
Model-Based Extension of AUTOSAR for
Architectural Online Reconfiguration

Basil Becker1, Holger Giese1, Stefan Neumann1,
Martin Schenck2 and Arian Treffer2

Hasso-Plattner-Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

1forename.surname@hpi.uni-potsdam.de
2forename.surname@student.hpi.uni-potsdam.de

Abstract. In the last years innovations in the automotive domain have
more and more been realized by software leading to a dramatically in-
creased complexity of such systems. Additionally automotive systems
have to be flexible and robust, e.g., to be able to deal with failures of
sensors, actuators or other constituents of an automotive system. One
possibility to achieve robustness and flexibility in automotive systems is
the usage of reconfiguration capabilities. However, adding such capabili-
ties introduces even higher degree of complexity. To avoid this drawback
we propose to integrate reconfiguration capabilities into AUTOSAR, an
existing framework supporting the management of such complex system
at the architectural level. Elaborated and expensive tools and toolchains
assist during the development of automotive systems. Hence we present
how our reconfiguration solution has been seamlessly integrated into such
a toolchain.

1 Introduction

Today most innovations in the automotive domain are realized by software.
This results in a dramatically increasing complexity of the developed software
systems1. The objective of the AUTOSAR framework is to deal with this com-
plexity at the architectural level. Additionally these systems need to deal with
diverse situations concerning the context in which the software is operating.
Such systems and especially the software, which is realizing essential functional-
ities of the overall system, need to be flexible to react on changes of its context.
Regardless if such a system need to react on failures or on other contextual situ-
ations2, flexibility and robustness plays an important role in today’s automotive
applications.

1 The complexity concerning the size of the developed software, the functionality re-
alized by the software system and so on.

2 An example for such a situation, which is not related to a failure is in case the car
is connected to diagnostic devices.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 123

Reconfiguration is one possibility to facilitate the flexibility and robustness of
such systems. There exist different possibilities to realize reconfiguration within
automotive software. One is to realize reconfiguration mechanisms at the func-
tional level. Because the AUTOSAR framework primarily provides mechanisms
to deal with the complexity at the architectural level also the reconfiguration
aspects should be available at the same level. Because deriving architectural
information from the functional level could be difficult or even impossible we
propose to specify reconfiguration aspects at the architectural level and to auto-
matically derive the needed functionality based on the architectural information.

Further in a typical development scenario one has to deal with black-box
components provided by third parties and elaborated information about the
included functionality is not available, what also hampers the management of
reconfiguration aspects at the functional level. Another possible solution is to
introduce a new approach inherently facilitating reconfiguration aspects in the
context of automotive systems. Today standard methods and tools already exist
for supporting the development process of AUTOSAR. Because adapting exist-
ing tools or developing new once is very costly the propagation of such a new
approach would be hardly suitable in practice. Summarizing we have identified
the need for an development approach that is able to provide reconfiguration
capabilities at the architectural level, can be seamlessly integrated into an exit-
ing development solution and can also include third party components into the
reconfigurable architecture. In this work we show how reconfiguration capabili-
ties, which are currently not included in the existing AUTOSAR approach can
be supported at the architectural level without degrading existing development
solutions, tools or the standard itself. We further show how the needed func-
tionality for realizing the reconfiguration logic can be automatically generated
based on the architectural information describing the reconfiguration. The used
application example for our evaluation is related to the field of fault tolerant
systems and from our perspective such systems are one possible field to which
reconfiguration like discussed in the remainder of this work can be applied.

