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Abstract. GIS systems often rely on low-level, pixel-based representa-
tions of satellite scenes. The purpose of this paper is to show the ad-
vantages of using an intermediate representation incorporating multiple
criteria in scene characterisation, as well as a framework for monitoring
changes over time based on features of interest. A Conceptual Spaces
framework, in conjunction with navigation-based skeletonisation are em-
ployed for this purpose. We evaluate our system on satellite images of
rivers and lakes.

1 Introduction

The problem of identification of important features with remote sensing meth-
ods is a very active research field, with applications ranging from cartography
and oceanography to the identification of military targets. This application lies
in the general field of Geographical Information Science [11]. It goes one step
further than being merely a data collection system, since it employs artificial in-
telligence techniques to represent and characterise the scene. At the same time,
the approach followed does not aim to create or use a symbolic representation
and ontology of geographical information. The major reason for selecting this
application is the quantity of visual information that is included in satellite im-
ages, as well as the fact that the depicted objects are all natural. The aim of
the system is to collect visual topological and morphological information about
river segments, and create an intermediate graph representation containing this
information. This graph representation can then be utilised for further high-
level processing, such as formal concept analysis [19]. The dataset is deliberately
restricted to segmented satellite images, in order to avoid the process of seg-
mentation of complex scenes. The system can be used in conjunction with a
supervised or unsupervised GIS scene classification algorithm [17] to identify
river segments automatically. The developed system aims to provide a generic
and modular visual characterisation platform for inland water features. In this
sense, it forms a GIS spatial analysis tool. However, contrary to traditional spa-
tial analysis approaches, spatial information is represented in a sub-symbolic
intermediate representation. This contrasts the tendency to merely be limited
to image coordinates signifying areas or attributes of interest. This distinctive
feature enables the reusability of the data produced. The simplification of infor-
mation exchange is a major issue when attempting to combine collected data
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from several geographical information systems. Thus, a sub-symbolic represen-
tation would provide a platform encouraging GIS interoperability. At the same
time, this approach does not suffer from the pitfalls of ontology-driven GIS ap-
plications. A major potential use of the monitoring of inland water features is
the fluctuation of water levels and the erosion of the coastline occurring over a
period of time. A direct application of this monitoring is the measurement of the
effects of global warming in specific areas of interest. The correlation between
descriptive attributes (pollution levels, etc) and position (skeleton of river) is the
key to successfully characterising a river [3]. Effective river segment characteri-
sation is the first step to their categorisation and identification. The collection of
several descriptive attributes concerning their shape facilitates this categorisa-
tion process. Common examples are pollution levels and the development of river
bank deterioration. In addition, a structural representation of a river within an
image can further facilitate the enrichment of this representation with attributes
specific to the application. The proposed graph representation as applied to river
networks combines the advantages of both vector and polygon representations
in terms of the included spatial information. The method employed in this paper
has the potential of acting as a representation framework for such information.

2 Characterisation as Navigation

In [18], the need for a new technique of computing the skeleton of an object is
examined. The tight coupling between the generation of the skeletal points and
the higher-level representation of the skeletal line is proposed. A novel skeleton-
isation algorithm is presented that draws on techniques developed for mobile
robot mapping and navigation and offers a number of advantages over existing
skeletonisation methods. First, because the algorithm works by hopping from one
landmark position in the image to another, it has to visit far fewer pixels to find a
skeleton compared to conventional algorithms. Second, unlike other techniques,
the exploratory nature of the algorithm allows it to identify junctions and end-
points on the fly, which facilitates later high-level symbolic processing. Finally,
the method is more generic than others, in the sense that it can be adjusted
to compute skeletons containing a variety of different sorts of morphological in-
formation. Although much effort has been put into developing skeletonisation
algorithms, no attempt up to now has been made to treat skeletonisation as
a problem of navigation. However, it turns out that methods for mobile robot
mapping and navigation, such as those presented in [10, 9, 8], can be transferred
to skeletonisation. The conceptual challenge here is to think of a robot’s envi-
ronment as analogous to an object in a segmented image, with the robot itself
located at a pixel inside that object. The problem of skeletonisation is then anal-
ogous to that of exploring and mapping the environment by navigating inside
it while remaining on the skeletal line. These features of the algorithm make it
particularly suitable to object characterisation, based on features or attributes
of interest.
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2.1 Including Morphological and Structural Information

