
Challenging the Internet of the Future with
Urban Computing

Emanuele Della Valle1,2, Irene Celino1, Kono Kim3, Zhisheng Huang4, Volker
Tresp5, Werner Hauptmann5, and Yi Huang5

1 CEFRIEL – Politecnico of Milano, Via Fucini 2, 20133 Milano, Italy
{name.surname}@cefriel.it

2 Dip. di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
emanuele.dellavalle@polimi.it

3 Saltlux Inc., Seul, Korea kono@saltlux.com
4 Computer Science Department, Vrije Universiteit Amsterdam, De Boelelaan 1081,

Amsterdam, The Netherlands huang@cs.vu.nl
5 Corporate Technology, Siemens AG, Information and Communications, Munich,

Germany {name.surname}@siemens.com

Abstract. In this paper we present the challenging problem of realizing
the Urban Computing vision and in particular we describe the require-
ments for future mobility management systems. We show that novel
multi-disciplinary ideas are required to address the Urban Computing
challenge and that only partial solutions can be found today.
The Urban Computing challenge is open and many efforts are needed to
address it.

1 Introduction

Our cities must provide answer to very critical questions 6 and among others:
“How can we reduce traffic congestion yet stay connected?”

Internet for sure cannot provide an answer on its own, but it is an enabling
factor, if not the most important one. A sign that Internet for urban area is
growing at a recognizable pace is the rise of the term Urban Computing [1] –
the integration of computing, sensing, and actuation technologies into everyday
urban settings and lifestyles.

Some years ago, due the lack of data, solving Urban Computing problems
looked like a Sci-Fi idea. Nowadays, as demonstrated by the UK government
initiative “Show Us a Better Way”7, a large amount of the required information
can be found on the Internet at almost no cost.

For this reason we are challenging the LarKC project8, which is aiming at
a configurable platform for infinitely scalable Semantic Web reasoning [2, 3],

6 http://www.uli.org/Content/NavigationMenu/AboutULI/CriticalQuestions/

About_ULI_Critical_Q.htm
7 http://www.showusabetterway.co.uk/
8 http://www.larkc.eu
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to support the realization of an innovative solution to traffic management. We
have been working in this area for years and we can derive from our previous
experiences challenging requirements not only for the LarKC project, but also
for the entire community working on complex relationship of the Internet with
space, places, people and content.

In the rest of the paper, we identify the problem we want to untangle (Section
2) from which we derive requirements for Urban Computing (Section 3). In
Section 4, we provide a short description of the partial solutions we are working
on, whereas, in the concluding Section 5, we briefly discuss the potential impact
of Urban Computing.

2 Sustainable Mobility

Mobility demand has been growing steadily for decades and this growth is fore-
seen to continue in the future. For many years, the primary way of dealing with
this increasing demand has been the increase of the roadway network capacity,
by building new roads or adding new lanes to existing ones. However, financial
and ecological considerations are posing increasingly severe constraints on this
process. Hence, there is a need for additional intelligent approaches designed to
meet the demand while more efficiently utilizing the existing infrastructure and
resources.

2.1 A Challenging Use Case

This use case shows the added value of (1) collecting a broad set of information
about mobility, (2) integrating it and (3) using it to support a citizen that has
to go to Milan from Varese (another city in Lombardy region).

– Actors:
• Carlo: a citizen living in Varese (60 KM North-West of Milano).
• MUCS: the fictitious Milan Urban Computing System.

– Story Board:
1. Carlo arranged a meeting in Milan city center for the day after at 11.00.
2. Willing to plan the travel, he accesses MUCS .
3. Carlo fills in the required data:

– FROM: Varese tomorrow after 8.00 ;
– TO: Milan city center before 11.00;
– USING: my private car.

4. MUCS works as Google Maps does today and gives the resulting driving
directions, but, instead of saying that such a travel requires 50 minutes,
MUCS explains Carlo that he should leave home after 9.00 (when the
usual commuters traffic on the A8 motorway is almost over).