The remainder of this paper is organized as follows. In Section 2 we discuss
existing approaches supporting reconfiguration relevant for automotive systems
and especially those approaches providing reconfiguration capabilities at the ar-
chitectural level. In Section 3 we briefly introduce the existing toolchain, which
builds the technological foundation for our investigation concerning the devel-
oped extension for on-line reconfiguration within the AUTOSAR framework.
Subsequently in Section 4 we show how such a system is usually modeled with
the given tools and how the additional reconfiguration aspects could be formu-
lated based on the input/output of the existing toolchain. In Section 5 we show
how these created additional reconfiguration aspects are automatically merged
back into the original architecture and how the merged result fits into the exist-
ing tools without discarding or degrading parts of the original toolchain. Finally
we give short discussion concerning the current results of our work in Section 6.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 124

2 Related Work

In several different areas of computer science ideas have been presented, which
are related to the approach we are going to present in this paper. In the field of
software product lines and especially dynamic software product lines the topic of
variable software has been addressed. The software architecture community has
presented some work on the reconfigurability of robotic systems. Work, tailored
to the automotive domain, has been done in the DySCAS project. We did some
research on self-optimizing mechatronic systems.

In previous work we have presented a modeling technique called Mecha-
tronic UML (mUML), which is suitable for the modeling of reconfigurable and
self-optimizing mechatronic systems [1, 2]. However, the mUML approach differs
from the one, which will be presented in this paper, in the fact that mUML uses
an own code generation mechanisms and thus could hardly be integrated into
existing development tool chains.

In the DySCAS3 project dynamically self-configuring automotive systems
have been studied [3, 4]. DySCAS does not provide a model based development
approach, tailored to the specification of reconfiguration. Reconfiguration is spec-
ified with policy scripts, which are then evaluated by an engine at run-time
(cf. [5]).

Software Product Line Engineering (SPLE) [6] aims at bringing the assembly
line paradigm to software engineering. Typically a software product line is used
to develop multiple variants of the same product. However, as the classical SPLE
approach targets the design-time variability of software it is not comparable to
the approach we are going to present in this paper. Recently a new research
branch has emerged from SPLE called Dynamic Software Product Line Engi-
neering [7]. In Dynamic Software Product Lines the decision, which variant to
run, has moved from design- to run-time. Such an approach is presented in [8],
where the authors describe a dynamic software product line, which is suitable
for the reconfiguration of embedded systems. In contrast to our approach this
one is restricted to the reconfiguration of pipe-and-filter architectures and the
reconfiguration has to be given in a textual form.

In [9] a framework for the development of a reconfigurable robotic system
has been presented. But the presented approach does in contrast to ours not
support the model-driven development of reconfiguration. A policy-based recon-
figuration mechanism is described in [10]. The authors present a powerful and
expressive modeling notation for the specification of self-adaptive (i.e. reconfig-
urable) systems but their approach requires too much computational power and
is thus only remotely applicable to embedded systems. In [11] an approach based
on mode automata has been presented. However, mode automata only support
switching between different behaviors internal to a component and do not cover
architectural reconfiguration.

3 http://www.dyscas.org

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 125

3 Existing Development Approach

For the development of embedded systems – especially in the automotive domain
– several tools exist that provide capabilities for model-based development of
such systems. Tools used by companies typically are mature, provide reliable and
optimized code generation mechanisms and are as expensive as complex. Hence,
any technique that claims being usable in the domain of embedded / automotive
systems must be integrated into the existing toolchain. We will use this section
to exemplary describe a toolchain, which might be used in the context of the
AUTOSAR domain specific language.

3.1 AUTOSAR

The AUtomotive Open System ARchitecture (AUTOSAR) is a framework for
the development of complex electronic automotive systems. AUTOSAR provides
a layered software architecture consisting of the Application layer, the Run-
time Environment and the Basic Software layer. Figure 14 shows the different
layer of the architecture. The Basic Software layer provides services concerning
HW access, communication and Operating System (OS) functionality (cf. [12]).
The Basic Software provides several interfaces in a standardized form to al-
low the interaction between the Basic Software layer and the application layer
routed through the Runtime Environment. The Runtime Environment handles
the communication between different constituents of the application layer and
between the application layer and the Basic Software layer (e.g., for accessing
Hardware via the Basic Software, cf. [13]). The Application layer consists of
Software Components, which can be hierarchically structured and composed to
so called Compositions. Software Components and Compositions can have ports
and these ports can be connected via Connectors (see [14] for more details).
The real communication is realized through the Runtime Environment in case
of local communication between Software Components (Compositions) on the
same node (Electronic Control Unit) or through the Runtime Environment in
combination with the Basic Software in case of communication between different
nodes.

