage that labels can overlap. Again, the default output is shown, which in this
case has very small fonts compared to the size of the lattice. These design choices are
based on what can be stored in Graphviz’s dot format. Just attaching two labels to a
single node is difficult in the dot format. A hint found on the Graphviz mailing list
suggests to attach an invisible self-edge to each node and then position the labels with
respect to this invisible edge. This “hack” appears to be the only current solution to the
labelling problem. Because the other vector and raster graphics formats are generated

38

by conversion from the Graphviz format, they all have the same layout. In the future,
we plan to let FcaStone generate some output files (such as svg) directly by using only
the graph coordinates, but not the rest of the file content, as provided by Graphviz. This
will give more freedom in the ways how the lattices can be represented.

Fig. 3. A second example of a layout with Graphviz (using data from Stahl & Wille (1986)).

The gml output of FcaStone uses yet another type of design because of the lack of
design options available with that format. In this format the labels are placed across the
nodes, which is not satisfactory. Therefore, gml output should only be used if the lattice
is afterwards manually edited. As far as we can see, gml has even fewer options for
placing labels in different locations. The trick of using invisible self-edges appears not
to be supported by this format.

In general, automatically generated lattices will probably never be as perfect as
hand drawn ones. Graphviz’s layouts are surprisingly good and in the case of Figs. 2
and 3 surprisingly similar to the published hand drawn ones. In both examples, some
of the Boolean sublattices are visible, even though the edges are not parallel and some
are even curved. If non-FCA tools are used for layout or editing, then one has to work
with whatever features for graphs are provided by such tools. If perfect lattice pictures
are desired, then traditional FCA tools should be used for editing. FcaStone’s primary
aim is to help users to produce the input formats for such tools. FcaStone’s facility for
lattice generation is more aimed at applications in which the lattices cannot be hand
drawn (such as automatically generated ones on webpages) or do not need to be perfect
(for example, because they are just used to provide a rough sketch of what the lattice
looks like).

39

4 Using FcaStone with other tools

This section discusses interoperability with non-FCA tools. There are many reasons
why such tools might be used. It may sometimes be necessary to edit lattices in ways
not supported by traditional FCA software. For example, if one just wants to insert
additional information for illustrative purposes, using traditional tools one would have
to convert the lattice to a raster graphics format, then upload it into a vector graph-
ics editor where one could add the additional information6. With FcaStone lattices can
be exported straight into a format that can be read by vector editors. Another reason
for using formats that can by processed by non-FCA tools is that other research com-
munities have developed algorithms that are relevant for lattices, such as graph layout
algorithms, and that FCA techniques are relevant for other communities. It would be
desirable if there was greater exchange between FCA and related communities.

The following tools can be used with formats generated by FcaStone (the URLs for
the tools are listed at the end of the paper):

– Text formatting
• Latex is a document mark-up and preparation system. The FCA latex output is

to be used with Bernhard Ganter’s fca.sty. At the moment FcaStone can only
generate latex files for contexts. In the future it is planned to also generate
lattices in latex format.

– Graph layout and editors
• Graphviz is an open source (CPL licence) graph layout program with a native

format called “dot”. It provides a variety of file conversion options. FcaStone
calls it in order to produce the lattice layouts. Graphviz comes with the XWin-
dows program ”dotty”, which can be used to edit the lattices (stored in the dot
format). A list of other tools that can be used with dot files, is available on the
Graphviz website.

• yEd is a closed source, proprietary, but free to download, Java-based graph
editor with GraphML as its native format. It is easy to install on Windows,
Mac OS X and Unix/Linux. It can import gml files. yEd has its own graph
layout functionality. FcaStone can produce gml files without Graphviz being
installed.

• Jgraph is an open source, proprietary, but free to download, Java-based graph
editor. Presumably it can read gxl files, but we have not tested this.

– Vector graphics editors
• Xfig is a Unix (Linux, Mac OS X) vector graphics editor with fig as its native

format. WinFig is a version that runs on PCs; jfig is platform independent.
Without the ”-g” option, FcaStone produces a fig file of the context. With the
”-g” option, the lattice is produced.

• Inkscape is a an open-source, vector graphics editor with svg as its native for-
mat. It can be downloaded and installed via sourceforge as binary versions for
Linux, Mac OS X, and Windows. Lattices in svg format can be uploaded into
Inkscape. Inkscape has a connector facility which would make it possible to

6 Some FCA software does support svg output, but, for example, in the case of ToscanaJ a
special plugin is needed.

40

edit graphs so that moving a node also moves the connected edges. Unfortu-
nately, the connections are stored using special Inkscape-only xml tags, which
do not correspond to the svg files that are generated by Graphviz. This could
be addressed in future versions of FcaStone.

• Dia is a GTK+ based diagram creation program for Linux, Unix and Windows
released under the GPL license. It is pre-installed on many Linux distributions.
A Windows executable is available. On other Unix and Mac OS X, it has to
be installed from source. Graphviz can convert dot files into dia files, if the
required libraries are installed.

