CT Image Classification by Threshold Circuits
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Abstract. We present an algorithm that computes a depth-three thresh-
old circuit for the classification of liver tissue. The circuit is calculated
from a sample set S of 348 positive (abnormal findings) and 348 nega-
tive (normal liver tissue) examples by a local search strategy. The lo-
cal search is based on simulated annealing with the logarithmic cool-
ing schedule ¢(k) = I'/In (k + 2). The parameter I' depends on S and
the neighbourhood relation is determined by the classical Perceptron
algorithm. The examples are fragments of DICOM CT images of size
n = 14161 = 119 x 119. On test sets of 50 + 50 examples (disjoint from
the learning set) we obtain a correct classification of about 97%.

1 Introduction

Advances in modern imaging technology, in particular in sectional imaging
modalities (computed tomography and magnetic resonance imaging), produce an
ever increasing amount of data to be assessed by the radiologist. New techniques
of data postprocessing are therefore used to assist in diagnosis and presentation
of the findings. Automated preselection of the up to 1500 slices acquired in
a single examination and their classification as normal or abnormal findings
considerably facilitates image interpretation and reduces physician time. The
present study was performed to investigate the computer-assisted interpretation
of CT scans of the liver by depth-three threshold circuits.

Forty cases with normal findings and 150 cases with liver pathology were
selected for the study from a total of 735 abdominal and biphasic upper ab-
dominal CT examinations performed with comparable imaging parameters. The
abnormal findings were confirmed by histology in 83 patients and by follow-up
in patients with known malignancy in 67 instances. Ten to fifteen slices were
selected for the cases with normal findings and between one and five slices from
the portal-venous phase for those with abnormal findings. Representative areas
from these slices depicting normal liver tissue as well as vessel cross-sections and
cysts or one or more focal liver lesions surrounded by normal liver tissue were
identified and recalculated for a matrix of 119 x 119. A total number of 348 ROIs



showing normal liver parenchyma and another 348 ROIs with abnormal findings
(hypodense lesions) were used to calculate the depth-three circuits.

We utilise a new method to compute depth-three threshold circuits from sam-
ple sets by a combination of the classical Perceptron algorithm with simulated
annealing. For sample sets S of n-dimensional vectors x that are separable by a
linear threshold function into “positive” and “negative” examples, MINSKY and
PAPERT [9] proved the following convergence property: If w* is a unit vector so-
lution to the separation problem, then the Perceptron algorithm converges in at
most 1/0? iterations, where o := ming yjes |W*-x|, 7 € {+, —}. The parameter
o can be exponentially small in terms of the dimension n.

In general, the simple Perceptron algorithm performs well even if the sample
set is not consistent with any weight vector w of linear threshold functions, see
[6]. For our problem of CT image classification, one can hardly assume that pos-
itive and negative examples are separable by a single linear threshold function.
In order to reduce the classification error, we try to compute a bounded-depth
circuit consisting of linear threshold functions. The threshold functions, in par-
ticular the gates of the first level, are determined by a learning procedure from
positive and negative examples S of the classification problem.

HOFFGEN [8] has shown that finding a linear threshold function that min-
imises the number of misclassified examples is NP-hard in the case of arbitrary
sample sets. We approach this computationally hard minimisation problem by
a simulated annealing-based procedure where the neighbourhood relation is de-
termined by the Perceptron algorithm. The combination has been studied in [3]
for samples generated by non-linear threshold functions.

To our knowledge, the first paper on learning-based methods applied to X-
ray diagnosis was published by ASADA ET AL. [4]. Since then, the research has
been concentrating on using commercially available neural networks for medical
image classification [5, 7, 10, 11].

In a number of papers, feature extraction is used in learning-based classifi-
cation methods [10, 12]. In [10], for example, a high classification rate of nearly
98% is reported, where the Wisconsin breast cancer diagnosis (WBCD) database
of 683 cases is taken for learning and testing. The approach is based on feature
extraction from image data and uses nine visually assessed characteristics for
learning and testing. Among the characteristics are the uniformity of cell size,
the uniformity of cell shape, and the clump thickness.

In our approach, the input to the algorithm are fragments of CT images of
size 119 x 119 with an 8 bit grey scale in DICOM standard format. Therefore,
the input size is n = 14161 and the input values range from 0 to 255. For the
learning procedure, we used 348 positive (abnormal findings) and 348 negative
(normal liver parenchyma) examples. The result of the algorithm is a depth-
three threshold circuit consisting of 37 gates (linear threshold functions). The
circuits have been tested on 50 + 50 examples (different from the learning set),
and we obtained a correct classification of about 97%. The time to compute the
depth-three circuit is about 30 hours, the classification itself (i.e., the test) is
performed within a few seconds.



2 Simulated Annealing and the Perceptron Algorithm

We assume that rational numbers are represented by pairs of binary tuples
of length d and denote the set of linear threshold functions by

n

F = U Fn, where F, ={f(x): f(x) = Zwi x> 95 ),
n>1 i=1

where w; and z; are equal to £(p;,q;) for p;, ¢; € {0,1}%

The functions from F are used to design single-output circuits C of threshold
functions: A circuit C is defined by the underlying acyclic directed graph G =
[E,V], E C V x V. The graph G has n input nodes labelled by variables z;,

-, Zn, and | V | —n nodes vy labelled by threshold functions f € F, where
the number of incoming edges of v; has to be consistent with the number of
variables of f. Finally, one vy is chosen as the output vey: of C.

