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Abstract. Image registration is an often encountered problem in digi-
tal imaging, in particular in medical imaging. In most applications sim-
ple rigid deformations are not satisfactory and complex, non-rigid and
non-linear deformations must be employed. A large class of non-rigid,
parameter-free, matching techniques minimizes the distance of the given
images subject to a regularizing term. In this note we propose a novel
scheme for automatic registration by introducing a specific regularizing
term. We show that the complexity of its implementation is linear with
respect to the size of the images and demonstrate its performance. More-
over, we draw a connection to Thirion’s demon based approach.

1 Introduction

In the last decade a number of non-rigid, automatic registration algorithms have
been proposed, see, for example, [1, 2, 3, 4, 5] and references therein. Most of
these schemes may be viewed as a procedure which minimizes a suitable distance
measure subject to a regularization term. There are essentially two approaches
to solve these optimization problems numerically. One is to deal directly with the
original formulation, whereas the other is to solve a related partial differential
equation. Here, we focus on the latter method. Typical members out of this class
are the elastic [4] and fluid [5] deformation models. The elastic model requires
the repeated solution of the Navier-Lamé equation. In contrast, for the fluid
model one is tempted to solve a simple version of the Navier-Stokes equation. It
seems to be a conventional wisdom that a finite difference approximation to these
equations leads to schemes which are by far to slow (see, e.g., [6]). The main
bottleneck is thought of to be the solution of the corresponding linear systems.
However, Fischer and Modersitzki [7] recently showed that one may solve these
systems in just O(N log N) operations, where N is the number of pixel.

In this note we propose a novel gradient based penalizing term and devise
a super fast and stable implementation for a finite difference approximation of
the underlying partial differential equation. Actually, we show that the solution
of the corresponding linear system requires only O(N) operations, that is, its
complexity is linear with respect to the number of pixel.

Beside this, we discuss Thirion’s [8] demon based approach. He proposed a
method which works well in practice but its derivation is guided by intuition and
not entirely understood. In the literature there have been several attempts to
shed some light on his approach (see, e.g., [9, 6]). Because Thirion offers a variety



of possible implementations, the underlying theory is widespread. However, the
bottom line is, that he calculates the deformations by regularizing certain driving
forces by a Gaussian convolution filter. We show that this technique may be
viewed as a special (low order) approximation to the partial differential equation
connected to our new scheme and thereby gaining some insight into Thirion’s
work.

2 Approach

We refer to the template image as T'(x) and the study image as S(x) where
x € 2 =0, 1]¢. The registration algorithm described in this paper is applicable
to images with any number of dimensions d. For a particular point x € (2, the
value T'(x) is the intensity at x. The purpose of the registration is to determine a
transformation, sometimes called warping, of T'(x) onto S(x). Ideally, one wants
to determine a displacement field u : 2 — (2 such that T'(x —u(x)) = S(x). The
question is how to find such a mapping u. A straightforward approach would be
to minimize the following distance measure

Iw) = /Q (T(x - u(x)) - S(x))* dx. 1)

Of course other functionals, like the mutual information based measure, might
be used as well. The theory is along the same lines, but will not be considered
here. In order to rule out discontinuous and/or suboptimal solutions of the above
minimization problem, or to privilege likely solutions it is common to introduce
a smoothing or regularizing term E(u). The problem now reads, find a mapping
u which minimizes the joint criterion

J(u) = aE(u) + I(u). (2)

For example, the well-known deformable grid methods based on elasticity or fluid
mechanics may be phrased in terms of minimizing the functional (2) for specific
choices of E(u). We note that the parameter a determines the relative weight
of the regularizing term. Since the issue of the choice of a is not addressed here,
we set @ = 1. This is the parameter used in our experiments as well.

Let us now investigate the following stabilizer E(u) which is designed to
penalize oscillating deformations. For convenience, we formulate the problem
explicitly for the three-dimensional case d = 3. Formulations for different di-
mensions are straightforward.

1
E(u) = E(u1,u2,u3) = 5/9 llgrad(ua)|l5 + [lgrad(uz)||3 + [lgrad(us)||3 dx. (3)
In accordance with the calculus of variations, the function u which minimizes
the functional (2) with respect to (3) has to satisfy the Euler-Lagrange equations
Aup(x) = (S(x) — T(x — u(x)) T (x — u(x))
Auy(x) = (S(x) — T(x — u(x))0:T (x — u(x)) (4)
Aug(x) = (S(x) — T(x — u(x))03T(x — u(x))



in {2 subject to appropriate boundary conditions. Here A denotes the Laplace
operator. The so-called force field

f(x,u) = (T(x — u(x)) — 5(x)) grad(T (x — u(x))) (5)

is used to drive the deformation. It is worth noticing that f is the derivative of
the functional I(u) with respect to u. Changing I results in a different force field
(see the comment after (1)).