5. MUCS also asks Carlo if he wants to be informed via SMS about traffic
conditions and possible alternatives.

6. Carlo agrees and exits MUCS.
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7. The day after an accident involving multiple vehicles take place at 8.15
on the A8 motorway.

8. MUCS estimates that an accident of such kind will result in a congestion
of A8 until 10.00, therefore it checks if any planned travel is at risk. It
finds Carlo’s travel.

9. MUCS checks if Carlo can take an alternative drive, but no alternatives
are found to allow Carlo get to Milan in time for his meeting.

10. MUCS checks if Carlo can take public transportation instead. It founds
two alternatives:
(a) Railroad “LeNord” and Subway M3:

• 8.39 Varese Casbeno - 10.03 Milano Repubblica;
• take M3 from Repubblica9 to Duomo (average waiting time 7

minutes, average duration 5 minutes);
(b) Railroad “FS” and Subways M2 and M3:

• 8:43 Varese Stato - 9.55 Milano Garibaldi;
• take M2 from Garibaldi to Centrale (average waiting time 3 min-

utes, average duration 7 minutes);
• take M3 from Centrale to Duomo (average waiting time 7 min-

utes, average duration 8 minutes).
11. MUCS sends an SMS to Carlo informing him that a accident is holding

up A8 and he’d better use public transportations; two itineraries have
been already prepared for him.

12. Carlo accesses the MUCS service and checks the alternatives. He chooses
the first one and uses the ticket-less option to buy the train ticket.

2.2 Challenging Problems

Public authorities have taken steps in the direction to support this use case,
but very complex problems has to be solved. Control centers for mobility man-
agement have to be connected to different devices (such as detectors on roads,
cameras, traffic lights, etc.) and require sophisticated tools for traffic modeling,
estimation, prognosis and decision support.

Traffic System Infrastructure Setup Today, in a typical information infras-
tructure for real-time traffic control that can be found in different cities usually
the following basic components can be discriminated. There are sensors (e.g. loop
detectors, cameras, traffic eyes, radar detectors) on major roads recording sev-
eral traffic magnitudes such as vehicle speed (km/h), traffic flow (vehicle/h) and
occupancy or traffic density, i.e., the percentage of time the sensor is occupied by
a vehicle (vehicles/km). The distance between successive sensors on a freeway is
typically in the order of about 500 meters. The information is periodically trans-
mitted to a control center. The control center also receives information about
the current state of control devices. Such control devices include traffic signals at
9 Repubblica is both the name of the train station and of the subway station, but they

are two different places.
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intersections, traffic signals at sideways entry-ramps, variable message signs that
can display different messages to drivers (e.g., warning about existing conges-
tions, accidents or alternative path recommendations), radio advisory systems
to broadcast messages to drivers, and reversible lanes (i.e., freeway lanes whose
direction can be selected according to the current and expected traffic demand).
In the control center, operators interpret the sensor data and detect the presence
of problems and their possible causes. Problems are congested areas at certain
locations caused by lack of capacity due to accidents, excess of demand, like rush
hours, etc. In addition, operators determine control actions to solve or reduce
the severity of existing problems. For instance, they can recommend to increase
the duration of a phase (e.g. green time at a traffic signal) or they may suggest
displaying certain messages on some variable message signs to divert traffic.

Recent developments not only consider stationary traffic data provided by
standard detectors, but also allow to integrate floating car data (FCD), and an
increasing number of operators of advanced traffic management systems also use
mobile traffic data.

Traffic Modeling and Estimation An analysis of the current and predicted
traffic state in the entire road network and the identification of reserve capac-
ities comprise the basis for advanced city traffic management and navigation
solutions. Mobile and stationary sensors collect the appropriate traffic data and
transmit it to a central unit. Similarly to the weather forecast, the different and
heterogeneous information sources are combined to obtain an estimation of the
traffic state during a period ranging from minutes to hours or even longer. Thus,
a comprehensive knowledge base is built up to support optimal individual route
guidance.

Innovative technologies are required in order to process and integrate the
resulting collection of distributed information bits within a complex, diverse
information environment. Here, a major task is the provision of appropriate
solutions for the integration and fusion of heterogeneous information sources,
where each source of information can have distinct characteristics with respect
to availability, precision, reliability, resolution and representation.

