
EWFN - A Petri Net Dialect for
Tuplespace-based Workflow Enactment*

Daniel Martin, Daniel Wutke, and Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart

Universitätsstrasse 38, 70569 Stuttgart, Germany
{martin,wutke,leymann}@iaas.uni-stuttgart.de

http://www.iaas.uni-stuttgart.de

Abstract Petri nets are a formalism for describing systems where inter-
actions between active components – so-called transitions – are modeled
as exchanges of tokens over passive places. Whether a transition may fire
is solely dependent on the availability of tokens in its incoming places;
similarly a transition forwards control to subsequent transitions by storing
tokens in their respective input places. This interaction model of strong
decoupling through local actions and local effects makes distributed sys-
tems modeled via Petri nets highly extensible. In this paper, we present
the syntax and semantics of a model that leverages the extensibility
provided by Petri nets for representing BPEL processes in a way that
enables their distributed and decentralized execution using tuplespace
middleware. Said middleware implements the proposed Petri net dialect
and therefore allows for direct, distributed execution of the modeled
processes.

Key words: Petri nets, Tuplespaces, Workflow

1 Introduction

Petri nets were originally designed as a model for arbitrary extensible computer
architectures i.e. machines that consist of many individual modules, each of them
responsible for a particular task of the overall system. Adding a new module has
no impact on the existing ones, their performance characteristics for instance do
not change at all. Three underlying design principles [1] facilitate this behavior: (i)
there is no central point of control, especially, there is no central clock. Moreover,
synchronizing clocks between modules is considered bad design and should be
avoided in any case. (ii) Each action is triggered locally, and has only local effect;
i.e. enabling of a transition only depends on its input places, firing of a transition
only effects its output places. There is no way to access the global state of the
system. (iii) Petri nets are inherently asynchronous in nature, communication
solely happens over local interfaces in a peer to peer like manner.

* This work is supported by the EU funded project TripCom (FP6-027324)

http://www.iaas.uni-stuttgart.de

These principles build the foundation for our model, that is naturally based
on Petri nets. In their spirit, we define a set of individual components and the
communication between them. The communication middleware that facilitates
component interaction during execution of the model is based on tuplespaces,
since (i) they closely resemble the design properties of petri nets in terms of loose
coupling and asynchronous communication [2] and (ii) each element of a Petri
net can be directly mapped to an entity in a tuplespace based system (either a
component, a tuple or a tuplespace).

Tuplespace technology has its origin in the Linda coordination language,
defined in [3] as a parallel programming extension for programming languages for
the purpose of separating coordination logic from program logic, i.e. the actual
application code. The Linda concept is built on the notion of a tuplespace, a
piece of memory that is shared among all interacting parties. A user interacts
with the tuplespace by storing and retrieving tuples (i.e. an ordered list of typed
fields) via a simple interface: tuples can be (i) stored (using the write operation),
(ii) retrieved destructively (take) and (iii) non-destructively (read). Tuples are
retrieved using a template mechanism, e.g. by providing values of a subset of the
typed fields of the tuple to be read, similar to query by example [4] (“associative
addressing”). Using tuplespace-based coordination, execution of a component’s
computational logic is triggered when tuples matching the templates registered
by the respective component are present in the tuple space. Thus, the templates
a component uses to consume tuples and the tuples it produces represent its
coordination logic.

In this paper, we define a variant of Petri nets, called Executable Workflow
Networks (EWFN), specifically designed to represent BPEL workflows and being
executed “natively” on an extended, Linda-like tuplespace system. The basis
for our model are colored, non-hierarchical Petri nets (CPN) [5] and Boolean
networks [6]. We present an extension of the model presented in [7], building
upon the syntax and concentrate on the description of the semantics.

