Foreword

This volume contains the papers presented at the 5th International Workshop on Uncer-
tainty Reasoning for the Semantic Web (URSW 2009), held as a part of the 8th Inter-
national Semantic Web Conference (ISWC 2009) at the Westfields Conference Center
near Washington, DC, USA, October 26, 2009. It contains 6 technical papers and 3 po-
sition papers, which were selected in a rigorous reviewing process, where each paper
was reviewed by at least four program committee members.

The International Semantic Web Conference is a major international forum for
presenting visionary research on all aspects of the Semantic Web. The International
Workshop on Uncertainty Reasoning for the Semantic Web is an exciting opportu-
nity for collaboration and cross-fertilization between the uncertainty reasoning com-
munity and the Semantic Web community. Effective methods for reasoning under un-
certainty are vital for realizing many aspects of the Semantic Web vision, but the abil-
ity of current-generation Web technology to handle uncertainty is extremely limited.
Recently, there has been a groundswell of demand for uncertainty reasoning technol-
ogy among Semantic Web researchers and developers. This surge of interest creates a
unique opening to bring together two communities with a clear commonality of interest
but little history of interaction. By capitalizing on this opportunity, URSW could spark
dramatic progress toward realizing the Semantic Web vision.

Audience: The intended audience for this workshop includes the following: (1) re-
searchers in uncertainty reasoning technologies with interest in Semantic Web and Web-
related technologies; (2) Semantic Web developers and researchers; (3) people in the
knowledge representation community with interest in the Semantic Web; (4) ontology
researchers and ontological engineers; (5) Web services researchers and developers with
interest in the Semantic Web; and (6) developers of tools designed to support Semantic
Web implementation, e.g., Jena, Protégé, and Protégé-OWL developers.

Topics: We intended to have an open discussion on any topic relevant to the general
subject of uncertainty in the Semantic Web (including fuzzy theory, probability the-
ory, and other approaches). Therefore, the following list should be just an initial guide:
(1) syntax and semantics for extensions to Semantic Web languages to enable repre-
sentation of uncertainty; (2) logical formalisms to support uncertainty in Semantic Web
languages; (3) probability theory as a means of assessing the likelihood that terms in
different ontologies refer to the same or similar concepts; (4) architectures for applying
plausible reasoning to the problem of ontology mapping; (5) using fuzzy approaches to
deal with imprecise concepts within ontologies; (6) the concept of a probabilistic ontol-
ogy and its relevance to the Semantic Web; (7) best practices for representing uncertain,
incomplete, ambiguous, or controversial information in the Semantic Web; (8) the role
of uncertainty as it relates to Web services; (9) interface protocols with support for
uncertainty as a means to improve interoperability among Web services; (10) uncer-
tainty reasoning techniques applied to trust issues in the Semantic Web; (11) existing
implementations of uncertainty reasoning tools in the context of the Semantic Web;
(12) issues and techniques for integrating tools for representing and reasoning with un-
certainty; and (13) the future of uncertainty reasoning for the Semantic Web.
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Abstract. To cope with society’s demand for transparency and corruption
prevention, the Brazilian Office of the Comptroller General (CGU) has carried
out a number of actions, including: awareness campaigns aimed at the private
sector; campaigns to educate the public; research initiatives; and regular
inspections and audits of municipalities and states. Although CGU has collected
information from hundreds of different sources - Revenue Agency, Federal
Police, and others - the process of fusing all this data has not been efficient
enough to meet the needs of CGU’s decision makers. Therefore, it is natural to
change the focus from data fusion to knowledge fusion. As a consequence,
traditional syntactic methods must be augmented with techniques that represent
and reason with the semantics of databases. However, commonly used
approaches fail to deal with uncertainty, a dominant characteristic in corruption
prevention. This paper presents the use of Probabilistic OWL (PR-OWL) to
design and test a model that performs information fusion to detect possible
frauds in procurements involving Federal money. To design this model, a
recently developed tool for creating PR-OWL ontologies was used with support
from PR-OWL specialists and careful guidance from a fraud detection specialist
from CGU.

Keywords: Probabilistic Ontology, PR-OWL, Ontology, Procurement Fraud
Detection, Knowledge Fusion, MEBN, UnBBayes.

1 Introduction

A primary responsibility of the Brazilian Office of the Comptroller General (CGU) is
to prevent and detect government corruption. To carry out this mission, CGU must
gather information from a variety of sources and combine it to evaluate whether
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further action, such as an investigation, is required. One of the most difficult
challenges is the information explosion. Auditors must fuse vast quantities of
information from a variety of sources in a way that highlights its relevance to decision
makers and helps them focus their efforts on the most critical cases. This is no trivial
duty. The Growing Acceleration Program (PAC) alone has a budget greater than 250
billion dollars with more than one thousand projects only on the state of Sao Paulo
(http://www brasil.gov.br/pac/). All of these have to be audited and inspected by CGU
— and, in spite having only three thousand employees. Therefore, CGU must optimize
its processes in order to carry out its mission.