5 FCA web applications

Ideally, it should be possible to use FCA tools on the WWW and in distributed envi-
ronments in order to allow FCA modelling of remote data sources, sharing of FCA files
across different client applications and improved tool interoperability in general. The
top half of Fig. 4 shows the current use of FCA software on the web by applications
such as Roget’s Thesaurus7. At the moment, webserver FCA functionality is mostly
restricted to either producing static graphics (raster graphics or svg), which are only
viewed but not changed by a user, or to producing FCA files which are then saved by
the user and uploaded into a stand-alone FCA application. On-line FCA software, such
as Jon Ducrou’s Surfmachine8, exists which allows to interactively explore lattices, but
does not allow to upload, download and save data. As far as we know there is no on-
line FCA software which has the same kind of functionality as the stand-alone tools
(ConExp, ToscanaJ, Galicia, etc) because it would be quite difficult to implement such
a tool in an efficient and secure manner. In our opinion a better solution is a distributed
approach where the server-side software focuses on producing data in an FCA format
while the client-side software performs the resource-intensive operations of the GUI
interface. It should not be too difficult to implement such an approach using the current
tools, if the FCA community would agree on a shared FCA interchange format.

An FCA interchange format in XML could be extended to provide web services
as shown in the bottom half of Fig. 4. Web services are a means for communication
between servers and clients using XML messages. An example of the use of web ser-
vices is a client interface that accesses information from an on-line search engine or
e-commerce website by sending messages to a web API on the server. This technol-
ogy is usually implemented using WSDL/SOAP or REST (which cannot be discussed
in the framework of this paper). Credo9 and SearchSleuth10 are two examples of FCA
front-ends which connect to the API of a search engine in this manner.

If there was an FCA interchange format, then FCA software, such as Roget, Credo
and SearchSleuth, could produce an XML file in addition to its current html output. This
XML file could then be read by any stand-alone FCA tool that supports web services
technology. Users could use the tool of their choice to draw and explore lattices which

7 http://www.roget.org/
8 http://www.kvocentral.org/software/surfmachine.html
9 http://credo.fub.it/

10 http://www.kvocentral.org/software/searchsleuth.html

41

web services or

or FCA file

client/browser

standalone tool

Current:

Proposed:

http request

html or graphics file

web services request

XML file

static graphics

views or saves file

then uploaded into

server produces

server produces

interactively

uses FCA file

client

XML file

Fig. 4. Using FCA applications over the web

are produced from data that resides on the server. It would become much easier to
develop new web-based FCA applications, because application developers would only
need to write programs that extract and present the data as formal contexts, without
having to worry about how to draw the lattices. The FCA algorithms would be provided
by existing software.

The challenge of creating an FCA interchange format resides as much in deciding
the content of the format as in obtaining an agreement from the developers and getting
the format accepted. It might be that a currently existing format could be used as an
interchange format if it was widely supported by FCA software. Part of the problem
is to decide how much information to include in the interchange format. For example,
should information about fonts and colours of the lattice diagrams be included? It is not
the purpose of this paper to make any concrete suggestions, but hopefully this paper will
help stimulating discussions about these issues. In the meantime, FcaStone attempts to
fill the gap and provide some rudimentary means for interoperability by file format
conversion!

URLs for the tools (FCA and non-FCA)

1. Colibri: http://www.st.cs.uni-sb.de/∼lindig/#colibri
2. ConExp: http://sourceforge.net/projects/conexp
3. Dia: http://live.gnome.org/Dia
4. FcaStone: http://fcastone.sourceforge.net
5. fca.sty: http://www.math.tu-dresden.de/ganter/fca
6. Galicia: http://www.iro.umontreal.ca/∼galicia

42

7. Graphviz: http://www.graphviz.org
8. Jfig: http://tech-www.informatik.uni-hamburg.de/applets/javafig
9. Jgraph: http://www.jgraph.com

10. Inkscape: http://www.inkscape.org
11. ToscanaJ: http://tockit.sourceforge.net
12. Winfig: http://www.schmidt-web-berlin.de/winfig
13. Xfig: http://www.xfig.org
14. yEd: http://www.yworks.com/en/products yed about.html

References

1. Chein, M.; Genest, D. (2000). CGs Applications: Where Are We 7 Years After the First ICCS?
In: Ganter; Mineau (eds.): Lecture Notes in Artificial Intelligence 1876, Springer, p. 127-139.

2. Dobrev, P. (2006). CG Tools Interoperability and the Semantic Web Challenges. Contributions
to ICCS 2006, 14th International Conference on Conceptual Structures, Aalborg University
Press.

3. Ganter, Bernhard (1984). Two basic algorithms in concept analysis. Technische Hochschule
Darmstadt, FB4-Preprint, 831, 1984.

4. Keeler, M.; Pfeiffer, H. (2006). Building a Pragmatic Methodology for KR Tool Research
and Development. In: Schaerfe, Hitzler, Ohrstrom (eds.), Conceptual Structures: Inspiration
and Application, Proceedings of the 14th International Conference on Conceptual Structures,
ICCS’06, Springer Verlag, LNAI 4068, p. 314-330.

5. Rudolph, S.; Krötzsch, M.; Hitzler, P. (2007) Quo Vadis, CS? On the (non)-impact of Concep-
tual Structures on the Semantic Web. In: Priss, Polovina, Hill (eds.), Proceedings of the 15th
International Conference on Conceptual Structures, ICCS’07, Springer Verlag, LNAI 4604, p.
464-467.