2 Syntax

Definition 1 (EWFN). An EWFN is a directed, bipartite graph

EWFN = (Σ,P, T, F,X,A,M0, Lw)

Σ = {CF,DATA× N,DATA× N× String, . . . , ε} denotes the set of tokens
(tuples). Note that Σ comprises two different categories of tokens: (i) control
flow tokens CF = (“CF”× S × N× N× N) with S = {“POS”, “NEG”, “FAIL”}
denoting either “positive”, negative (a.k.a dead path, a special form of “negative”
control flow necessary for dead path elimination in WS-BPEL) or control flow
initiated by a failure, and (ii) data tokens representing BPEL variables and
process meta-data. The three integer fields represent processID, instanceID and
scopeID in order to be able to distinguish between process models, process
instances and scopes that were initiated by event-handlers. Data tokens consist of
the generic data tuple (denoted as DATA = (“DATA”× N× N)) concatenated

with variable definitions (in tuple form) from the respective process. We represent
arbitrary structured data by serializing its tree-based representation (e.g. in
the form of an XML-DOM [8]) into nested tuples. Furthermore, Σ contains the
“empty” tuple ε used to denote that actually no tuple is produced.

Note that like most other formalizations of Petri nets, our description is
based on multi-sets, we therefore define the operators +, −, etc. to be defined on
multi-sets as well.

P is a finite set of places and T a finite set of transitions such that P ∩T = ∅.
F ⊆ (T × P) ∪ (P × T ×R), with R = {read, take} is a set of arcs known as

flow relation. The set F is subject to the constraint that no arc may connect two
places or two transitions. The arc types correspond to classical Linda operations
[3]: write (a.k.a out) arcs go from transitions to places (i.e. are member of the
set (T × P)), whereas read (a.k.a rd) and take (a.k.a in) arcs go from places to
transitions, with arc inscription R denoting the type of arc. Take arcs are known
from classical Petri nets (i.e. they destructively consume tokens from places).
Read arcs (a.k.a test arcs) [9] in contrast allow a transition to non-destructively
read a token from a place.

X is a set of templates in tuple form, that may either contain a wildcard (?)
or a concrete value as element.

A : (P×T×R)→ X is a function that assigns templates to incoming arcs of a
transition such that ∀(p, t, r) ∈ F ∩ (P ×T ×R) : A((p, t, r)) ∈ X. Sometimes, we
use A without the last parameter, as a shortcut to access the template assigned
to an arc pointing to a transition. In these cases, it is not important whether the
template is used in a read or a take operation.

M0 : P → ΣMS is an initialization function that assigns a multi-set over Σ
to places such that ∀p ∈ P : M0(p) ∈ ΣMS This function initializes the network
by assigning a multi-set of colored tokens to each place. It is also allowed that
the expression is missing, i.e. a place is initialized with the empty color multi-set.

Lw : (T × P) → Σ is the Linda write function that determines the token
to be written by each outgoing arc of a transition. Writing an empty tuple (ε)
means that no tuple is written at all.

Definition 2 (tuple element). A tuple element TE is a tuple (p, tu), p ∈ P ,
tu ∈ Σ

Definition 3 (marking). A marking M ∈ TEMS is a multi-set (denoted as
MS) over tuple elements. Each place may contain one or more equal tuple elements,
thus the marking is defined as a multi-set. Note that we may also use M as a
function such that ∀p ∈ P : M(p) ∈ ΣMS

Definition 4 (Lr). Linda read operations (destructive and non-destructive) are
formalized as a function Lr : X × ΣMS → Σ. According to Linda’s semantics
[3], only one tuple is returned regardless the number of matching tuples. It is not
determined which tuple of the set of matching tuples is returned: Lr(te, tuMS) =
tu ∈ tuMS |tu ≈ te.

≈ is a binary relation over the sets Σ and X, specifying if a template matches
a tuple: ≈ ⊆ Σ ×X.

(tu, te) ∈ ≈ iff |tu| = |te| ∧ (∀n ∈ 1.. |te| : πn(te) = πn(tu) ∨ πn(te) = ?)

πi(t) returns a projection to the ith component of a tuple tu, |tu| denotes the
size of a tuples, i.e. the number of elements it contains.

A template therefore is a tuple that has either a wildcard (denoted by the ?
character) or a concrete value on each position. A template matches a tuple iff
(i) both have the same number of elements and (ii) each concrete value in the
tuple equals the value on the same position in the template, or (iii) the template
has a wildcard on this position.

Definition 5 (strongly connected). An EWFN is called strongly connected
[10] iff for every pair of nodes (places and transitions) x and y there is a firing
sequence leading from x to y.