The depth of C is the maximum number of edges on a path from an input node
z; to the output node v,,;. The nodes that are not input nodes are called gates.
The function F(C) computed by C is defined as follows: The gates of the first
level output 1 or 0 depending on whether or not ;" w; - z; > ¥;. In the same
way, the gates at higher levels have Boolean outputs only. Therefore, when all
paths from input nodes to v,,; are of the same length, the gates at level 2, 3, .. do
compute Boolean threshold functions. Thus, we have F(C) : {0,1}™¢ — {0,1}.

In the present paper, the maximum depth of C is three; circuits of depth one
are simply the elements of F,, and in Section 3 we consider circuits of depth
two and three, respectively. In our application, each of the threshold functions
from the first level is equally important for the overall classification result of
the depth-three circuit. Therefore, the weights at the input lines of second level
functions (gates) can be normalised to the value 1 and only the threshold values
depend on the sample set S.

For a given sample set S, we assume S = {[x,n]} for n € {+,—} and
x = (21,...,Tn) where z; = (pi, @), pi, ¢ € {0,1}¢. Furthermore, we consider
a particular number n of variables only and we take the set F := F,, as the
configuration space.

The objective of our optimisation procedure is to minimise the number | SAf|
of misclassified examples, SAf:={[x,7n]: f(x) < ¥;&n=+ or f(x)>V;&n=-},
and we denote Z(f) :=|SAf|.

Given f =31, w;-x; > ¥, the neighbourhood relation Ny is suggested by
the Perceptron algorithm and defined by

wi(f') =wp — Yy :L'ij/ Zw?, j € {1, 2, ... ,m}, (1)

i=1

for all ¢ simultaneously and for a specified j that maximises | y; — ¥y |, where
Y; = iy w; - ;5. The threshold ¥y is equal to 95 + y;/v/> oy w?.

Given a pair [f, f'], f' € N, we denote by G[f, f'] the probability of gener-
ating f’ from f and by A[f, f'] the probability of accepting f' once it has been
generated from f. To speed up the local search for minimum error solutions, we



take a non-uniform generation probability where the transitions are forced into
the direction of the maximum deviation (we used a similar approach in [1]).
The non-uniform generation probability is derived from the Perceptron algo-
rithm: When f is the current hypothesis, we set
—f(x), if f(x) <¥f and n(x) = +,
Ux) := { f(x), if f(x) =27 and n(x) = —, (2)
0, otherwise.
For f' € Ny, we set G[f, f'] := U(x)/ X ycsa; U(x). Thus, preference is given
to the neighbours that maximise the deviation. Now, our heuristic can be sum-
marised in the following way:

1. The initial hypothesis is defined by w; = 1,7 =1,2, ...n and ¥ = 0.

2. For the current hypothesis, the probabilities U(x) are calculated; see (2).

3. To determine the next hypothesis fi, a random choice is made among the

elements of Ny, , according to the definition of G[f, f'].

4. When Z(fr) < Z(fr_1), we set A[fr_1, fr] == 1.

5. When Z(f) > Z(fr—1), a random number p € [0,1] is drawn uniformly.

6. If A[fr_1, fr] := e~ (EUR=Z(-1)/e(k) > p the function fj, is the new hypo-

thesis. Otherwise, we return to 3 with fj_;.

7. The computation is terminated after a predefined number of steps K.
Hence, instead of following unrestricted increases of the objective function, our
heuristic tries to find another “initial” hypothesis when the difference of the
number of misclassified examples is too large.

The crucial parameter c(k) is defined by ¢(k) = I'/ In(k+2), k = 0,1, ... When
I' is larger than or equal to the maximum value of the minimum escape depth
from local minima, one can prove the convergence to minimum-error solutions
for a more general neighbourhood relation that provides the reversibility of F.
In this case, the convergence analysis from [2] indicates a time complexity of
roughly nT+tOM) ie. after nt + logo(l) (1/6) transitions the confidence that a
minimum-error threshold function has been computed is larger than 1 — §.

3 Computational Experiments

The heuristic was implemented in Ct+ and we performed computational
experiments on SUN Ultra 5/333 workstations with 128 MB RAM.

In the experiments, we used fragments

Q of CT images of size 119 x 119 with

8 bit grey levels. From 348 positive

(with abnormal findings) and 348

negative examples (normal tissue) sev-

eral independent hypotheses of the

type wy -1 + -+ wy - Ty > ¥ were

Normal liver tissue: Focal liver tumour: calculated for n = 14161. We tested

Negative example.  Positive example. the hypotheses on 50 positive and 50

Figure 1 Figure 2 negative examples. The test examples

were completely different from the learning set.



Table 1 summarises typical results for circuits of depth 1, ..., 3. Each function

(gate) from the first level was trained on a random choice of 50+ 50 examples out
of 348 + 348 examples. The examples were learned with zero error when I" > 10
(Table 1 is for I' = 15). The depth-three circuit consists of three sub-circuits of
depth two, where each depth-two circuit has 11 threshold functions at the first
layer. The output gate of the depth-three circuit is a simple majority function.
Thus, the depth-three circuit consists of 3 - (11 + 1) + 1 = 37 gates.

Depth of|| Learning | Errors on Errors on  |Percentage
Circuits ||[Run-Time/POS NEG|T-POS T_NEG| of Errors
1 49 min| 0 0 13 16 29%

2 537 min| 0 0 3 5 8%

3 1669 min| 0 0 1 2 3%

Table 1

Each of the threshold functions of the first level (i.e., each input gate) has

n = 14161 inputs, i.e., the total number of input lines that are connected to the
14161 input nodes (pixel values) is 3 - 11 - 14161 = 467313.
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