6. Stahl, J.; Wille, R. (1986). Preconcepts and set representation of contexts. In: Gaul & Schader
(eds): Classification as a tool of research.

7. Tilley, Thomas (2004). Tool Support for FCA. In: Eklund (ed.), Concept Lattices: Second
International Conference on Formal Concept Analysis, Springer Verlag, LNCS 2961, p. 104-
111.

8. Wille, Rudolf (1992). Concept Lattices and Conceptual Knowledge Systems. Computers
Math. Applic., 23, 6-9, p 493-515.

43

� ������ ��		�
� �

� �
� ��������

�
���
	���������� ��� ���������
�� ����

����� �����1	
��
�� �
���1	
������� �������
2	 �� �
2	

��� ��
�� � �����1	 ��
� �����2

1
�������	 ���������	 �����
2 ���	 ���������� � ��
��������	 �!

"������	��
���	���
��#$��������%���	 "��&	'�	���#$���%�����%��%
(

�������� �� ���� ���	
 �	 �
	�	�� � ���
�� ������� ���� ��
 �
	�����
�������� �	��		� �
	�������� �������	 ���	�� ��� �� ��������� �

��
� �� �������	� �������� �� ��	 ���� ������� ��
���� �
	 �	
� ����
�
�� �� �	 �
���	� �� ���� �� ��� ����
�	
 	��	
��� �� ��	 ���	
 ����
�
������� ��	��
���
	�
�
	 �
�� �������� �� �	 �
	��	� �����	�!�" ��
������ 	��	
��� #	 �	��	�	 ���� �

 �
�����	� ���� ��	�
�� ���
��
��	�
��	
�	 �� ���
�� ����� �� ��	 ����	�� �� $	������ #	� �
������� ��������
����� �� �	�	
�� ��� 	%	���� ������������ �� ��
���
��
�

� �������	�
��

)� ���� ����� �� ������� � ���
�� ������� ���� �� �������� *+�, -./ ��������
'������ � ���������� ����'��� ������ ��� �� 01� -2/ ��������% 1� ������� ���
��������� ��������� ���� ��� �� ��� ����������� � ���� ���� ��� ���
�����������%

1��� � ������ ��� ������ �
�'�� � ���������� ������'�� ��� ���� �� ���������
�3������ ���� ������ �� �����
� ���������� ����'���� ��� ������������ ���������%
4��� ������ �� ��5����� ����
���� '���� ��������� �� ����� �� �
����� ���� ��6
��������� ��� � ����������� '������ ����������� ��� ����'��� ��������% *+�,
�� ��� � ��� ���� ������
��� ������� ����
���� �
� �� ��� 7�3�'����� ���
�������'����� ��������%)� ������ �� ����� � ����� �������� �� ��� �������� ���6
������� �� ����� �������� �� ��� ����'���% 0��� ��� ��������������� ���� '���
����'������	 ��� �������� ��
�� ����� ������ �� ��� ����'��� ��� �������� '����
8
������ ����
���� 9�*,� -+/	 ����,� -:/ ���%;% �������	 ������� ������� ���
���� ��<�
�� �� '� ������� '� ���� '� ��� ����
��� �3�����%)� ���� ���������
��������� �
�� ������� ���
�� '� ������� =��6���67�> '� ������ �3����� ���
����� ��� '� ����������� ���
������ �� *+�, �����3% 4��� ����� �� �� �
��6
����� ���� ���� ������ �
�� �������� �� '� ��������� ���
����% 4� ��� '��� �
�
� (�������� �
�� ���� ���� ��� �
������� �3���% 4��� �� ��� ������ ��� ��
��������� ��� ������� ���� ��������� �� ���� �����% 1� '������ ���� �
�� � ����
������� ���
������� ���
�� � ���
�� ����� �� ��� �����3� � �������� 1�' ���������
������������%

4�� ������ ����� �� ������� ���� ���� �� �������	 �� ��� �������� �����3� �
��� ������������ � ������% 0�� � ��� ���� �'?������� � ������������ �� ���

� �����&&�����	������	�����	�

44

����������� � � ����� �
�'�� � �������������� ������'
��� �������� ����'���� �
'���� �
��
� �����% 4�� ����������� ����� �
�'�� � ��8
���� ����� ���� ����
����� �� '����� �
��
� ������@������
���� ������� �������� ���������� 9������6
@���; ���� ������'
��� �� � �
���6����� �������(% 4�� �'���
� ����������'�����
���'���� 9��5����� ����'��� ������� ������ ��5����� ���������; ��� �������� '�
�������� � =������ ����
���>A �� ��������% 4��� �������� ���� ������ �
� ���
����������� � ��� ������� ����� ���� �������� �� ��������� ����'������� ���� ���
�������� ������% 4�� ������@��� ��
�� ���� ������ ��� ����� ���� ���� ���� ��
����� �� B ������ � '� 8
������ ��� ������'
��� ����'���� ��� ��� ��������% 4���
8
������ ���� ��8
���	 �������	 � ����������� '������ ��� �������� � ��� �����6
��� ��� ��� �������� � ��� ����'��� ������%) � ��� �������� ����� �� ?��� ���
������������ ������(���� ������� ���� ���� �� '� ������� ��� �������	
�
����
'� ������� ���5% �� ���� ����� ��� ���� �� �� �
������� ���� �� �������� �
��
������� '����� �����
�
� ���� ����� ��������
��'����� ��8
��������%