Similar to WF-nets [10], an EWFN has two special kinds of transitions: ta
and to. There is no arc pointing to ta, i.e. •ta = ∅, similarly, to has no outgoing
arcs, i.e. to• = ∅. If we add a place p? to the EWFN to connect transition to with
ta (i.e. •p? = {to} and t?• = {ta}), then the resulting net is strongly connected.
Transitions of type ta do not have a precondition, i.e. are formally allowed to fire
any time. We use such transitions to create process instances (i.e. create a CF
tuple with new instance id) in our model. Similarly, to does not have outgoing
transitions, this transition only consumes tokens from the EWFN and is used to
log process instance termination.

3 Semantics

A transition t ∈ T that executes a destructive read operation (a.k.a take) changes
marking M1 to M2 as follows:

∀p ∈ •t : M2(p) = M1(p)− Lr(A((p, t, “take”)),M1(p))

A transition t ∈ T that executes a non-destructive read operation in contrast,
does not have any effect on the marking:

∀p ∈ •t : M2(p) = M1(p)

The set of places that have arcs pointing to transition t is denoted as •t =
{p|pFt}, the set of transitions that have arcs pointing to place p is denoted as
•p = {t|tFp}, with F being the flow relation. t• and p• are defined accordingly.

Definition 6 (enabled). A transition t ∈ T is called enabled in marking M iff

∀p ∈ •t : Lr(A((p, t)),M(p)) 6= ∅

It is important to notice that the templates of read operations may overlap,
i.e. if two different transitions destructively read from the same place with
templates that (partially) match the same tuple, a conflict is created. According
to Linda semantics [3], this conflict is resolved non-deterministically. Clearly,
non-deterministic decisions are not suitable for workflow definitions. That is why
we extend the enablement rule of a transition in EWFNs to be “conflict free”
enabled. If there are transitions in an EWFN that cause conflicts, the EWFN is
not valid.

Definition 7 (conflict-free enabled). A transition t ∈ T is called conflict-free
enabled in marking M iff

t is enabled ∧
∀t′ ∈ (•t) • \ {t} : t′ is not enabled ∨
∀p ∈ •t ∩ •t′ : Lr(A((p, t)),M(p)) 6= Lr(A((p, t′)),M(p)) ∨
(∀p ∈ •t ∩ •t′ : Lr(A((p, t)),M(p)) = Lr(A((p, t′)),M(p)) ∧

(p, t, “read”) ∈ F ∧ (p, t′, “read”) ∈ F)

Intuitively, a transition t is conflict free enabled if all other transitions t′

that share an input place with this transition are not enabled, they do not read
the same tuple or they read the same tuple but all issue non-destructive read
operations only on the place in question. Since we describe executable workflows,
conflict situations where the actual decision is not-determined and ultimately
lead to “confusion” [1] are not desired in our model.

The property of conflict-freeness however is defined on enablement of a
transition, i.e. it can only be checked during runtime. The following, alternative
definition defines conflict-freeness of a transition based on the templates of the
read operations it issues, thus allows to check for conflict-freeness of an EWFN
on the syntactical level, i.e. check an EWFN after transformation from BPEL.

Definition 8 (conflict-free transition). A transition t ∈ T is called conflict-
free iff

∀p ∈ •t ∀t′ ∈ p • \ {t} : A((p, t)) ∩A((p, t′)) = ∅ ∨
((p, t, “read”) ∈ F ∧ (p, t′, “read”) ∈ F)

A transition t is conflict-free iff the intersection of templates of the read
operations from different transitions reading from shared places with t is empty,
or every transition in question issues only non-destructive read operations. For
the reasons mentioned before, we enforce all transitions in an EWFN to be
conflict free.

Definition 9 (satisfied). A template te ∈ X is called satisfied on multi-set
tuMS iff Lr(te, tuMS) 6= ∅. This can also be written as function Sat : X×ΣMS →
B.

Sat(te, tuMS) =
{

true, if Lr(te, tuMS) 6= ∅
false, otherwise

Definition 10 (fire). A transition t ∈ T that is enabled in marking M1 may
fire and change marking M1 to M2 as follows:

∀p ∈ •t ∪ t• : M2(p) = M1(p)−
∑

pn∈•t
Lr(A((pn, t)),M1(pn)) +

∑
pn∈t•

Lw(t, pn)

Note that in this definition, the operators +, − and
∑

are defined on multi-sets,
removing and adding tuples from the multi-set respectively.