Skeletonisation on its own is not sufficient to describe a shape in a satisfactory
way. The reason for this is that similar shapes can have very different skele-
tons, while very different shapes can have similar skeletons. Hence, additional
information is included, with the intention of capturing the morphology of the
object contour. Various techniques have been proposed for accomplishing this.
The two most important influences on the author’s work have been Blum’s Me-
dial Axis Transform [2] and the Shock Graph [22]. In [2], the shortest distance
from every point belonging to the skeleton to the object contour is encoded.
The reconstruction of the original shape from its skeleton is possible in this
manner. Shock graphs [22] go one step further and keep a record of the rate
of change of the minimum distance to the contour along the skeleton. In this
fashion, each segment of the skeleton is assigned a status. By creating these cat-
egories, a symbolic representation of the shape can be formed. The development
of the algorithm took place with the aim of using the data it yields for high-level
representation. In pursuit of this, it features two major advantages. First, the
navigation process is not continuous. It consists of hops from one skeletal point
to another. The data produced will therefore be more easily processed by high-
level representation frameworks, such as those proposed in [20, 5, 13]. Second,
this technique allows for the computation of any kind of morphological informa-
tion, including those presented in [2, 22], since the data encoded on the skeletal
points is being added on the fly. Finally, unlike other related work [24], structural
information of vital importance for logical reasoning in object recognition, such
as junctions and end points, is extracted with no post-processing.

2.2 The Algorithm in Detail

As mentioned in Section 2, the crucial issue is to think of an analogy between
the movement of a pixel inside an object with the motion of a robot inside a
room. The aim for the pixel is to explore and navigate inside the object whilst
staying on a path corresponding to the skeletal line. In order to achieve this,
the pixel-robot has virtual sensors, which yield information about the distance
to the boundaries. The sensors are emulated by checking a circular area around
the pixel-robot for points that belong to the boundary. In this way, touch-points
on the boundary can be extracted. The aim of the pixel-robot is to maintain a
path along which there are only two touch-points. If there are fewer than two,
the robot adjusts its position, the radius of the circular area, or both. If there
are more than two touch-points, that means there is a junction and the robot
explores all the possible branches. The real-world equivalent of this topic has
already been studied in the context of Kuipers’ Spatial Semantic Hierarchy [8].
What is more, the close connection between mapping and the skeleton has been
explored in [10, 9]. In the present author’s work, an attempt is made to adapt
these ideas to the context of a digitised image. The roaming pixel checks a circle
around it for touch points with the contour. If two touch points are found, then
the pixel jumps a distance equal to the normal distance between the current
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Fig. 1. Divergence-based skeleton Fig. 2. Navigation-based skeleton

centre and the cord connecting those two touch points. For object segments
whose width remains constant, the algorithm performs no hops and the output
is similar to that of standard skeletonisation algorithms. However, the more the
object’s width varies along the skeletal line, the greater these hops will be. Hence,
the algorithm is better suited to naturalistic shapes. Special mention should be
made of the sub-cases of the two touch-point case. At every stage, the algorithm
retains a memory of the last skeletal pixel traversed, and calculates the angle
formed by that pixel, the current pixel, and the next pixel. This in turn affects
the decision of whether the pixel-robot is going to move forwards or backwards.
There is also a special provision for the cases where the movement of the pixel-
robot makes the sensors lose touch with one of the surfaces, and confuse it with
a newly seen surface. This would clearly yield an incorrect skeleton, since only
two of the total of three touch points would be sensed.