��������� ������� ���(�� ��� ���� �
�� ��� �������� '� ��
��8
� ���������
� ������� ��������� ���������� ����'���� ��� ������� �������� �������� ���� ���
������������ ��������% *������ � ����	 �� ��� ���� �������� �� ��� �������
��
�'�
� ��� �
����� ����� � ��� ��� �� ����� (��� � �����%

1� �
�� ���� ������� �3������ ����� ��(� !�0C ������� -&/ ��� ��� ���6
��� ������ ��������� 901�	 *+�,; ��� �� �3��������� ����� ��<�
��� ��
����
����� ����� �� �
� ������������� �����% 0� ��� ����� ����	 ���� ������ �����
��������� ��� ������ ���������	 ��(� �� �3�����A 4������� �������� -D/E ��6
���
�� �5����� ����� 7�3�'����� ���
�����������	 ��� �� ��� ���� �� ������
���
��� ����'����� �� ��� ��� �������� '������ ����������	 ���� ��� �������� ��
�������� 6 ����'��� �������%

F�� ����� �������	 ��� ��� ���(�� ��� �������
�� � � ���� ���� ��
�� '�
���
 �� ��� �
������ �� ������ �� ��	 ��� �� ��� ��� ������
� �� '�
��� �� �����
�� ��������� ��� ���(�� ��� ����������
���� ����� ��� ����'����	 �� ������� ��
��(� ��� ��������� � ��������� ��� ���������� �
� ��� ����%

1� ���� ������� ���� ���� �� ��� ��������� � ��� �����% F����	 �� ������
��
��� ������������ ������ ��� ��� ������
��� �������� ��8
��������	 �� ������� &
�� ������'� ���
����������� � ��� ��������� ������� ����	 ��� �� �����
��
'� ���������� ��� ������� ���(����� �� ��������� ���
��'�����%

� �
������
���

������������ -G/ �� �� �����6'����	 ������'
��� �������� �
����� ������ 9*��;
���� ������� �������� �� ��������	
������� ���������)������ 9
�); ����	

������� ��������� ������������ 9
��; ���� ��� ������� *C� ���@�� �� ��6
������% 4�� ��� � ���� ���?��� �� �� ���� ������� '���� �
��
� ������@������
'� ��������� �����������	 ��� �������� ������8
��% � ����������� ���?���)����6
���� -H/	 ��� ����� ���� ������ ��3��
�� ���� ��� ��� �� ��������� '���� �
��
�
������@������% ������������ '
���� �� ��� � ����� ���
��� ���
����� �������
�
��� ��3��
�� ����	 �� ���� �� ������� *C� �����6����� �� �������� �� '��6
��� ������@������ ���
���%
�������	 ������������ �� ����������I��� ���)��������

45

*�� '� '
������ � ������'
��� �������� �
����� ������ 9�6*��;% 4��� ���	 ���
�
�'�� � ����� �� '� ��
���� �� ���������	 ��������� ������@��� ���
����%

�� ��� ������	 ��� ���� �� ��� ������������ ������ �� ������ �� ����������
����'���� �� ��� �����
� ������������� �
������ �������� �������% ��
�� ��� ��6
��'
���� ������ �� ����������'����� ������� �� �������� '� ����� � ��*0

9������������ *����� 0�������;%)� �������
������ ��� ���������� � ��� ��6
������ ������8
�� 9
�)	
��	 *C� ����������� ���%;	 ��� �������� �� ��������
9���	 ��3	 �
��� �������� ���%; ��� ��� (���� '���� �
��� ������� ��������� ��
1�0 91���� ������ 0�����������; �%

4�� ������� ������� �� �� ��� ������ � ��*0
 9��� F��
�� .9�;;% ���� �����
� � ������� �� ����� ��
��8
�)* �� '� ��5���������� ��� ����� ��� ���������
��� ���� ������% � ������
��� ������� ��������	 ����� ���	 ��� ������� ����������
������� �������% 4���
� ��
� ��@��� ��������� � ��� ��������� �����
���� ���
�
' ���
��	 ������ �������JF��
� ��� ���������JF��
�% � ������
��� ��
�
�� ������� �� ��� ����� � � ������� ��� �������J������ 9��� F��
�� .9';;%
���
������� �����
����� ��� ������� ���� '��� ��������� �� �������� '���� �
6
��
�%)� ��*0
	 �� ��
������ ��� �������� ���������� ��� ��@�� ���� ��
�
'6�������� �
������J�������A ������	 ��
��	
�������J���������	 ���

����������%

(a) Patient and Patient-Record (b) One visit of a patient

Medical-Control

Symptom

Patient

Diagnosis

Clinical-Center

Clinical-Intervention

Diagnosis

WHO-CNS-Tumour-Grade

Daumas-Duport-Grade

Region-of-Interest

Histopathology

Clinical-Centre

Patient-RecordPatient-Record

Clinical-Intervention

Medical-Control

Medical-Control-Outcome

Symptom

�	
���
� '���	��
�� ��	� �� %	����(�	��� %()�*

4�� ��*0
 �������� �������� ��� '���� ����������� �� ��� ������������
����'��� ������ ��� ������ �� ����������'����� �� ��� �������������� �����% 4���
�� ���
������� �� F��
�� +%