We extend the template matching from Definition 4 to be able to understand
join variables as fields in a template tuple. Join variables allow to express a
restriction on the enablement of a transition such that it is only enabled if every
template of its read/take operations that use a join variable is satisfied and the
tuple elements on the position of the join variable are equal for each join variable.
Note that for the matching itself a join variable is treated as wildcard (?).

Consider the join of two threads of control flow of the same workflow instance
and process model, identified by the ids iid and pid respectively:

te1 = (“CF”, ?pid, ?iid)
te2 = (“CF”, ?pid, ?iid)

The transition using two separate take operations with te1 and te2 as templates
is only enabled if there are tuples available in both incoming places that have
equal values on their second and third position.

Definition 11 (join matching). A transition t ∈ T that uses join variables in
its template operations is enabled in marking M iff

∀p ∈ •t : Lr(A((p, t))[?∗/?],M(p)) 6= ∅ ∧
∀p1, p2 ∈ •t ∃n ∈ N : πn(A((p1, t))) is join variable ∧
πn(A((p2, t))) is join variable ∧
πn(A((p1, t))) = πn(A((p2, t))) ∧

πn(Lr(A((p1, t)),M(p1))) = πn(Lr(A((p2, t)),M(p2)))

The treatment of join variables for the actual matching is expressed as [?∗/?],
meaning that every variable that starts with a ? is replaced by a wildcard (?).

For space reasons, we omit the usual definitions for firing sequence, reachability,
liveness, boundedness, safeness well structuredness and well-formedness [10] for
EWFNs.

4 Conclusion and Future Work

In this paper, we presented a tuplespace-based Petri net dialect that is natively
executable on a tuplespace system, i.e. each element of the Petri net has an
equivalent element or operation on a tuplespace. An EWFN therefore is a kind of
“byte code” for tuplespace-based applications; they can be designed using EWFNs
and then directly transformed to a running application.

The main idea behind the development of EWFNs however is their use
in decentralized workflow enactment. We are working on a BPEL engine that
transforms BPEL files to EWFNs and then executes them based on tuplespaces.
Each tuplespace can reside on a different machine in the network, thus the engine
and even the execution of a single process instance may be arbitrarily distributed.
The key enabler for this architecture are Petri nets and their inherent properties
such as: no central point of control, local actions, local effects, asynchronous
interaction.

References

1. Reisig, W.: Petri nets: An Introduction. Springer-Verlag New York, Inc. New York,
NY, USA (1985)

2. Aldred, L., van der Aalst, W., Dumas, M., ter Hofstede, A.: On the Notion of
Coupling in Communication Middleware. Proc. of Intl. Symposium on Distributed
Objects and Applications (DOA) (2005) 1015–1033

3. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7 (1985) 80–112

4. Zloff, M.: Query by Example. AFIPS Conference Proceedings, 1975 National
Computer Conference 44

5. Jensen, K.: Coloured Petri Nets, Vol. 1: Basic Concepts. EATCS Monographs
on Theoretical Computer Science. Berlin, Heidelberg, New York: Springer-Verlag
(1992)

6. Langner, P., Schneider, C., Wehler, J.: Prozessmodellierung mit ereignisgesteuerten
Prozessketten (EPKs) und Petri-Netzen. Wirtschaftsinformatik 39(5) (1997) 479–
489

7. Wutke, D., Martin, D., Leymann, F.: Model and infrastructure for decentral-
ized workflow enactment. Proceedings of the 23rd ACM Symposium on Applied
Computing (SAC’08) (2008)

8. Le Hors, A., et al.: Document Object Model (DOM) Level 3 Core Specification.
W3C Recommendation (2004)

9. Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and Finite Prefix for Nets with
Read Arcs. Proceedings of the 9th International Conference on Concurrency Theory
(1998) 501–516

10. van der Aalst, W.: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers 8(1) (1998) 21–66

	Lecture Notes in Computer Science
	Authors' Instructions
	1 Introduction
	2 Syntax
	3 Semantics
	4 Conclusion and Future Work