A popular approach to solve a non-linear system of partial differential equa-
tions like (4) is to introduce an artificial time ¢ and to compute the steady state
solution d;u(x,t) = 0 of the time dependent partial differential equation

Opu(x,t) = Au(x,t) + f(x,u) (6)

in 2 via a time marching algorithm. More precisely, to solve (6), we employ the
following semi-implicit iterative scheme

ouhtl(x,t) — AuF T (x,t) = f(x,u”), k=1,2,..., (7

where u® is some initial deformation, typically u® = 0. In other words, the trick

is to compute the driving force f for the previous solution u* and subsequently
to solve for uF*t,

There are several ways to solve (7). We start by noting that equation (7)
is nothing but an inhomogeneous heat-equation and well understood (see, e.g.,
Folland [10]). Actually, if we would have to solve (7) with respect to the whole
space 2 = R? then, under mild conditions on the driving force f, it is possible to
come up with an analytic solution. A representative result in this direction reads
(see [10]): if f € L', then the convolution uft1(x,t) = Ky(x) * f(x,u*), ¢t > 0, is
well defined almost everywhere and is a distribution solution of (7). It will be even
a classical solution if f € C¥, k > 1. Here Ky(x) = (4mt)~%/2 exp (—||x|3/(4t))
denotes the Gaussian kernel. Hence in order to solve (7) with respect to the
bounded region 2 = [0,1]¢ one may approximate the Gaussian kernel by a
Gaussian filter of suitable length, that is, to compute at each time step u**! =
K, xf(u*) the force convolved with a Gaussian filter K, with characteristic width
o. This approach is what Thirion calls Demons 1: a complete grid of demons (see
[8]). However, he gives no hint on how to choose the parameter o for a given
application. It turns out in practice, that a proper choice of this free parameter
is a tricky business. Also, it is hard to analyze the complexity of the Gaussian
filter based implementation, as it is directly connected to the choice of o and
the treatment of the boundaries of the images.

Let us now present an alternative way to solve (7). We treat it as a parabolic
partial differential equation. This point of view has several advantages. There
exists an immense knowledge on the numerical solution of partial differential
equations which often goes in hand with fast and stable implementations. More-
over, it is straightforward to incorporate the boundaries of the images within the
code. Various boundary conditions are possible and easy accessible. As a rep-
resentative example we illustrate these points by considering a finite difference
discretization of (7). It is worth noticing that standard arguments show that this



approach results in a better approximation to (7) as the Gaussian filter based
implementation. Typically one chooses the intrinsic discretization provided by
the pixel as computational grid. Then one approximates the time and space
derivatives in (7) by finite differences taking into account the chosen boundary
conditions. This results in a system of linear equations Au*+! = f* where, for
convenience, u*t! and f* denote vectors of suitable length. Consequently, the
main work of this approach is the repeated solution of this linear equation. A
close inspection of the coefficient matrix A shows that it has a rich structure.
Actually it is a block diagonal matrix with d identical blocks A, where the size of
A corresponds to the number of pixel N. Consequently, the solution of the large
system decouples into the solution of d systems with coefficient matrix A. More-
over and most important, it is possible to solve these systems directly by means
of the so-called AOS-scheme which has a linear computational complexity O(N)
(see, Weickert [11]). Moreover, the implementation in a parallel environment is
straightforward.

3 Experiments

To illustrate the performance of the new approach based on the finite difference
formulation we present the registration of two consecutive frontal sections from a
series of histological tissue sections of a human brain (see [12] for further details).
We are indebted to Dr. Oliver Schmitt (Institute of Anatomy, Medical University
of Liibeck) for providing the medical data. Fig. 1 displays the arbitrarily chosen
section 3799 of size 1024 x 1024 pixel and the difference to section 3800 before
and after registration. Note that the difference has been reduced by about 32%.
Table 1 shows the performance on a SGI OCTANE (175 MHz, MIPS R10000, 128
MB RAM under IRIX 6.5) using MATLAB 5.3. In accordance with our theory,
the CPU-times resemble nicely the linear behavior of the proposed scheme. It is
expected to improve the execution time by applying a multi-resolution approach
and by writing a proper C-implementation.
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Fig. 1. Histological frontal section of a human brain (left), difference to the following
section before (middle) and after (right) registration.



Table 1. Execution time and floating point operations per pixel (flops/pixel) for one
time-step and for different image sizes.

images 128%[2567]512%[1024>
cpu time || 0.6s| 2.6s| 9.7s| 36.7s
flops/pixel|| 72.3| 70.1| 59.8| 50.3

4 Conclusion

We have indicated that a large class of registration schemes may be phrased in
terms of a variational problem. The minimizer of such a problem is provided by
the solution of an associated partial differential equation. This point of view offers
a variety of well-developed and efficient algorithms. Along this lines we have
developed a new registration algorithm for multiple dimensions and analyzed its
computational complexity which happens to be linear.

Beside this, we showed that Thirion’s demon based approach turns out to be

a special implementation of an inhomogeneous heat-equation which constitutes
a necessary condition for the variational problem considered here.
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