�� ��� ������ � ��� ����������� �� �
�� �
������� �� ��� ��������� �
����������� � �
�'�� � ����'���� 9������'
��� ���� ��� ����� '�������� �� ���
������������ ������(;	 ���� ��� ���� ��� ��� ������ ��� ��5����� ��� ����
�����% 0'���
���	 ��� �������� �������(�������� '� ��� ������ ����� ��� ���
�������� ������ ��� �� �� ����	 �������	 �� ��� � �����
� ?�' �� ��� ��� ��� ����
������ �� ���� ����'��� �� ��� ��������	 ��� �� ��� '��� ��� ���� � ������ �
���
�� ���� �� ����� ���� ?�' �� �� ������ ���%

� (�������	 �
�� %�
��
� *	����� $����� ��� �����&&�	

��

�	
��������
��
��	�
&�	����������

46

Domain OntologyDomain Ontology

Schema 1 Schema i

Schema j

Schema n

Schema 1 Schema i

Schema j

Schema n

�	
��� �� ����������� ���	
��	
������� �� %	����(�	��� �������	 ���	��

� ������	�

4�� ������������
������ 4��� �� � �� ����� ����������� ��������� �� �������
'������ � ����� ���������� ����'��� ��� � ����� 01� ��������% ����� �� ���
���� � �
�������� ��� ������� ������� '������ �� �������� 9�������� ���
����������; ��� � ���������� ����'��� ������	 �� �������� � ���� �������� '� ���
���� ��� ���� ��������% 4��� ���� ������ ���
��� �� ������ �������� �� � �����
�������� �� �������� ������� ������ � ���������� ����'��� ���� ��� @��� ���� �
�'������� � ������� �����������	
���� ��� *+�, ����
��� �� ��� ��������������%

4�� *+�, �������(�������� � ������� ����
��� �� �������� ���6�*F
���������� ����'���� �� ����
�� �*F ������	 ��� � ���� ��� ���� ���'��� �����6
������� �� ������ ����� ������ ����
�� ��� K��� ��� ������ ��)�	 �� ���� ��
���� ��� 1�' ��� ��� ����,� �������� ��� �� ���(�� *���%

4�� *+�, ����
��� �5��� ����� 7�3�'����� ��� ��� ����� � ���� � �������
�������������	 ����� �� ������ �� � ����� ����� � ���������� ��� ��������� '������
�������� �� '� �����������% 4��
�� �����@������� � ��� *+�, ����
��� �� ����
�� ��� ����������� � ��� ������ ���� ��� ��� ������'�� �� ��� *+�, �����@��6
����� ��' ���� �E ����� ��� ��� ��������	 ����������	 ��� ������������� ���� ���
'� ����������� ������ � ������� ����������� �������
���� ���� ����
��� ���
���������%

4�� ������� ����������� ������
��� �'��� ���� ����� ��� �����
���	 ���
���� ��� ���� �� (��� ��� �������������� ������ � ��� ����'���	 �� 8
��� ���
����'��� ��� ��� ����,� ����
��� �� ��� ��������%

���������	 ��� ���� ���������� ��� ����
����� � � ������� ����������� '������
�� 01� �������� ��� � ���������� ����'���% 4��� ���� �� �
������� �������
����� �� ���� ������� �� � �������� 1�' ��� ���� ���������� ��� ��������
���
 �� ����������'����� ��� ���� � ��� ���� ����� ������� �� ����� ����'��� �������%

� (�������	 ��� �����&&���+���������
��	
�����	&��,	
&�-
�&��	�&

47

�	
��� �� .�	 %	����(�	��� *������ .����

)� ��� ��������	 �� ������� ���
����������� � ��� ���� �� ��������� ��� ���

���� �� � ��������� �������% 4��� ���� �����
� �� ���
������ ��� �������� ��(�� ��
��� ������	 ��� ���� ���� ������ ���
�� �3���� � ��� ����L� ����'�������%)� �����
����	 �� ���� ����� '� ��
���� ������'� � ������� ���(7�� � ��
��� ���(��� ����
��� �����������%

4��
��� �� ���������	 �� ��� ����	 ���� ��� �����'����� � ������� �� 01�
�������� ���� ���� '� ���
������ ����
�� ��� '
��� �� ����� ���% �� ��� ���� ����	
���
��� ��� ���� � ���������� ����'��� ������ �����@�� ������ '� �� M
� @��
�� '� ������ �� ��� �������� � ��� ���
�� ����'��� ������% 4�� ����'��� ������
���� '� ���
���� ������'�� ����
�� ��� ����� ��� �������� '� ��� �����������%

0��� ��� �������� �����@������ ��� ��� ����'��� ������ ��� ������ ���� ���
�����������	 ��� ���(7�� '����� '� ���������� ���
��� ���� � �������� �����
���� ����� ��� �������� 9�����; ������ ��� ����'��� ��� ��� ������������� 9�%�%
 ������ (��� ���%; ������� ����% ����� ��� ����	 � ������ � ������� ������
����� ���
��� �� ����� � ��� �������� ��� �������� �� '� ������� �� � ���� ���
���� ������% F��
�� & ����� � ���������� � ��� ����������� ���� �� ��������
��� � ����'��� ������% �� ��� ������ � ��� ������	 ��� ����� ������������ ���
����'��� ������ �� ���������%