The main focus of AUTOSAR is the modeling of architectural aspects and
of structural aspects. The behavior modeling (e.g., needed control functionality
for reading sensor values and setting actuators) is not the main focus of the AU-
TOSAR framework. For modeling such behavior existing approaches and tools
can be integrated into the development process of AUTOSAR. One commonly
used tool for the model based development of behavior is MATLAB/Simulink
(like described in Section 3.2). For executing such functionality AUTOSAR pro-
vides the concept of Runnables, which are added as a part of the internal be-
havior of a Software Component. Developed functionality could be mapped to
Runnables and these Runnables are mapped to OS tasks. Additionally events

4 Picture taken from http://www.autosar.org/gfx/media pictures/AUTOSAR-
components-and-inte.jpg.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 126

can be used to decide inside an OS task if specific runnables are executed at run-
time (e.g., runnables could be triggered by events if new data has been received
via a port of the surrounding Software Component). For more details about the
OS provided by the AUTOSAR framework see [15].

Once the modeling and configuration is done, in the current release version
of AUTOSAR5 changes at run-time concerning the structure of the application
layer (e.g., restructuring connectors) are not facilitated by the framework.

Fig. 1. The AUTOSAR layered architecture

3.2 Existing Toolchain

The scheme in Figure 2(a) shows one possible toolchain for the development
of AUTOSAR systems. Rectangles with rounded corners represent programs,
rectangles with cogwheels stand for processes. The arrows indicate exchange
of documents, the type of the document (i.e. models, C-code or parameters)
is annotated to the arrows. The system’s architecture (i.e. components, ports
and connectors) is modeled in SystemDesk6. Together with the architecture Sys-
temDesk also supports the modeling of the system’s deployment to several ECUs.
The components behavior is specified using Matlab with the extension Simulink.
For Matlab/Simulink (ML/SL) special AUTOSAR block sets exist, which allow
the import of components specified in SystemDesk into Matlab and following
the development of the component’s functionality.

Further SystemDesk supports the generation of optimized C-Code, which
conforms to the AUTOSAR standard concerning the Runtime Environment (cf.
Subsection 3.1). Together with the C implementation of the software components
modeled in SystemDesk the generated output also contains a configuration for
the basic software layer. This layer is generated from specialized tools (e.g. Tresos

5 Release 3.1
6 http://www.dspace.de

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 127

(a) Exemplary toolchain for development
with AUTOSAR

(b) Tool chain for modeling reconfigurable
AUTOSAR architectures

Fig. 2. The current and the extended toolchain for the development with AUTOSAR

by ElectroBit, abbreviated as BSW-C/G in Figure 2) and is specific to the system
modeled in SystemDesk and the available hardware.

At the integration step a build environment compiles the generated C-Code
and builds the software running on each ECU.

3.3 Evaluation Example

The used application example for showing the reconfiguration capabilities that
are supplemented to the existing AUTOSAR framework in our approach is the
reconfiguration of a set of adjacent aligned distance sensors. The discussed eval-
uation example allows reacting on sensor failures in the manner that the failure
of individual sensor instances is compensated.7

Such adjacent aligned sensors are commonly used in a modern car, e.g., in
case of a parking distance control. Such a parking distance control uses sensors
(e.g., ultrasonic sensors) embedded in the front or rear bumper for measuring
the distance to nearby obstacles.

Additionally in Section 5.3 we discuss the evaluation results of experiments
we have made on an evaluation platform using the techniques described in Sec-
tion 4.

