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Abstract. In this paper, we address the problem of extracting relatiorfor-
mation from the Web at a large scale. In particular we preadmbotstrapping
approach to relation extraction which starts with a few segdes of the target
relation and induces patterns which can be used to extrattefutuples. Our
contribution in this paper lies in the formulation of theteah induction task as a
well-known machine learning problem, i.e. the one of deteimg frequent item-
sets on the basis of a set of transactions representingrmatiene formulation of
the extraction problem as the task of mining frequent iteésisenot only elegant,
but also speeds up the pattern induction step consideratiyr@spect to previ-
ous implementations of the bootstrapping procedure. Wigieour approach
in terms of standard measures with respect to seven datdsets/ing size and
complexity. In particular, by analyzing the extractionergextracted tuples per
time) we show that our approach reduces the pattern inductmplexity from
quadratic to linear (in the size of the occurrences to be rgdéimed), while man-
taining extraction quality at similar (or even marginaligtter) levels.

1 Introduction

A problem which has received much attention in the last yisatfse extraction of (bi-
nary) relations from the Web. Automatic extraction of riglas is useful whenever the
amount of text to analyze is not manageable manually. As ample, a car manufac-
turer may want to monitor upcoming market developments lajyaing news and blogs
on the Web. Relation extraction can extractphesentedAtelation in order to compile
a list of upcoming car models and where they will be prese(gegbresentedAt(Audi
Q7, Detroit Motor Show) To address this problem, several supervised approaekes h
been examined which induce a classifier from training dadktlaen apply it to discover
new examples of the relation in question. These approaghestly work on a closed
corpus and rely on positive and (implicit) negative exaragieovided in the form of
annotations [18, 8] or a handful of positive and negativenglas [5]. The obvious
drawback of such methods is that they can inherently noesttathe Web as they
would require the application of the classifier to the wheldual data on the Web, thus
being linear in its size.

Alternative approaches to address the problem of extrgotiiations from the Web
have been presented (we discuss a couple of systems belo#ge Bpproaches rely on
the induction of patterns on the basis of occurrences of aefemples of the relation
in question. Such explicit textual patterns allow to takénargut to linearly scanning
the whole Web by relying on standard index structures touatalthe string patterns



as standard search engine queries using off-the-shetfrseagine APIs. This circum-
vents the need to linearly process the whole Web (see e)g J8ine approaches per-
form pattern induction in an iterative fashion in a cycligapach which uses the new
examples derived in one iteration for the induction of newgras in the next iteration
[4,1]. In this paper we follow this latter approach and intgalar examine more in
detail the empirical complexity of the pattern inductiopstAs in these approaches
the induction of patterns proceeds in a bootstrappingfikkion, the complexity of the
pattern induction step crucially determines the time caxipy of the whole approach.
Earlier implementations of the approach have used greedtegtes for the pairwise
comparison of the occurrences of seed examples. In thig pagpshow how the Apri-
ori algorithm for discovering frequent itemsets can be usederive patterns with a
minimal support in linear time. Our empirical evaluatiomgls that with this approach
pattern induction can be reduced to linear time while maiimg extraction quality
comparable (and even marginally better) to earlier implaatéons of the algorithm.

The remainder of this paper is organized as follows. In thea section we de-
scribe the approach of pattern-based relation extractsimgiVeb search engines in
more detail. In sectioattern Induction as Frequent Itemset Minjnge give a brief
introduction to Frequent Itemset Mining before describimoyv it is applied in order
to induce patterns for relation extraction. We describeesyrerimental results in sec-
tion Experimental Resultbefore discussing related work and giving some concluding
remarks.