48

F�� ��� ��(� � �������	 �� ����� �� ������� ��� �����������
��'�����	 ���
���(����� �� ������� ���� �
� ��5����� �����
��� �� ������� ��� ��5����� ����
� �� �������� �������� �� ��� ������� �������A

�	
��� �� %	����(�	��� *������ .��� ����	�� .�� �	��� ��	 �������� �
	�/ ���
�����
��	 ���
��������� �
	�/ ������ �	��� ��	 �������	 �
	�/ ��� ������
����� ��	 �������
�
	�

� ��� ������	
 ����
 �����	 �� ��� �������	 ��� �������� ������'�� ������
��� ��������	 ��� ��� �����'
��� � ��� �
������� �������� �������E

� ��� ������������� ����
 ����� ��� ��� ����� ��������� �'��� �� ��������
��� ���� ��'�	 ����������A ��� *+�, @�� '���� ��������� '� ��� �������
�������	 ��� � ��'�� ���������� ��� ���� ������'�� �� ��� ����'��� �� ���
�������� �������� ���� ��� ������E

� ��� �������� ����
 ����� ��� ������ � ��� �����@�� ����'��� 9��'���
��� ����� @����;E ���� ��(�� ������'�� � ������ ���� �
��������� � ����'���
������ ��'��� �� ��� ������� � ��� �
������� �������� �������� �������E

� ��� ������	 ����
 *������� ��� *+�, �����@������� ��� ��� ��� � ���6
������� ��� �� �������� � ��� �������%)� ���� ����� ��� ��� *+�, �����@6
������� ��� '� @���� �� �� �'���� � �������� ������� �����������% 4��� ����

49

���� ������ ��� �
'������A ��� �� ��� ���� � ��� ��������	 ��� ��� �����
�� ��� ���� � ��� ����'���E ����� ��� ����������� �������� ��� ����������	
��� ��� ����'��� ��'��� ��� @����	 ���� ��� '���� ������� ������ ��� �
�����
������� �����������	 ��� ������������ ���������%

F�� ���
�������� �
������ @�
�� : ����� ��� ��5����� �������������� �����

��� �� ��� ������������ � ��� �� �������� ������ ��� �����������% 1����� ���
@�
��A ��� ��� �� � ���������� ����� ��� �������� ����	 ��� ��� ����� ����������
����� ��� ���
��������� ����	 ��� ����'��� ���� �� ��������� �� ��� '����� �� �
����������	 ��� @�����	 ��� '����� ����� ���������� �������� ��� ������� ����%

N���� ��� ���
����� ��������� � ��� �����������L� ����� ���	 ��� ���� ����� ��
'� ���� �� ����� �� ������ � ������� �� ��� �������� 9�� ��� � ��� �����'
���; ��
�� ������ ������ ��� ����'��� �� �� ������ ��� ������� �'?���	 ���� �� �� ��� �������
������ ������ ��� ������� ����	 ��� �� ��� ���� �� ��� ������������� �'?���
�� ��� ����'���% F��
�� D ����� ��� ������ ��� ������� ������� �� ������� �
�	
���� � �� �������� ������� ������ ��� �� �������� ������� '���� ������� ��
��� ������� ���� �� ������ �� ���� ��� ��
�������� ������ ��� ����'���%

�	
��� �� .�	 ������� �
��	���)
������ �� �������� ����	�� �� ��	 ������� �
	��

50

)� ����� �� ������� ��� ���������� � ��� ������� ����������� ���
��� �
��
������ ��� ������ ������'�� �'��� �� ���� ��� � ��� �������� �� ��� ��������
���� ���� �� '� ������% �� ��� ���� �
���� ��� ����������� � ��� �������	
���
��� �� ������� �� ���
����� ��� @��� *+�, @��	 ����� ������ ��� ������� ��6
���������% �������
��
�
����������� �� ��� �����'����� � 8
������ ��� ����'���	
�� ��� ����	
���� ��� ��' ������ �������� �� ���� �����@� �
�����% 4��� �����
���� ���
��� �� ������	 '���� �� ��� �� �������� ������ �� ��� ����'���	 �� �����
������� �� ��� �������� ��� ����� ������ ������ ��� ����'��� �� �������%

�����
�� ��� ������� �� ���� ��������� ���� ��� �����
� �����@�������
� ��� *+�, ����������� ����
���	 ��� ����������� �5��� ��� �����'����� �� ������
� �������� ������� '� ���������� ���
��� ���� � �������� ��� � ��������� ���
�����'
��� ���� ��� '� �����@�� �� ���� � ��� �������� ���� ��� '���� ������
9 �������� ��� *+�, ����
��� �����@�������;%