4 Modeling Reconfiguration

In order to make an AUTOSAR system architecture reconfigurable, some addi-
tional concepts are needed. The toolchain needs to be extended in a certain way
that extensions do not make the existing toolchain invalid. From our perspective
the best way is to integrate an optional tool that can be plugged into the existing
toolchain.

7 For our application example we assume that a sensor failure can be observed at the
level of Software Components.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 128

4.1 Extended Toolchain

Our modeling approach is currently restricted to the modeling of AUTOSAR
software architectures. The toolchain in Figure 2(b) shows our approach of ex-
tending the existing toolchain by another tool without degrading existing ones.
By using this proposal the developer is free to choose, whether he wants to use
our given enhancement or not. He can either model an architecture, that does
not provide any reconfiguration or he can use our tool in addition and empower
himself to specify and realize reconfiguration aspects. The advantages are obvi-
ous: better control and overview due to the diagrammatic depiction.

SystemDesk SystemDesk is a tool provided by dSPACE 8 supporting the mod-
eling of AUTOSAR conform systems. Among other things it supports the mod-
eling of the AUTOSAR HW and SW architectures. For modeling the SW ar-
chitecture Software Components, compositions as well as ports, interfaces and
connectors are provided as modeling artifacts. These artifacts can be used to
describe the architectural aspects of a concrete SW architecture for a specific
system like shown in Figure 3.9 Besides modeling the architecture in SystemDesk,
the tool also allows the linking of the Software Components to their behavior,
written in C-Code or given in form of MATLAB/Simulink models.

Additionally the HW architecture including the used types of ECUs (Elec-
tronic Control Unit), the deployment of Software Components to these ECUs as
well as additional information concerning the configuration (e.g., configuration
concerning communication and the OS) can be specified. Based on this informa-
tion SystemDesk automatically generates code, which can be compiled for the
specified platform. Besides the code for the application layer SystemDesk also
generates source code realizing the Runtime Environment functionality.

Figure 3 shows the relevant part of the SW architecture concerning our ap-
plication example modeled in SystemDesk. Like depicted on the right side of
Figure 3 the composition consists of four Software Components representing the
distance sensors10 connected to another composition SensorLogic evaluating the
sensor values to a single value provided by the port ShowDistanceOut.11

The above mentioned elements (Software Components, ports and connectors)
are used to describe the software when no reconfiguration is intended. Some ad-
ditional elements shown in Figure 3 are described in more detail in the following
section. These elements (Interpolation, Reconfiguration and the unused ports of
the sensors) are used later to realize the reconfiguration functionality.

8 www.dspace.de
9 For the realization of control functionality other constituents can be imported into

SystemDesk, e.g. in form of C-Code or Matlab/Simulink models, to realize the im-
plementation of internal behavior of Software Components.

10 The ports accessing the HW via the Runtime Environment and Basic Software are
not shown here because they are not object of reconfiguration.

11 To allow a better understanding SensorLogic calculates a single output value based
on the different input values. Potentially also several output values can be computed.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 129

Fig. 3. Configuration in SystemDesk

dTool The usual modeling procedure is not altered until the modeling in Sys-
temDesk12 is initially done like described above. After the model from Sys-
temDesk is exported in form of an XML file13 and loaded into the dTool the
constituents concerning the reconfiguration could be specified. Using the dTool
we are now able to model two different aspects, relevant for the reconfiguration.
On the one hand our tool allows creating new configurations, which differ from
the initial one. Such differences are alternative connections (in form of connec-
tors) between components and/or compositions. Which parts of the architecture
are relevant concerning reconfiguration is indicated by the Software Component
Reconfiguration included in the original SystemDesk model. Alternatively the
dTool allows to manually choosing relevant parts of the imported architecture.
On the other hand our dTool allows to model an automaton, which specifies how
to switch between the modeled configurations.

Figure 4(a) depicts the configuration (modeled in the dTool) associated with
the state that sensor two is broken. In the shown configuration the value of
the port DistanceOut from the broken sensor Sensor 2 is not available. Conse-
quently the value sent to the port Distance 2 In of the composition SensorLogic
is interpolated from the to sensor values of the first and the third sensor via the
additional composition Interpolation.