2 lterative Pattern Induction

The goal of pattern induction is, given a set of seed exan(pkdss).S of a relationR
as well as occurrence&3cc(S) in the corpus (the Web in our case) of these seeds, to
induce a set of pattern3 which are general enough to extract many more tuples stand-
ing in the relationR (thus having a good coverage) and which at the same time do not
overgenerate in the sense that they produce too many spuamples. The challeng-
ing issues here are on the one hand that the hypothesis spaegd, corresponding to
the power set of the set of possible pattefheepresenting abstractions over the set of
occurrence®cc(.S). We will denote this hypothesis spaceds On the other hand,
the complete extensianctp of the relationR is unknown (it is the goal of the whole
approach to approximate this extension as closely as pes#ilthe end of the cycle),
such that we cannot use it to compute an objective functior2” — R to determine
the patterns’ accuracy with respect to the extensian;.

The general algorithm for iterative induction of patteragpresented in Figure 1.
It subsumes many of the approaches mentioned in the inttiodughich implement
similar bootstrapping-like procedures. The key idea isdeeeolve P (which at the
beginning is assumed to be empty) as well as a constantlyiggoset of examples'
which at the beginning corresponds to the seed examplesaritidate patterns can be
generated in a greedy fashion by abstracting over the caecesDcc(S). Abstracting
requires finding common properties, which in principle isiadyatic task as it requires
pairwise comparison between the different occurrences.



ITERATIVE PATTERN INDUCTION (PatternsP’, TuplesS")
1 S5
2 PP
3 whilenot DoNE
4 doOccy <+ MATCH-TUPLES(S)
P — P ULEARN-PATTERNS(Occy)
EVALUATE -PATTERNS(P)
P «— {p € P | PATTERN-FILTER-CONDITION (p) }
Occyp «— MATCH-PATTERNS(P)
S «— S + EXTRACT-TUPLES(Occp)
EVALUATE-TUPLES(S)
S < {t € S| TUPLE-FILTER-CONDITION (¢) }
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Fig. 1. Iterative pattern induction algorithm starting with iaitituplesS’ or (alternatively) pat-
ternsP’.

The algorithm starts with a set of initial tupleés of the relation in question —
so calledseeds- and loops over a procedure which starts by acquiring oenges
of the tuples currently irS (e.g. by querying a search engine witlst ockhol ni
" Sweden") for the relationocatedIn. Further patterns are then learned by abstract-
ing over the text occurrences of the tuples. The new patt@mmshen evaluated and
filtered before they are matched. A resulting pattern coaltflghts to ARG, , ARG2
from x airport” and thus may contain wildcards and argument platadrs. From these
matches, new tuples are extracted, evaluated and filtereglpfiocess is repeated un-
til a termination condition NE is fulfilled. The learning is thus inductive in nature,
abstracting over individual positive examples in a bottoprmanner.

For our experiments we have used the implementation of tbgeahlgorithm as
described in [3]. They have shown in previous work that ineslog of an objective
function to maximize, we can reasonably estimate the quafithe setP of patterns
by a heuristic function. Among the different functions exaed in the above men-
tioned work, a simple function which assesses the quality péttern on the basis of
its support, i.e. the different occurrences which it wasegated from and therefore
covers, is shown to be a good choice compared to other mdrerale measures such
as the pointwise mutual information used in the Espresspda@ other systems (e.g.
KnowltAll [9]). Therefore, a reasonable choice is to sekbtse patterns which have a
minimal support and meet some heuristic syntactic critrigrevent too general pat-
terns. We describe in the following section how this problem carfidsenulated as the
one of determining frequent itemsets using the well-knopnicai algorithm. With this
move, we also reduce the complexity of the pattern inductiep from quadratic to
linear in the number of occurrences.

3 Pattern Induction as Frequent Itemset Mining

In our approach, we translate textual occurrences of ainegkation into set represen-
tations and use the Apriori algorithm to find patterns in éhescurrences that exceed a
certain minimum support. This task is typically calleelquent itemset mining-IM).

L In particular, we ensure that the patterns have a minimakeuraf token constraints (and not
only wildcards) as well as that they have been generated dtdeast two different tuples.