�� ��� ��� � ��� ������� ������� ������� �
�
���� ��� ������������
��6
���� 4��� �����������	 ���
��� ���	 ������ � *+�, @��	 ��� ��� ������ ��������
��� ��� ������������� ������������� ���� ��� �������� ����'��� ��������	 �%�% ���
������� ����������� 9@�
�� G ����� �� �3����� � ��� *+�, @��;% 4��� ������
�� 8
��� ���� ������
��� ����'��� �� ��� ����� ����	 ����
�� ��� *+�, ����6
 ���E ��� ���� ���'��� ������������ �� ������ ��� ����'��� ���� ��� 1�'	
����
��� ������� @�� ��������� ��� ��� ����,� �������� �� �� ������������ �����
'������ ��� ����'��� ��� ��� ����������� ������� �� ������ ��� ����%

)� ��� ���� � ������������	 ��������� ��� �� �������� ������ �� � ����������
����'���	 ��� ������� �� �� �� ��������	 �� ��� ���� �
����� �� ���
����I�����
� ���� (��� � �����������	 ��� ��� ����������� ������'�� �'��� 9
���� ���
������� @�� ��� ��� ����,� ��������; �� ��� ��� ����� ��� ������������
������ ������� �� ��������� ��� ���� �� ��� ��5����� ����'���� ��������� ��
��� ������������ ������(%

)� �� ���� �� ��� ��� ���� ���� ��
��
� �� ��5����� ����� � ������������ ���
 �� ������ ���(��� �� ��5����� �����	 ����� ��� ���'��� � ��������� �� ��������
������ ������ � ���������� ����'��� ���� ��� 1�' ��� '��� ������ ������� ���
�� ���� � ��� ����� ��� '��� ������ �
� ���� ���
�� � ����������%

0�� ������
��� ������ �� ����� ��� ������������
������ 4��� �� ���������
�� �������	 ����� ��� ����� �
�'�� � ������� ��� ���������� ������� �� ?��� ���
������������ ������(�� ������� ����% 4�� �� �������� ���� ������� �� ������
�� ����� ����� ����'����	 ����� ���� ���� � ��� �� ��(� ���� ���� ������'��
�� ��� ������(% 0�� ��� � ��������� ����	 �
������� �������� '� ��� �������6
����� ������(�� ������� ����� ��� ������� ���� ��� ������������ ��������%
4�� ������������
������ 4��� �5��� ��� �����'����� �� ��(� ���� �������
������� ����	 '� ��������� ��� ���������� ���� �� ���
����� ���� ���� �������� ���
������ � ��� ����� ����'��� ����� ���� ��� �������� ���� ��� �� ��(� �����
���� �������'�� ����%

51

�	
��� ��)-01 2�	 ���������� ��	 ������� �	��
�������

� ����
�� ���� ��� ������	��

�����
�� ��� ���� ��������� �'��� ��� '��� �
�����
��� �������� �� ��� �����3�
� ������������	 ����� ��� � �
�'�� � ����'��(� ����� �� ���� ������@��%
���������� ����� ����'��(� �� �
����� ������� ���(��� �� ��
�� ���� �����
���
� �� ��� ����������� ��� ����������
���� ��% 4�� �������� ���� �������� ����
 ���
��� ���� �� ����(��
�� ������� ��� ����'������� � ��� ���� ��� �������� ���

��'�����A

� ��� ��������� �� ��� ������	
 �� ��� ������	 ��� ������� �� ����
�� ?
�� ��� ���������	 ��� ��� �������� �� ��� ����'���E �� ��������� �����
���� ����� ���� ��� @��� ���
�� � ��� ������� ������� ���� ����� ���
���
�� 8
��� ��� �� �������� �� ��� ����'��� ��� ��� ��������	 '
� ���� ��� '�
�����'�� �� ������ ��� �� �������� �� ��� ��������� � ��� �������� ��������
�� ����� ��
�� ���� ���� �� ������� �� �� ��� ����'���% ���(��� �� ���� ���	
�� ����(���� �� ��
�� '� � �������� �� '� �'�� �� ��� ��� ��� ������� ���
��� ����'��� �� ��� �������� �� ����	 ����� ����� ����� '� ����� �� �����

���� ��
�� ��(� �� ��� ��� ���� �� ��� ��������� � ��� �������� �������� ��
����� ��� ����'����%

52

� ������������� �� ��� ������	
 ��������������
 �� ��������� �� ��� ����
�������	 ��� ��?�� ���
�� � ��� ���� �� ���� �� ����� ��� ����'��� ������
�� ��� ��� � � �����	 �%�% ��� �������� ��� ����� ������������� ��� ���������

���� � �������� ����� �� ��� ���
��������� ������	 ����� ��� �������� ��� ���
����� ��� ����� ������������� ��� ��� �����% �
� ���� ���
��������� �� ����
������'�� �� ��� ����'��� ������	 ������ �� ���
��� � ���
�� ����������� �
��� ����'��� �� ����� �� ��������� ��� ������� �������% F�� ���� �
����� �
 ����������� ��� �������	 �� ��
�� ���� '� ����������� �� '� �'�� �� ���
���I�
��� �������� ��������������% 4���� ��� ������� ����� �� ��� ���(�� ���� �5��
����
�����������	 ��� �� ����(���� �� �� � �������� �� ��� ������������

������ 4��� �� ����������� ����
����������� �� ����	 �������� ���
��� ��
���
���I� ��� ���� ��� ���� � ��� �������	 '
� '��� � ����	 �� ����������
��� ���
��������� � ��� ������� ��� ��(��� �� ���� ���
���%