Reacting to a Changing Environment However, as the use case above
shows, deploying an infrastructure, modeling and estimating traffic alone is not
sufficient; reacting to changes and suggesting other possible solutions is also
important. Traffic is just one aspect of mobility. Private cars are just one of the
possible means of transportations. Sometimes public transportation can be by
far the best choice.

In the storyboard, Carlo is proposed by MUCS with an alternative solution
that depends on the ability of MUCS to collect on-the-fly information about all
means of transportation, estimating (based on historical data) that the resolution
of the accident will take longer because it took place in the rush hours, comparing
a solution using private car with others that use public transportations and
proposing Carlo valid alternatives.
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3 Requirements

In this section, we will investigate requirements of Urban Computing. As argued
before, we are particularly interested in the reasoning requirements for LarKC,
but we believe such requirements interesting for the entire community working on
the complex relationship of the Internet with space, places, people and content.

3.1 Coping with Heterogeneity

Dealing with heterogeneous data has been appealed for long time in many areas
in computer science and engineering, which include database systems, multi-
media application, network systems, and artificial intelligence. Here, we would
like to propose a comprehensive notion of heterogeneity processing for semantic
technologies. We distinguish the following different levels of heterogeneity: Rep-
resentative Heterogeneity, Semantic Heterogeneity, and Default Heterogeneity.

Representative Heterogeneity means semantic data are represented by
using different specification languages. Systems supporting Representative Het-
erogeneity would allow for semantic data specified by multiple semantic lan-
guages, rather than using a single metadata or ontology language, like OWL or
RDF/RDFS. However, note that different representation of semantic data does
not necessarily mean that they have different semantics. That would be different
from Semantic Heterogeneity discussed in the following.

Urban Computing-related data can come from different and independent
data sources, which can be developed with traditional technologies and model-
ing methods (e.g., relational DBMS) or expressed with “semantic” formats and
languages (e.g., RDF/S, OWL, WSML); for example, geographic data are usu-
ally expressed in some geographic standard10, events details are published on the
Web in a variety of forms, traffic data are stored in databases; etc. The integra-
tion and reuse of those data, therefore, need a process of conversion/translation
for the data to become useful together.

Semantic Heterogeneity means the systems allow for multiple paradigms
of reasoners. For instance, many applications of Urban Computing may need
different reasoners for temporal reasoning, spatial reasoning, and causal reason-
ing. However, it does not necessarily mean that we have to develop a single but
powerful reasoner which can cover all of those reasoning tasks. A system which
supports Semantic Heterogeneity would find a way to allow multiple single-
paradigm-based reasoners to achieve the result of Semantic Heterogeneity.

Some data related to Urban Computing need precise and consistent inference;
e.g., knowing if two roads are connected for a given kind of vehicle; telling that
at a given junction all vehicles, but public transportation ones, must go straight;
checking if private cars are allowed to enter a specific urban area. Other data need
approximate reasoning or imperfect estimations; e.g., calculating the probability
of a traffic jam given the current traffic conditions and the past history.

10 http://en.wikipedia.org/wiki/Geographic Data Files
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Therefore, the requirement is for different kinds of techniques and reasoners
to deal with those kinds of data; moreover, another requirement is for a sys-
tem which dynamically selects and runs a specific reasoner on the basis of the
available data and the desired processing tasks.

By Default Heterogeneity, we mean that systems support for various
specification defaults of semantic data. Well-known specification defaults of se-
mantic data are closed world assumption, open world assumption, unique name
assumption and non-unique name assumption. In the Semantic Web commu-
nity, it is widely accepted that semantic data for the Web should take the open
world assumption and the non-unique name assumption, as taken by the popular
ontology language OWL.