The Semantic Web (SW), like the document web that preceded it, is based on
radical notions of information sharing. These ideas [1] include: (i) the Anyone can say
Anything about Any topic (AAA) slogan; (ii) the open world assumption, in which
we assume there is always more information that could be known, and (iii) nonunique
naming, which appreciates the reality that different speakers on the Web might use
different names to define the same entity. In a fundamental departure from
assumptions of traditional information systems architectures, the Semantic Web is
intended to provide an environment in which information sharing can thrive and a
network effect of knowledge synergy is possible. But this style of information
gathering can generate a chaotic landscape rife with confusion, disagreement and
conflict.

We call an environment characterized by the above assumptions a Radical
Information Sharing (RIS) environment. The challenge facing SW architects is
therefore to avoid the natural chaos to which RIS environments are prone, and move
to a state characterized by information sharing, cooperation and collaboration.
According to [1], one solution to this challenge lies in modeling, and this is where
ontologies languages like Web Ontology Language (OWL) come in.

As it will be shown in Section 3, the domain of procurement fraud detection is a
RIS environment. However, uncertainty is ubiquitous to knowledge fusion.
Uncertainty is especially important to applications such as fraud detection, in which
perpetrators seek to conceal illicit intentions and activities, making crisp assertions
extremely hard and rare. In such environments, partial (not complete) or approximate
(not exact) information is more the rule than the exception.

Bayesian networks (BNs) have been widely applied to draw inferences to
information and knowledge fusion in the presence of uncertainty. However, according
to [2] BNs are not expressive enough for many real-world applications. More
specifically, BNs assume a simple attribute-value representation — that is, each
problem instance involves reasoning about the same fixed number of attributes, with
only the evidence values changing from problem instance to problem instance.
Complex problems on the scale of the semantic web often involve intricate
relationships among many variables, and the limited representational power of BNs is
insufficient for building useful, detailed models.

Multi-Entity Bayesian Network (MEBN) logic can represent and reason with
uncertainty about any propositions that can be expressed in first-order logic [3].
Probabilistic OWL (PR-OWL) uses MEBN’s strengths to provide a framework for
building probabilistic ontologies (PO), a major step towards semantically aware,
probabilistic knowledge fusion systems [4]. This paper uses PR-OWL to design and
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test a model for fusing information to detect possible frauds in procurements
involving Federal funds.

The paper is organized as follows. Section 2 introduces Multi-Entity Bayesian
Networks (MEBN), an expressive Bayesian logic, and PR-OWL, an extension of the
OWL language that can represent probabilistic ontologies having MEBN as its
underlying logic. Section 3 presents a case study from CGU to demonstrate the power
of PR-OWL ontologies for knowledge representation and fusion. Finally, Section 4
presents some concluding remarks.

2 MEBN and PR-OWL

Multi-Entity Bayesian Networks (MEBN) [5 and 6] extend BNs (BN) to achieve first-
order expressive power. MEBN represents knowledge as a collection of MEBN
Fragments (MFrags), which are organized into MEBN Theories (MTheories).

An MFrag contains random variables (RVs) and a fragment graph representing
dependencies among these RVs. An MFrag is a template for a fragment of a Bayesian
network. It is instantiated by binding its arguments to domain entity identifiers to
create instances of its RVs. There are three kinds of RV: context, resident and input.
Context RVs represent conditions that must be satisfied for the distributions
represented in the MFrag to apply. Input nodes represent RVs that may influence the
distributions defined in the MFrag, but whose distributions are defined in other
MFrags. Distributions for resident RV instances are defined in the MFrag.
Distributions for resident RVs are defined by specifying local distributions
conditioned on the values of the instances of their parents in the fragment graph.

A set of MFrags represents a joint distribution over instances of its random
variables. MEBN provides a compact way to represent repeated structure in a BN. An
important advantage of MEBN is that there is no fixed limit on the number of RV
instances, and the random variable instances are dynamically instantiated as needed.

An MTheory is a set of MFrags that satisfies conditions of consistency ensuring
the existence of a unique joint probability distribution over its random variable
instances.