Figure 4(b) shows the configuration associated with the state that sensor
four is broken and the value sent to the port Distance 3 In of the composition
SensorLogic is interpolated based on the sensor values of the second and the
fourth sensor.

12 http://www.dspace.de/ww/en/ltd/home/products/sw/system architecture
software/systemdesk.cfm

13 The AUTOSAR framework specifies XML-Schemes for exchanging AUTOSAR mod-
els in a standardized form.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 130

(a) Configuration in case Sensor 2 is bro-
ken

(b) Configuration in case Sensor 3 is bro-
ken

Fig. 4. Two configurations of the architecture for two different scenarios

The composition Interpolation used here provides some functionality for in-
terpolating two different sensor values. This functionality has been added specif-
ically for our application example.14 This interpolation functionality is used to
approximate the value of a broken sensor based on the values of two adjacent
sensors. It is potentially possible to integrate this functionality into an existing
Software Component, but for a better understanding, we decided to introduce a
new Software Component for this purpose.

The second part, which could be modeled in the dTool relevant for the recon-
figuration is the automaton shown in Figure 5 specifying how to switch between
different configurations. The automaton consist of the initial state initial, where
all four sensors work correctly, the state sensor2broke where the second sensor is
broken, the state sensor3broke where the third sensor is broken and state allfail
where the first or the fourth sensor or more than one sensor is broken. Transi-
tions between these states specify which reconfiguration is applied at runtime.
The transitions are further augmented with guards. These guards are expressions
over the values provided by components within the reconfigurable composition,
which provide information relevant for the reconfiguration (in our case these
information are provided via the Status-ports of the four Sensor-Software Com-
ponents). An example for such a guard is shown at the transition from state
initial to state sensor2broke requiring that the status port of the Software Com-
ponent Sensor 2 provides the value 0 (indicating a broken sensor).

For the application example we assume that such status ports of the Software
Components representing the sensors exist as we otherwise were not able to
observe each sensors’ status.15

14 In our application example this functionality has been realized using Mat-
lab/Simulink.

15 Alternatively an observer could be realized in form of an additional Software Com-
ponent evaluating the sensor values over time and providing the status ports. If the

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 131

Fig. 5. Reconfiguration automaton in the dTool

5 Merge

In its current version the AUTOSAR standard does not support reconfiguration
as a first class modeling element. Thus, SystemDesk also does not support model-
ing of diagrams that represent different variations of one composition. Hence the
direct import of the reconfiguration, we have modeled in the dTool, is impossible.
Nevertheless we want to make use of SystemDesk’s elaborated and AUTOSAR
standard conform code generation capabilities. We had to find a way to translate
the reconfiguration behavior into a SystemDesk/AUTOSAR model. This is done
by merging all configurations to one final model. In the final model, the reconfig-
uration logic will be encapsulated by two components, the RoutingComponent
and the StateManager.

5.1 Merging configurations

Our modeling approach only allows the reconfiguration of connections between
components but is not suitable for the addition and removal of components at
run-time16. Hence, a merged configuration consists of all components, which
have been modeled in SystemDesk at the early stages (cf. Subsection 4.1). Con-
nections, which do not exist in all configurations, are redirected via a special
component, called RoutingComponent. Therefore, the first step is to build the
intersection of all configurations. Connections found here are directly inserted
into the merged model. Next the RoutingComponent is added.

Generating the RoutingComponent The RoutingComponent intersects ev-
ery connection, which is not invariant to the reconfigurable composition. Follow-

measured values of consecutive points in time repeatedly have improper values (too
big differences) a malfunction can be deduced.