� ������������� �� ����� ������	 �������������
 1��� �������� �
� ���
�������	 �� ��� '�
��
� �� ���
��� �� ���
����� ��� ������������� ����
���� '��� ������� �� ��	
���� � ����� ����� � ��� ������� �������	 '������
��� �������� ������ ��� ����'��� ��� ��� �������� �� ��� ��������	 ���� ���
�'?������ � ��(��� ������ �� ���
��� �� ���
����� ��� �������� ���� ����
������� '��� ������	 ��� ���� ���� ����� ������ �� '� ������	 ��� ���
������������� ���� �3��� '������ ��� �'?���� � ��� ��� ���� ���������������%
�����	 �� ��� ������
��� ��������� ������� ���
���	 ���� ���� ��������� ���
���������� ��� ������� �������%

� ���	���
���

)� ���� ����� �� ��������� � ���
�� ������� ���� �� �������� ���������������
'������ ����������� ��� ����'��� ��������
���� ��� *+�, ����
���% 4�� ����
� �
�� ���� ����� �� ��� �����3� � ��� ������������ ������ ����� �������� ����6
���� ��� ��8
���� �� ��� ����� ����'��� ������ �� ��� ������L� �������� �� �����
�� �
����� ����������'�����% 1� ��������� ���
����������� � ��� ���� ��� � ����
����
�� � �
�� ������ ����� �� �3������ ����'��� 9��
�������	 ���������;
��� ������ �� ��� ��������� ������������ ��������	 ��*0
% 1� �����
���
��� ����� ���� ������� ���������� � ���(���������� ��5�����
��'����� �������
����� �� ��������� ��� ���� '��� ��� � ��������� ���� ����� 9��������� �� �����6
��� ���'��(; '
� ���� ��� � �������� ��������� 9�������� ���
���������	 ��������
8
������ ������������;%

�	�����
��
�
���

4��� ���(�� �
�������
���� ��� ������������ �4��� ���?���
���� '� ��
F�������(G
���� N���� �
�'��)�46F�G6O+H+.&%

�

�
�	
�

3� .�)-01 4�����
�� .
	����� 5���0)6)������	� �� 7�
�
�� 0)6 8
�����
�����&&���+���������
��	
�����	&��,	
&�-
�&� 9��� ������	� 33&:+&-::;�

53

-� 0)19 � (1
	
� 9���
��	 ��
 0)6� �����&&�����<��
�&$
��������&-::+&$=>*�
0)19�-::+:3:?&� @��
�
� -::+� 9��� �����	� 33&:+&-::;�

<� A(�5 0	�	
�	� �����&&������	�������	���
�&�������
��&
	�	
�	&� @��
�
� -::;�
9��� �����	� 33&:+&-::;�

+� $4(019 1
	
� 9���
��	 ��
 0)6� �����&&�����<��
�&.0&
������
����
	
�&�
@��
�
� -::;� 9��� �����	� 33&:+&-::;�

B� .�� >
��� '�����	
� �����&&��������
��
�������&����
���&������	
&���	�������
*�� -::;� 9��� �����	� -C&:B&-::;�

C� '� (
D�� >� '	���� $�)���������
��)�)
������ %� 8��,E�	,�7F�	,� $� ��� %
G	��
4� 9	���� *� 9�
�� � (
�	�� *� *�	
� (� 4		�� ��� *� 0���	�� �� ��	 �	���� �� �
�	�����	� �	������ �
���
� ����	� ��
 �
��� �
��

 ���������
���� ����
��
�	�
��	���� �� ����������	
��� �������
��
� ���
��� �� ��� ������������ �
����������� ����� ����������� ���	� -:;H-33� %��� A����)	�	��	
 -::C� �III�

J� (� 0� .��	� @� =��	
�����)� *� (������ *� � @
����$��	� '� *�K��� (� *�
	���
.�

	�� 6� (� %��	� *� ��� �	
 8
���� *� *� 9	��

��	
� 6� *

���� (� 9���	��
	�
'� 9��
�
	� 4� #	��	����� @� 9� >������ (� #� $����	���� #� 8�K	���,� @� '����
�
(� '���	����� 4� #������� (� '� >	��� '� 0	��� (� %		
������)� #������ @� 0�
8
������ ��� '� (

��)	�	����	�� �� � �	������ �
���
� ����	� ��
 ��������� ���
�
����� �� �
��� �
��

�
���� �� ���� ����	���
	������	 �����	 ���	� ��	��
��
��� ����� � 3?�+33H+<+� -::C�

;� #<' �#9 0	�	
	��	� �#9 #	� �������� 9���
��	 0	�	
	��	 L #<' 0	����
�	������� 3:&-&-::+� �����&&�����<��
�&.0&����
	�&� -::+�

54

Author Index

Abdulrub, Saleh . 1
Adams, Neil . 7

Croitoru, Madalina . 44

Delugach, Harry S. 13

Hill, Richard . 1, 7
Hu, Bo . 44

Jaoua, Ali . 22

Lewis, Paul . 44
Lluch, Magi . 44
Lurgi, Miguel . 44

Polovina, Simon . 1, 7
Priss, Uta . 33

Roset, Roman . 44

Sandberg-Petersen, Ulrik . 1