The mining for frequent itemsets is a subtask of Associdiale Mining. Associa-
tion rules are used to derive statements like “Clients whaibd product X also bought
product Y” from transaction databases. A transaction DB constitutes a process
with several items: from an alphabet of itemd (e.g. products that have been jointly
purchased)D B is thus a (multi) set of subsets df

In a databas® B of transactions the frequent itemséts_ 24 are defined as those
sets that occur at leagteg,,:,, times as subset of a transaction, fe= { f € 24||{t €
DB|f Ct}| > fregmin}-

3.1 TheApriori Algorithm

Apriori [2] is an algorithm for finding all frequent itemsetgven a database and a
frequency threshold. It is based on the observation thateansetf of size|f| = n
can only be frequent iDB if all its subsets are also frequent InB. Apriori thus
significantly reduces the amount of itemsets for which tegtiency has to be counted
by first deriving all frequent itemsets of size= 1 and then progressively increasing
n so that the above subset condition can be checked when ¢egdie candidates
for n + 1 as all subsets of size are known. The Apriori algorithm looks as follows in
pseudocode:

APRIORI(Alphabet A, Database DB C 24 Threshold fregmin)
1 C— {{a}a € A}

2 n+—1

3 whileC # 0

4 do

Ve € C : COUNTSUPPORT(c, DB)

F,, < {c € C|SUPPORT(c) >= freqmin}

C — {fUg|f,g € F,, ANMERGABLE(f, g)}

C — PRUNE(C, Fy,)

n—n-+1
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The algorithm stores all frequent itemsets of size a setF,, after verifying for
each itemset that it occurrs at legSteq.,,;, times in DB. The set of candidates for
the first iteration is given by all elements of the alphabet. the following iterations
it is then generated by taking all elementsif and combining them if the condition
MERGABLE(f, g) is fulfilled, which makes sure thatandg overlap inn — 1 elements.
PRUNE(C, F,,) removes all itemsetsfrom C (which all have lengtl + 1) for which
one or more of all possible subsetscodf sizen are not contained it;,, which is the
above-mentioned necessary conditionddéo be frequent.

The performance of the Apriori algorithm depends on theiefficimplementation
of the operation€ OUNTSUPPORT¢, DB), MERGABLE(f, g) andPRUNE(C, F,,). It is
common to use a Trie data structure (also called Prefix Taehfs purpose. Given
an arbitrary total order oA, one can represent the itemsets as ordered sequences with
respect to that sequence. Tries are trees that represemrsss as paths in the tree
along with their frequency counts. After constructing eefirom theD B, one can find
and count non-continuous subsequence® &f entries very efficiently, which is the
task of COUNTSUPPORT Similarly, MERGABLE and PRUNE can be implemented as
traversal operations on the Trie (as described in [11]).



3.2 Mining for Text Patternswith Apriori

The general idea of applying frequent itemset mining fot teattern induction is that
atext patteri'fl i ghts to *, =*" can be considered the frequent itemset of the
set of text occurrences it has been generated from {2B).= {"We offer flights to
London, England.”;’l look for flights to Palo Alto, CA}). In order to ensure that, in
spite of the set character of itemsets, word order is presesa/special encoding is used,
allowing at the same time to express additional constrawves words. While sequence
mining algorithms such as the one used by Jindal and Liu [28]lwe applied, it is
not straightforward to encode multiple constraints peetokrhus, in our approach we
exploit the more general model of unordered itemsets anddawword order and other
constraints as described below.

We use the notion of constraints for describing the textoaliorences and patterns.
Each constraint has a type, a position and a value. A consisafulfilled for a given
text segment if the value is present at the given position wag described by the
constraint type. The positions are the token numbers (@lidsy the positions of the
arguments). Types can be for example surface string, diapiian and part-of-speech
with their obvious sets of possible values. The pattev¢ of fer flights to

* %"

, may be represented as the following set of constraints:

sur facer = we,capitalization; = true
sur faces = oOffer, capitalizations = false
sur faces = flights, capitalizations = false
sur faces = 10, capitalizations = false
sur faceg = COMMA, capitalizations = false

Note that no constraints are posed for positions 5 and 7 kBedhose are the argument
positions (reflected by thewildcard above). In our implementation we ensure that all
occurrences are aligned such that the position numberdveagsathe same relative to
the argument positions.