To apply an MTheory to reason about particular scenarios, one needs to provide
the system with specific information about the individual entity instances involved in
the scenario. On receipt of this information, Bayesian inference can be used both to
answer specific questions of interest (e.g., how likely is it that a particular
procurement is being directed to a specific enterprise?) and to refine the MTheory
(e.g., each new tactical situation includes additional statistical data about the
likelihood of a given attack for that set of circumstances). Bayesian inference is used
to perform both problem specific inference and learning in a sound, logically coherent
manner (for more details see [6 and 7]).

State-of-the-art systems are increasingly adopting ontologies as a means to ensure
formal semantic support for knowledge sharing [8, 9, 10, 11, 12, and 13].
Representing and reasoning with uncertainty is becoming recognized as an essential
capability in many domains. A common error is to provide support for uncertainty
representation by just annotating ontologies with numerical probabilities. This
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approach leads to brittleness, as too much information is lost due to the lack of a
representational scheme that can capture structural nuances of the probabilistic
information. More expressive representation formalisms are needed [4].

Includes
(hasMFrag)
Is built from
(hasNode)

Has states Is defined by Probability
(hasPossibleValues) (hasProbDist) Distribution

Fig. 1. PR-OWL main concepts.

Probabilistic Ontologies (PR-OWL) [14 and 15] was proposed as a more
expressive formalism for representing knowledge in domains characterized by
uncertainty. Figure 1 presents the main concepts needed to define an MTheory in PR-
OWL. In the diagram, the ellipses represent the general classes, while the arcs
represent the main relationships among the classes.

The procurement fraud detection probabilistic ontology was built in UnBBayes-
MEBN, a tool for building and reasoning with PR-OWL probabilistic ontologies.
UnBBayes-MEBN was the first software to implement PR-OWL/MEBN (see [16, 17,
18, 19] for more details). UnBBayes-MEBN supports Multi-Entity Bayesian Network
(MEBN) and enables creation and editing of Probabilistic Ontologies in PR-OWL
[18]. The MEBN/PR-OWL Graphical User Interface (GUI) [16] allows users to
define MFrags and make probabilistic queries. UnBBayes-MEBN also implements an
algorithm for generating a Situation Specific Bayesian Network (SSBN) [18, 19],
which is an ordinary BN created by instantiating instances of the MFrags to respond
to a probabilistic query. Once the SSBN is generated, the inference engine
(Reasoning) is called to process findings and update beliefs. UnBBayes-MEBN uses
the Protégé-OWL library to load and save PR-OWL files (IO) in a format compatible
with OWL. It supports first order logic context node evaluation (FOL), through the
use of the PowerLoom library. It also defines and implements a built-in mechanism
for typing and recursion. Finally, it permits the definition of dynamic conditional
probabilistic tables.

UnBBayes has proven to be a simple, yet powerful, tool for designing probabilistic
ontologies and for uncertain reasoning in complex situations such as procurement
fraud detection. It is straightforward to use and provides powerful features (e.g.
dynamic table) not available in systems (e.g., Quiddity) previously employed to
reason with PR-OWL/MEBN knowledge bases.
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3 Procurement Fraud Detection

A major source of corruption is the procurement process. Although laws attempt to
ensure a competitive and fair process, perpetrators find ways to turn the process to
their advantage while appearing to be legitimate. This is why a specialist has
didactically structured the different kinds of procurement frauds CGU has dealt with
in past years.

These different fraud types are characterized by criteria, such as business owners
who work as a front for the company, use of accounting indices that are not common
practice, etc. Indicators have been established to help identify cases of each of these
fraud types. For instance, one principle that must be followed in public procurement is
that of competition. Every public procurement should establish minimum requisites
necessary to guarantee the execution of the contract in order to maximize the number
of participating bidders. Nevertheless, it is common to have a fake competition when
different bidders are, in fact, owned by the same person. This is usually done by
having someone as a front for the enterprise, which is often someone with little or no
education.

The ultimate goal of this case study is to structure the specialist knowledge in a
way that an automated system can reason with the evidence in a manner similar to the
specialist. Such an automated system is intended to support specialists and to help
train new specialists, but not to replace them. Initially, a few simple criteria were
selected as a proof of concept. Nevertheless, it is shown that the model can be
incrementally updated to incorporate new criteria. In this process, it becomes clear
that a number of different sources must be consulted to come up with the necessary
indicators to create new and useful knowledge for decision makers about the
procurements.

()

Public Notices - Data ¥ Design - UnBBayes

Report for Decision Makers Inferénce’="Knowledge

Fig. 2. Procurement fraud detection overview.