16 Please note that the dTool allows to modeling configurations, which do not contain
all components. The semantic is that the components are hidden, a dynamic loading
of components is not supported by AUTOSAR.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 132

ing the RoutingComponent has to know at each point in time, which configura-
tion is currently the active one. Which configuration is active, is determined by
the evaluation of the current configuration and the valuation of the variables used
in the guards of the reconfiguration automaton (cf. Figure 5). As an evaluation
of the automaton at each point in time a value is sent to the RoutingComponent,
is much too expensive we have implemented a different strategy.

38 switch (c on f i g u r a t i o n 0) {
39 // Routing f o r c on f i g u ra t i on i n i t i a l :
40 case 0 :
41 Rte IWr i t e D i s t anc e 2 In 0 1 snd r D i s t anc e (d i s t anc e 1) ;
42 break ;
43 // Routing f o r c on f i g u ra t i on a l l f a i l :
44 case 3 :
45 break ;
46 // Routing f o r c on f i g u ra t i on sensor2broke :
47 case 1 :
48 break ;
49 // Routing f o r c on f i g u ra t i on sensor3broke :
50 case 2 :
51 Rte IWr i t e D i s t anc e 2 In 0 1 snd r D i s t anc e (d i s t anc e 1) ;
52 Rte IWr i t e F i r s t I n 1 0 snd r D i s t an c e (d i s t an c e 1) ;
53 break ;
54 }

Listing 1. Excerpt of the RoutingComponent’s code

The configurations modeled in the dTool get a unique number each. The
RoutingComponent receives the number of the currently active configuration
via a special input port. Using this information the RoutingComponent can be
implemented as a sequence of switch statements. The computation of the cur-
rent active configuration is done in a second component – the StateManager. The
dTool automatically generates a runnable for the RoutingComponent containing
the described behavior. An excerpt of the RoutingComponent’s implementation
is shown in Listing 1. The variables configuration 0 and distance 1 hold the val-
ues of the current configuration and the second sensor’s distance respectively.
The excerpt is responsible for routing the value provided by the second distance
sensor. In configuration allfail (cf. line 44) and sensor2broke (cf. line 47) no rout-
ing takes place. In the initial configuration the sensor’s distance value is simply
forwarded (cf. line 41) and in case the third distance sensor broke down, the
value is forwarded as in initial (cf. line 51) but it is also sent to the Interpolation
component (cf. line 52).

StateManager The StateManager – as briefly mentioned above – is responsible
for the computation of the currently active configuration. Therefore, it has to
be connected with all ports that provide values, which are used in the guards
of reconfiguration automaton. Each time the StateManager receives an update
on its ports, it has to evaluate the automaton again and change the value of the
currently active configuration accordingly.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 133

49 c on f i g u r a t i o n 0 = Rte I rvRead con f i gu ra t i on () ;
50 switch (c on f i g u r a t i o n 0) {
51 // S ta t e change l o g i c f o r c on f i g u r a t i on
52 // i n i t i a l
53 case 0 :
54 // Trans i t ion to CGConfiguration#sensor2broke (id : 1 ,

name : sensor2broke)
55 i f (StatusSensor2 10 == 0) {
56 c on f i g u r a t i o n 0 = 1 ;
57 Rte I rvWr i t e con f i gu ra t i on (c on f i g u r a t i o n 0) ;
58 Rte IWr i t e c on f ou t c on f i gu r a t i on (c on f i g u r a t i o n 0) ;
59 }
60 break ;

Listing 2. Excerpt from the StateManager’s implementation

Updates to the StateManager’s ports are signaled by events, which then
trigger the StateManager’s evaluation function.17 A small part of this evaluation
function is shown in Listing 2. At line 49 of the listing the currently active
configuration is read, which then is used as input for the switch statement in
the following line. In case the second distance sensor is broken (identified by
StatusSensor2 10 equals zero) the configuration is changed (cf. line 56). Then
the changed configuration is written to the StateManager’s internal configuration
variable (cf. line 57) and provided to other components through the conf out port
(cf. line 58).18

5.2 Final SystemDesk project

Figure 6 shows the Sensor-Composition after exporting the merged model to
SystemDesk again. The components for the distance sensors are all connected
to the RoutingComponent, which is named Reconf in this diagram. The sys-
tem modeled in our application example does not allow an interpolation for
the sensor components one and four. Following these components are always
directly connected with the SensorLogic component and are not handled by the
RoutingComponent. Nevertheless they also have to be connected to the Rout-
ingComponent as the sensor values are used to interpolate the second respective
third sensor in case of a failure.