A very common problem among skeletonisation algorithms, and one that is
not straightforwardly overcome, is the generation of many spurious branches.
Moreover, small variations in the contour of an object can have rather drastic
consequences in the shape of its skeleton. Consequently, branch pruning is often
used as a method of deleting these branches [4]. The advantage of navigation-
based skeletonisation is that by adjusting sensitivity parameters these spurious
branches can be limited to a minimum, or completely eliminated. In effect, this
feature of the algorithm renders it more suitable for the skeletonisation of com-
plex shapes, where these branches become a source of great confusion and usu-
ally have no structural significance. This comparative advantage is illustrated
in figures 1 and 2. The navigation-based skeleton (figure 2) produces no spu-
rious branches at all. In contrast, the divergence-based thinning algorithm [4]
generates several of them (figure 1).

3 Characterising River Networks

Characterisation involves monitoring specific characteristics of the scene that
are important to the user. In the particular case of river characterisation [23,
16], both structure and shape are indispensable elements in the description of
different river segments. Rivers are structured shapes, with branches and forks,
but nonetheless exhibit considerable variation in the morphology of different
segments. For this work, the Conceptual Spaces framework [5] is used. A Con-
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ceptual Space is a metric space in which entities are characterised by a number
of quality dimensions. Quality dimensions can be closely tied to the raw input
or defined in more abstract terms. In this respect, the goal of our system is to
not just consider a single descriptor, but several of them.

Fig. 3. Near Toronto, Canada

The local topology of a river system plays a prime role in the successful
characterisation of that region. Structural information can be highly informa-
tive to the end of identifying segments and sources. Once the topology of the
river network has been determined, a more detailed characterisation of the river
segments can be accomplished by bringing morphology into the picture. Lastly,
in addition to the morphological attributes that can potentially be recorded by
navigation-based skeletonisation, graphs based on navigational skeleton repre-
sentations allow for other non-morphological attributes to be considered. These
could include sediment, nutrients, toxicants, and heat. Such a characterisation
technique can also be used to classify water features. The most significant ad-
vantage of having an adaptable skeletonisation system is the capability to vary
the collected attributes to best describe or identify a given feature. The best case
scenario is where the variation of one single attribute is sufficient to distinguish
between features of interest. Even though this is usually not the case, the mere
fact that the attributes can be adapted facilitates the classification process. In
figure 3 to figure 5, examples of the application of the algorithm to real satellite
images can be seen. The topology is recorded on the fly, while morphology or
additional thematic data can be included or added according to the specific ap-
plication. In the skeletons extracted from these examples, nodes corresponding
to junctions appear as black, while nodes corresponding to end-points appear as
grey.
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Fig. 4. Near Toronto, Canada

Fig. 5. Dessau, Germany

4 Monitoring Change

Measuring and quantifying changes in time series images is a topic of consider-
able importance in the GIS community [15, 6, 12]. The developed representation
system is applied to a series of satellite images depicting the same area, taken
over large time intervals. We claim that an attributed graph representation is
sufficient to successfully describe the changes that have taken effect to the water
features present in the images. In turn, this method can potentially be used to
measure the consequences of global warming to lakes, ponds and rivers around
the world. Time intervals could range from a few months or days in the case of
e.g. floods, to decades in the case of the effects of global warming.

4.1 Quantifying Change

Conceptual Spaces can prove very powerful when one attempts to describe sim-
ilarity [7, 1] . To each conceptual space corresponds a similarity metric. In this
way, a degree of similarity can be determined when comparing knoxels - or points
in the n-dimensional metric space - belonging to different objects. This metric
is tailored to the nature of the conceptual space itself. Since our low-level repre-
sentation yields skeletons, we selected graph matching as the similarity metric
of choice. When it comes to the problem of inexact graph matching, one must
ask what kind of application this matching will serve, in order to find the most
suitable approach. Probably the first inexact graph matching algorihm is the
one proposed by [14], an improvement of which is also used in the widely popu-
lar SubDue software. In our case, the Approximate Graph Matcher [21] seemed
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an appropriate choice. The original motivation for the development of the al-
gorithm was various biology-related applications. Two features of the algorithm
render it most suitable for classification in the context of conceptual spaces.
First, the matcher allows for attributes to be included in the graph represen-
tations. Since we are pursuing the comparison of attributed graphs, a matcher
allowing attributes (or weights) is imperative. Second, the nature of its input en-
ables comparisons and identifications of matches between many different graphs
in one go. The graphs that need to be classified are encoded in a text file. The
program then compares every graph to every other graph in the file, which effec-
tively acts much like a database. Hence, even when comparing a large number of
graphs, the process of classification is uncomplicated. At the same time, the fact
that the software has been written in the K language, which was developed to
process large amounts of data for financial applications, ensures that execution
will be very fast.