We encode each constraint as a positive integer value usbigetive function
encode : Type x Position x Value — N: encode(con, pos,value) = value x
maxCon * maxPos + (pos + maxPos * (con — 1)). wherecon is the number of
the constraint typeyos the position andalue a numerical value reflecting frequency.
The remaining variables reflect the respective maximalesith respect to the given
database. One can think of this as the process of first “fiagiehe structured infor-
mation contained in the constraints to items like:

{sur face-1l.we, capitalization_1_true,
sur face2_offer, capitalization_2_false,
sur face 3_flights, capitalization_3_false,
sur face-4_to, capitalization_-4_false,
sur face.6_.COM M A, capitalization-6_false}

and subsequently translated to integer val{887, 435, 656634, 4235, 234, 6453, 64,
242, 786, 89. During the application of Apriori, only those subsets atined that
reflect a frequently occurring textual pattefi6453,64,242,786,8% "flights to *, *".
Apriori generates all patterns that exceed a given frequémeshold. Inevitably,
this yields multiple patterns that are subsumed by eaclr ¢¢hg. if* + was born



|Re|ation |Size |Dataset Description ||P7nanual |Pula33'ic||A Prrm |A PFI}\/Ituned|

albumBy 19852 [Musicians and their musical works 80.8% | 27.4% -11.6% -18%
borninYear 172696 persons and their year of birth 40.7% | 19.5% || +48.4% +17%
currencyOf 221 |countries and their official currency 46.4% | 22.8% || -17.6% +10.9%
headquarteredin [14762 [companies and the country of their hegd- 3% 9.8% +2.2% -5.2%
quarter
locatedIn 34047 |cities and their corresponding country 73% 56.5% -8.4% -0.5%
productOf 2650 |[product names and their manufacturers]| 64.6% | 42.2% -0.9% +12%
teamOf 8307 |[sportspersons and their team or country]| 30% 8.0% +1.4% +0.8%
[average [ [ [[ 483 [ 26.6% [[ +1.9% | +4.7% |

Table 1. Relations with precision scores obtained by the classitesy$manual evaluation) and
differences QA) measured with the two FIM conditions.

in * is frequent, thed' * was * in * is frequent as well). In order to
avoid such too general patterns and at the same time avdidingpecific ones (e.g.
"Wl f gang Anadeus * was born in * "), we introduce the following rule
for removing more general patterns: if patterhas all constraints also presenbiand
one morep is removed unlessuPPORTD) is at least 20% higher thasuPPORTa).
This rule is applied starting with the smallest patterns.a¥perimentally determined
that the threshold of 20% leads to a generally rather apjaiepset of patterns. The
remaining unwanted patterns are left to be eliminated b éurfiltering.

4 Experimental Evaluation

The goal of our experimental evaluation is to demonstraetivantages of modeling
the pattern abstraction subtask of iterative pattern itidnas a frequentitemset mining
(FIM) problem. We do so by comparing the performance achiéyeour itemset-based
implementation with the abstraction algorithm used in es implementations (com-
pare [3]). We do not intend to show the superiority of the apph based on Frequent
Itemset Mining to those from the literature as this woulduiegja common benchmark
for large-scale Web Relation Extraction or at least a combasis of implementation.
Such a standard does not exist due to the diversity of apjgiitaand pattern represen-
tation formalisms in the literature. Yet, we evaluate owults on a fairly diverse set
of non-taxonomic relations to ensure generality. The @édsase use have already been
used in [3] and are provided for download by the authors. Alése experiments, we
have also used the same 10 seeds selected by hand and theusamatia evaluation
procedure.