The StateManager is depicted below the RoutingComponent and is con-
nected to the RoutingComponent through the Conf ports, which provide infor-
mation about the currently active configuration. As defined in the reconfigura-
tion automaton (cf. Figure 5) the decision which configuration to use, depends
on the values of the sensor components’ status ports. Following the StateMan-
ager is connected to those ports. As the reconfiguration automaton does not
17 Event mechanisms in form Runtime Environment events provided by the AUTOSAR

framework have been used to trigger the runnable realizing the functionality of the
StateManager. More information about Runtime Environment events can be found
in [13].

18 E.g., provided to the RoutingComponent.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 134

Fig. 6. Resulting merged SW Architecture in SystemDesk

rely on any values provided by the Interpolation or SensorLogic component the
StateManager is not connected with them.

5.3 Evaluation Results

The above described approach for the modeling and realization of reconfiguration
aspects has been evaluated within a project arranged at Hasso-Plattner-Institute
in collaboration with the dSPACE GmbH.

As an evaluation platform for the shown approach the Robotino robot19

has been used, which provides an open platform for running C/C++ programs
(among others) on a Real-Time Operating System (RTOS). The RTOS is pro-
vided in form of RTAI20, which is a real-time extension for the Linux operating
system. To be able to evaluate the developed concepts on this platform an exe-
cution environment has been realized based on the existing RTAI Linux, which
allows to compile and execute the outcome of the above described extended
toolchain including the resulting parts of the reconfiguration functionality.

The robot provides nine distance sensors uniformly distributed around its
chassis. In the context of our evaluation experiments we modeled the reconfig-
19 http://www.festo-didactic.com/int-en/news/learning-with-robots.htm
20 For more details see https://www.rtai.org.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 135

uration of distance sensors accordingly to the above used evaluation example
using nine instead of four sensors.21

The generated source code of the different tools has been compiled and ex-
ecuted on the platform to show the applicability of our approach. In addition
we analyzed the overhead resulting from the reconfiguration functionality added
by our approach in comparison to the original functionality without any recon-
figuration capabilities. For this purpose we measured the execution time of the
generated reconfiguration automaton included in the added StateManager in
combination with the parts resulting from the routing functionality realized in
the additional RoutingComponent (both components are shown in Figure 6).

In case of the nine sensors provided by the robot we measured execution
times of the relevant parts concerning the reconfiguration functionality between
20 and 100 microseconds depending on the type of reconfiguration (react on the
defect of one or several sensors at the same point in time). The tests have been
realized on the equivalent execution platform on which the real functionality
has been executed when running the application example on the robot.22 While
the robot provides a more powerful processor like it is the case for the most
Electronic-Control-Units (ECUs) used within a modern car, even by using a
platform or processor, which has only a tenth of the computation power we will
not reach an overhead concerning the reconfiguration leading to an execution
time much greater than one millisecond.

6 Conclusion

In this paper we have presented an approach to extend AUTOSAR architectures
with reconfiguration capabilities. The approach fits into existing toolchains for
the development of AUTOSAR systems and allows reusing tools, which where
currently used. The overhead added to the resulting reconfigurable architecture
has been shown to be minimal but the developer rewards an easier development
of reconfiguration logic, which otherwise has to be done manually at the func-
tional / implementation level. We have successfully shown that it is possible
to use high-level architectural modeling techniques without generating massive
run-time overhead.

Although our approach has only been evaluated in the context of AUTOSAR
it should be applicable to almost any component based development approach.