4.2 Water Level Changes over Time

In contrast to sea levels, inland water levels tend to decrease as average tempera-
tures rise. Evaporation is the primary cause of this phenomenon. The quantifica-
tion of the effect of these changes and their consequences on the local landscape
have been the motivation for being involved with satellite images in the first
place. By altering the measured and compared attributes, conclusions can be
drawn regarding the nature of the alterations that have taken place over a pe-
riod of time. For example, the length of the branches in a drying river changes
much more than the angles that are formed between these branches and the
main stream. In that respect, the capability of the developed characterisation
method to record multiple attributes enables a more thorough monitoring of
the changes that are taking effect. Table 1 shows the quantitative measures of
change to water features, as computed from images of places taken over 10 year
time intervals. Snapshots of the same area taken between 1970 and 1990 (fig-
ure 6) have been used for this purpose. The framework has been used with two
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Fig. 6. Change of lake water levels
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Change over time (Sample 1)

Dimension average r angle

1970-1980 59% 28%

1980-1990 75% 84%

1970-1990 85% 87%

Change over time (Sample 2)

Dimension average r angle

1970-1990 30% 13%

Change over time (Sample 3)

Dimension average r angle

1970-1980 81% 80%

1980-1990 22% 13%

1970-1990 83% 81%
Table 1. Measuring change over time: 3 time series image samples

attributes, average radius along the skeleton, and branch angle. In the images
depicting a lake in Kazakhstan (figure 6), we can see that the greatest structural
changes have taken effect during the past 10 years. This can be corroborated by
an inspection of the time series images. The recession of water levels during the
decade 1980-1990 has caused greater alterations to the shape of the lake, and
hence the landscape. In the case of two attributes, a two-dimensional conceptual
space containing the results of table 1, can be used in conjunction with Princi-
pal Components Analysis (PCA)to produce maps of change. The presented data
were collected from three sets of time series images over identical time intervals.

Fig. 7. Analysis of change

Figure 7 shows what this analysis can show for the three time series, similar
to the one in figure 6 depicting a lake in Kazakhstan. In figure 7 (left), points
corresponding to change between 1970 to 1980 have been highlighted as grey,
while the rest as black. Figure 7 (right) indicates how PCA assists in forming
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groups of points (depicted as different shades of grey). In this example, three
groups can be separated by the two principal components. In cases with large
numbers of measured attributes, and hence many dimensions, such grouping of
data can be useful in extracting patterns of change.

5 Conclusion

This paper demonstrated the applicability of the system presented in previous
chapters to the challenging problem of river characterisation based on real satel-
lite images. By providing an intermediate representation of river networks, the
system contributes to the field of GIS, where lower level representations are the
norm. The advantages of this higher-level representation are adaptability and
interoperability. Second, the capabilities of the conceptual space framework em-
ployed in this paper are more evidently utilised by measuring and classifying
changes in time series satellite images. The multi-attribute approach to river
characterisation provides a platform that can successfully describe morphologi-
cal as well as topological changes to river networks. Moreover, PCA is able to
classify these changes and provides the user with an informative measure of mon-
itored alterations. These two functions render the system a useful GIS tool that
can be used to characterise river networks or classify water feature alterations
over a period of time. In addition, this paper showed that the design choices
made can produce an adaptable and versatile GIS tool.
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