However, as we have observed in many applications of Urban Computing,
we should not commit to any single specification default. Take the example of
traffic and transportation ontologies: although in many cases we can take the
open world assumption and non-unique name assumption, because of our limited
knowledge and information about the data, sometimes it is much convenient
to take a local closed world assumption. For example, for a time table of a
bus station, it is well reasonable to assume that the information about the bus
schedule in the time table is locally complete, in the sense that if you cannot
find any information about a bus which is scheduled at specific time, it would
mean that there are no bus scheduled for that time. The same scenario is also
applied to a city map: if there is no information which states a road connects
two streets directly on the map, that would mean that there is no road which
connects those two streets directly.

The same applies to Unique Name Assumption. Consider the use case in
Section 2 and in particular the fact that Repubblica is both the name of the train
station and of the subway station, but they are two different places. If MUCS
has to calculate a trip and Carlo is aware that MUCS will use multiple means
of transportation then MUCS can ignore that the two Repubblica stations are
not exactly the same one. If, on the contrary, Carlo wanted only to use subways,
then MUCS cannot assume that the two Repubblica station are one physical
place.

The examples above show that the semantic systems of Urban Computing
should support multiple specification defaults. It should allow users or knowledge
engineers feel free to state any data with any reasoning assumption. Some part
of semantic data may be based on the open world assumption, and some part
may be based on the closed world assumption.

3.2 Coping with time-dependency

Knowledge and data can change over the time. For instance, in Urban Computing
names of streets, landmarks, kind of events, etc. change very slowly, whereas the
number of cars that go through a traffic detector in five minutes changes very
fast. This means that the system must have the notion of ”observation period”,
defined as the period when we the system is subject to querying.
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Moreover the system, within a given observation period, must consider the
following four different type of knowledge and data:

– invariable knowledge:
– it includes obvious terminological knowledge (such as an address is made
up by a street name, a civic number, a city name and a ZIP code) and
– less obvious nomological knowledge that describes how the world is ex-
pected to be (e.g., given traffic lights are switched off or certain streets are
closed during the night) or to evolve (e.g., traffic jams appears more often
when it rains or when important sport events take place).

– Invariable data: they not change in the observation period, e.g. the names
and lengths of the roads.

– Periodically changing data: they change according to a temporal law that
can be
– Pure periodic law, e.g. the fact that every night at 10pm Milan west-side
overpass road closes; or
– Probabilistic law, e.g. the fact that a traffic jam is present in the west side
of Milan due to bad weather or due to a soccer match is taking place in San
Siro stadium.

– Event driven changing data: they are updated as a consequence of some ex-
ternal event and they can be further characterized by the mean time between
changes:
– Fast, as an example consider the intensity of traffic (as monitored by
sensors) for each street in a city;
– Medium, as an example consider roads closed for accidents or congestion
due to traffic;
– Slow, as an example consider roads closed for scheduled works.

Periodically changing data and event driven changing data are best repre-
sented as data streams, unbounded sequences of time-varying data elements.
Data streams occur in a variety of modern applications, such as network mon-
itoring, traffic engineering, sensor networks, RFID tags applications, telephone
call records, financial applications, Web logs, click-streams, etc. The very nature
of Traffic Management can be explained by means of data streams, representing
real objects that are monitored at given locations: cars, trains, crowds, ambu-
lances, parking spaces, and so on.

3.3 Coping with Noisy, Uncertain and Inconsistent Data

We distinguish the following different levels of data uncertainty and inconsis-
tency.

– Noisy Data: part of data are completely useless or semantically meaningless.
– Inconsistent Data: parts of data are in logical contradiction with each an-

other, or are semantically impossible.
– Uncertain data: the semantics of data are partial, incomplete, or they are

conceptually arranged into a range with multiple possibilities.
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Traffic data are a very good example of such data. Different sensors observing
the same road area give apparently inconsistent information. For example, a
traffic camera may say that the road is empty whereas an inductive loop traffic
detector may tell 100 vehicles went over it. The two information may be coherent
if one consider that a traffic camera transmits an image per second with a delay
of 15-30 seconds, whereas an inductive loop traffic detector tells you the number
of vehicles that when over it in 5 minutes and the information may arrive to you
5-10 minutes later.