For the future we plan to also support the reconfiguration of distributed com-
positions. From an architectural point of view a distributed composition does
not differ from a local one, as AUTOSAR completely hides the communication
details in the Runtime Environment-layer from perspective of the application
layer. Anyway, a distributed scenario contains enough challenges such as timing
delays, Basic Software configuration, deployment decisions concerning Routing-
Components, just to name a few. Further the high-level architectural modeling
21 For a better understanding we decided to only show four sensors in the previous

sections.
22 The robot is equipped with 300 MHz processor.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 136

we have introduced in this paper also allows the verification of the modeled sys-
tems. First attempts in these directions have been very promising and we are
looking forward to look into the details.

Acknowledgment We thank the dSPACE GmbH and especially Dirk Stichling
and Petra Nawratil for their support in setting up the project. We want to
thank the participants of the student project “A run-time environment for re-
configurable automotive software” : Christian Lück, Johannnes Dyck, Matthias
Richly, Nico Rehwaldt, Thomas Beyhl, Thomas Schulz and Robert Gurol.

References

1. Burmester, S., Giese, H., Münch, E., Oberschelp, O., Klein, F., Scheideler, P.:
Tool Support for the Design of Self-Optimizing Mechatronic Multi-Agent Systems.
International Journal on Software Tools for Technology Transfer 10(3) (2008) 207–
222

2. Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.: Modular design and veri-
fication of component-based mechatronic systems with online-reconfiguration. In:
Proc. SIGSOFT ’04/FSE-12, New York, NY, USA, ACM Press (2004) 179–188

3. Feng, L., Chen, D., Törngren, M.: Self configuration of dependent tasks for dy-
namically reconfigurable automotive embedded systems. In: Proc. of 47th IEEE
Conference on Decision and Control. (2008) 3737–3742

4. Anthony, R., Ekeling, C.: Policy-driven self-management for an automotive mid-
dleware. In: HotAC II: Hot Topics in Autonomic Computing on Hot Topics in
Autonomic Computing, Berkeley, CA, USA, USENIX Association (2007)

5. DySCAS Project: Guidelines and Examples on Algorithm and Policy Design in the
DySCAS Middleware System, Deliverable D2.3 Part III. (February 2009) Available
online: http://www.dyscas.org/doc/DySCAS D2.3 part III.pdf.

6. Pohl, K., Böckl, G., van der Linden, F.: Software Product Line Engineering. Foun-
dations, Principles, and Techniques. Springer, Berlin Heidelberg New York (2005)

7. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product
Lines. Computer 41(4) (2008) 93–95

8. Kim, M., Jeong, J., Park, S.: From product lines to self-managed systems: an
architecture-based runtime reconfiguration framework. In: DEAS ””05: Proc. of
the 2005 workshop on Design and evolution of autonomic application software,
New York, NY, USA, ACM (2005) 1–7

9. Kim, D., Park, S., Jin, Y., Chang, H., Park, Y.S., Ko, I.Y., Lee, K., Lee, J., Park,
Y.C., Lee, S.: SHAGE: a framework for self-managed robot software. In: Proc.
SEAMS ’06, Shanghai, China, ACM (2006) 79–85

10. Georgas, J.C., Taylor, R.N.: Policy-based self-adaptive architectures: a feasibility
study in the robotics domain. In: Proc. SEAMS ’08, New York, NY, USA, ACM
(2008) 105–112

11. Talpin, J.P., Brunette, C., Gautier, T., Gamatié, A.: Polychronous mode automata.
In: EMSOFT ’06: Proc. of the 6th ACM & IEEE International conference on
Embedded software, New York, NY, USA, ACM (2006) 83–92

12. AUTOSAR GbR: List of Basic Software Modules. Version 1.3.0.
13. AUTOSAR GbR: Specification of RTE. Version 2.1.0.
14. AUTOSAR GbR: Specification of the Virtual Functional Bus. (2008) Version 1.0.2.
15. AUTOSAR GbR: Specification of Operating System. (2009) Version 3.1.1.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 137