4.1 Experimental Setup

In our experiments, we rely on the widely used precision a&uwdli measures to eval-
uate our system’s output with respect to the full extensibie relatiorf. To give an

2 Note that this is different from the evaluation of other samystems which calculate these
measures with respect to a specific corpus, thus yieldingehnigcores. Also due to the abs-
cence of a closed corpus in our Web scenario, our notion afllrecis not comparable. We
use “relative recall” in the sense that it reflects extractioompared to the highest yield count
obtained over all experimental settings we applied.
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Fig. 2. Precision, recall, F-measure and extraction rate for ttiwighual configurations averaged
over all relations (left); Time (sec.) taken by a run of thasslical induction algorithm (squares)
and the FIM-based algorithm (circles) over the numbers wida occurrences. (right)

objective measure for temporal performance, we useEttieaction Ratethat is, the
number of correctly extracted tupl&s” over the duratiorD of the extraction process
in seconds (on a dual core machine with 4GB of RAM): = T—[f

Figure 2 shows precision, recall and F-measure for threégroations of the sys-
tem: theclassicconfiguration, thé-IM configuration which uses the proposed model-
ing of the learning problem with all parameters unchangetiFliM tunedfor which
the parameters have been optimized for the new learningitilgo In particular, as
FIM is more efficient than the classic merge procedure, weptagess a higher num-
ber of tuples, such that we set the number of occurrencesldaded to 200 (versus
a decreasing number as used in [3]). All the other paramefettse algorithm have
been chosen as described there. Overall, there is a smaitistity of FIM over the
classic version in terms of precision and recall (29% vs. 2 15% vs. 11%). Most
importantly, there is a clear superiority in terms of exti@c rate (0.19 vs. 0.05 occur-
rences/second). This difference is statistically sigaific(two-sides paired Student’s
t-test with ana-Level of 0.05).

Table 1 shows the different relations together with the siztheir extension, the
precision yielded by a manual evaluation of a sample of 1@@etuof each relation
(Prmanual), the precision yielded by the classic pattern inductiagoathm P, ;¢
as well as the relative improvements yielded by our formaibabf the problem as a
frequent itemset mining (FIM) task relative to the preaisi@,,ss;. calculated auto-
matically with respect to the relation’s extenstofihe best results for each relation are
highlighted. In general, we see that while the results varyeach relation, overall the
FIM version of the algorithm does not deteriorate the resblit even slightly improves
them on average (+1,9% for the FIM version and +4.7% for thedu-IM version).

4.2 Discussion

In principle, there are no reasons for any of the abstraaligarithms to show better
precision and recall because they both explore all posk#dgiently occurring patterns

% Note here that the precisiaR.;...:c calculated automatically with respect to the datasets is
much lower than the precision obtained through sampled ala@valuation P,,anwuai). This
is due to the in some cases unavoidable in-completeness dbthsets and orthographic dif-
ferences in test data and extraction results.



in a breadth-first-search manner. Differences are due t@mmrodeling issues (see
below), the slightly different evaluation of patterns kdshkrectly on support counts
produced by apriori and, most importantly, the fact thatriesy is cut off after one hour
per iteration. Indeed the standard implementation fretipesached this time limit of

an hour, thus leading to better results for the FIM versiothefalgorithm which does
not suffer from this time limit.

One example of slight modeling differences which influenpedormance is the
treatment of multi-word instances. The learner has to dewitkether to insert one wild-
cardx in an argument position (nearly always matching exactlywagd) or two (al-
lowing for two or more words). The classic version heurtictakes the number of
words in the argument of the first occurrence used for pattezation as sample for
the wildcard structure. The FIM version encodes the fadt éimaargument has more
than one word as an additional constraint. If this item istamred in a learned frequent
itemset, a double wildcard is inserted. The stronger perémice with theborninYear
(+48%), currencyOf (+10.9%) andproductOf (+12%) relations can be explained in
that way (compare Table 1). For example, the FIM versiomigdinat person names
have typically length 2 and birth years always have lengtthileathe classic induction
approach does not allow this additional constraint. Thjdars the decreased perfor-
mance of the classic approach for the relations mentionedeafor which at least one
argument has a rather fixed length (e.g. years).