Moreover, a single data coming from a sensor in a given moment may have
no certain meaning. For example, consider an inductive loop traffic detector, it
it tells you 0 car went over, what does it mean? Is the road empty? Is the traffic
completely stuck? Did somebody park the car above the sensor? Is the sensor
broken? Combining multiple information from multiple sensors in a given time
window can be the only reasonable way to reduce the uncertainty.

4 Partial Solutions

This work is part of the on-going research project LarKC which aims at build-
ing very large-scale manipulation of information (“semantic computing at Web
scale”). We are envisioning a set of partial solutions to address the challenges
of Urban Computing including: Traffic Prediction using recurrent neural net-
works, Data Scheduling to address scalability and Stream Reasoning to address
time-dependency.

4.1 Predicting Traffic Using Recurrent Neural Networks

Given that a forecast model should focus on the underlying dynamics of the
traffic flow and external influences on the traffic volume should be incorporated
in the model, we intend to use time-delay recurrent neural networks for the
traffic predictions [4]. With this approach we presume that the traffic volume
is the outcome of an open dynamical system which combines an autonomous
development with external influences (e.g. calendar effects, special events etc.).

Recurrent neural networks offer a new way to model (nonlinear, high dimen-
sional) open dynamical systems based on time series data. Our recurrent neural
networks are formulated as state space models in discrete time to identify the
traffic dynamics and the impact of the external influences [5].

In state space formulation a recurrent neural network is described by a hid-
den state-transition- and an output-equation. The temporal equations are trans-
formed into a spatial neural network architecture using shared weights (so-called
unfolding in time) [6].

Prior knowledge about the application (e.g. topology of the traffic network
or the temporal structure of the traffic flows) can be easily incorporated in the
neural network architecture. For instance, an error correction mechanism can be
used to consider the impact of unplanned construction sites, traffic accidents or
holdups. This is also the key for robust forecasting [7].
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4.2 Data Scheduling

The idea of data scheduling takes inspiration from memory management tech-
niques developed and adopted in computer systems and software engineering
(e.g., garbage collection, memory caching and direct memory access).

Large scale data are organized at different memory levels based on their
relevance and on the context of applications: working data, which should be
accessed by systems immediately without any over-heading cost; neighboring
data, which can be accessed by the system with a moderate cost; and remote
data, which can be accessed by the system with a significant amount of cost.

The research problem is finding automatic ways to move data from higher
access cost memory into lower access cost memory and vice versa. Such memory
shift should take place in parallel with reasoning.

4.3 Stream Reasoning

Periodically changing data and event driven changing data are best represented
as data streams. Processing of data streams has been largely investigated in the
last decade [8] and specialized systems have been developed. While reasoners are
year after year scaling up in the classical, time invariant domain of ontological
knowledge, reasoning upon rapidly changing information has been neglected or
forgotten. By coupling reasoners with powerful, reactive, throughput-efficient
stream management systems, we introduce the concept of Stream Reasoning [9].
We expect future realization of such a concept to have a strong impact on Urban
Computing because it enables reasoning in real time, at a throughput and with
a reactivity not obtained in previous works.

5 Conclusions

In this paper we focus on presenting the Urban Computing challenge and in
particular some requirements for future mobility management systems. We also
presented some novel multi-disciplinary ideas about ways to address the Urban
Computing challenge by partially satisfying one or more requirements. More
solutions and, in particular, broader ones should be explored. As a matter of
fact, if we were able to cope with requirements present in Section 3 we would
be able to solve a broad range of Urban Computing problems. Such problems
include:

– City Planning: Urban Computing applications can extract statistics and syn-
thetic descriptions of citizens’ movements, habits and opinions in order to
position new housing complex, office buildings, shops, parking lots, green ar-
eas and to optimize public and private transportation routes and timetables.
The City Planning can also lower pollution and enhance energy savings.

– Tourism and Culture: Urban Computing applications analyze tourists’ move-
ments and enhance the appeal of current places of interest and create tar-
geted promotional campaigns to increase tourism.
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– Public Safety: Urban Computing applications can perform continuous statis-
tical analysis of people movements to find abnormal behavior and correlate
them with the ones coming from law enforcement and public protection
forces to enhance city safety.
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