As indicated in Figure 2, the clear benefit of the FIM abstoacstep lies in its run-
time behavior. The duration of a pattern generation proiseglotted over the number
of sample instances to be generalized. To measure thesg thoid learning modules
were provided with the same sets of occurrences isolated tie rest of the induction
procedure. The FIM shows a close to linear increase of psiogduration for the given
occurrence counts. Even though implemented with a numbegptohizations (see [3]),
the classic induction approach clearly shows a quadratiease in computation time
w.r.t. the number of input occurrences.

5 Redated Work

The iterative induction of textual patterns is a method Widesed in large-scale infor-
mation extraction. Sergey Brin pioneered the use of Welrhéadices for this purpose
[4]. Recent successful systems include KnowltAll which bagn extended to auto-
matic learning of patterns [9] and Espresso [12]. The pi@tisf Espresso on various
relations ranges between 49% and 85%, which is comparable t@ange of precisions
Prhanual- Concerning the standard restriction to binary relatiois,et al. [17] have

shown how approaches used for extracting binary relatiande applied to n-ary rela-
tions in a rather generic manner by considering binaryimatas projections of these.
These and the many other related systems vary considerdtblyegpect to the rep-
resentation of patterns and in the learning algorithms dieegdattern induction. The
methods used include Conditional Random Fields [16], vesfiace clustering [1], suf-
fix trees [14] and minimizing edit distance [13]. In this pap&e have proposed to
model different representational dimensions of a pattanh @s word order, token at
a certain position, part-of-speech etc. as constraints.approach allows straightfor-



wardly to represent all these dimensions by an appropriateding. Given such an

encoding, we have shown how frequent itemset mining tectesigan be used to effi-
ciently find patterns with a minimal support.

Apart from pattern-based approaches, a variety of supshaad semi-supervised clas-
sification algorithms have been applied to relation exioactThe methods include

kernel-based methods [18, 8] and graph-labeling techsiffileThe advantage of such
methods is that abstraction and partial matches are inhier&tures of the learning al-

gorithm. In addition, kernels allow incorporating more qaex structures like parse

trees which cannot be reflected in text patterns. Howeveh slassifiers require test-
ing all possible relation instances while with text patteemtraction can be significantly
speeded up using search indices. From the point of view afugixan performance, a

pattern-based approach is superior to a classifier whiabrprocates a learned model
which can not be straightforwardly used to query a large u®guch as the web. Clas-
sification thus requires linear-time processing of the aerghile search-patterns can
lead to faster extraction. Recently, the

A similar approach to ours is the one by Jindal and Liu [10]eyrise Sequential
Pattern Mining — a modification of Frequent Itemet Mining -derive textual patterns
for classifying comparative sentences in product desonpt While, like our approach,
encoding sequence information, their model is not ablec¢owaat for several constraints
per word. Additionally, the scalability aspect has not bisems of their study as mining
has only be performed on a corpus of 2684 sentences with alingitgd alphabet.
Another approach orthogonal to ours is presented by [7]hBacurrence is abstracted
over in a bottom up manner which saves pairwise occurreno@adson at the expense
of evaluating the large amounts of pattern candidates w#hect to the training set. The
algorithm seems thus more appropriate for fully supervsmtings of limited size.

6 Conclusion

Our contribution in this paper lies in the formulation of thattern induction step as a
well-known machine learning problem, i.e. the one of mirfirggjuent itemsets. On the
one hand, this formulation is elegant and advantageous aaminport all the results
from the literature on association mining for further ogtiation (an overview of which
is given in and [15]). On the other hand, we have shown thatftirimulation leads to a
significant decrease in the running time of the extractiorpdrticular, we have shown
that the running time behavior decreases from quadratiméat with the number of
occurrences to be generalized with respect to previouseimghtations. Further, we
have also shown that the quality of the generated tuples&igly increases in terms
of F-measure compared to the standard pattern inductiarigdg. This increase is
mainly due to the modeling of argument length as an additiooastraint which can
be straightforwardly encoded in our FIM framework. Overaibdeling the different
representational dimensions of a pattern as constraiatedgant as it allows to straight-
forwardly add more information. In future work we plan to sater taxonomic as well
as other linguistic knowledge.
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