Figure 2 presents an overview of the procurement fraud detection process. The data
for our case study represent several requests for proposal and auctions that are issued
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by the Federal, State and Municipal Offices (Public Notices — Data). As the focus of
the work is in representing the specialist knowledge and reasoning through
probabilistic ontologies and not in the collection of information, the idea is that the
analysts that work at CGU, already making audits and inspections, accomplish the
collection of information through questionnaires that can specifically be created for
the collecting of indicators for the selected criteria (Information Gathering). These
questionnaires can be created using a system that is already in production at CGU.
Once they are answered the necessary information is going to be available (DB —
Information). Hence, UnBBayes, using the probabilistic ontology designed by experts
(Design — UnBBayes), will be able to collect these millions of items of information
and transform them into dozens or hundreds of items of knowledge, through logic and
probabilistic inference, e.g. procurement announcements, contracts, reports, etc - a
huge amount of data - are analyzed allowing the gathering of relevant relations and
properties - a large amount of information - which in turn are used to draw some
conclusions about possible irregularities - a smaller number of items of knowledge
(Inference — Knowledge). This knowledge can be filtered so that only the
procurements that show a probability higher than a threshold, e.g. 20%, are
automatically forwarded to the responsible department along with the inferences
about potential fraud and the supporting evidence (Report for Decision Makers).

The criteria selected by the specialist were the use of accounting indices and the
demand of experience in just one contract. There are four common types of indices
that are usually used as requirements in procurements (ILC, ILG, ISG, and IE). Any
other type could indicate a made-up index specifically designed to direct the
procurement to some specific company. The greater the numbers of uncommon
accounting indices used by the procurement the more suspicious it is, i.e. the higher
the chance of having fraud. In addition, a procurement specifies a minimum value for
these accounting indices. The minimum value that is usually required is 1.0. The
higher this minimum value, the more the competition is narrowed, and therefore the
higher the chance the procurement is being directed to some company.

isA(ind,Index_label) isA(proc,Procurement_label) ( IndexProcurement(ind) = proc )
(IndexProcuremenl(ind)) (lndexMinValue(indJ) (IndexType(indJ) (Experienceann[yOneCon(ract(proc))

Fig. 3. ProcurementRequirement MFrag.

The other criterion, demanding proof of experience in only one contract, is suspect
because in almost every case, the experience is not gained only by a particular
contract, but also by doing it over and over again in different contracts. It does not
matter if you have built 1,000 ft2 of wall in just one contract or 100 ft2 in 10 different
contracts. The experience gained will be basically the same.

The procurement fraud detection model was developed as a probabilistic ontology
(using PR-OWL) to define its semantics and uncertain characteristics. The MTheory
created for the model, using UnBBayes-MEBN, was divided into three different
MFrags.



Prob. Ontology and Knowledge Fusion for Procurement Fraud Detection in Brazil 9

The first, Figure 3, presents the criteria required from a company to participate in
the procurement, containing information about the type of accounting index (ILC,
ILG, ISG, IE, and Other) and the minimum value for it (between O and 1, between 1
and 2, between 2 and 3, and greater than 3). This MFrag also contains information
about where a specific index is used (which procurement), and if the procurement
demands experience in only one contract.

isA(ind,Index_label) isA(proc,Procurement_label) ( IndexProcurement(ind) = proc )
\ IndexMinValue(ind) | IndexType(ind)
&

o

( IsProcurementDirectedBylndexes(proc) )

Fig. 4. DirectingProcurementByIndexes MFrag.

The second, Figure 4, represents whether procurement is being directed to a
specific company by the use of unusual accounting indices. As explained before, this
analysis is based on the type of the index and the minimum value it requires. This
evaluation takes into consideration every index used in a specific procurement, hence
it is dynamic.

The last MFrag, Figure 5, represents the overall possibility that procurement is
being directed to a specific company based on the result of its being directed by the
use of unusual indices and by the requirement of experience in only one contract, as

explained before.
isA(proc,Procurement_label)

\IsProcurementDirec(edBylndexes(proc)/ \ExperienceannlyOneContract(proc)/

IsProcurementDirected(proc)

Fig. 5. DirectingProcurement MFrag.

To test the model, two scenarios, that represent the two groups of suspect and non
suspect procurements, were chosen from a set of real cases, as shown:

¢ Suspect procurement (procl):
o indl =ILC >=2.0;
o ind2=ILG>=1.5;
o ind3 = Other >=3.0.
o It demands experience in only one contract.

*  Non suspect procurement (proc2):
o indd=IE>=10;
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o ind5=ILG>=1.0;
o ind6=ILC>=1.0;
o It does not demand experience in only one contract.

The information above was introduced in our model as known entities and
findings. After that we queried the system to give us information about the node
IsProcurementDirected(proc) for both procl and proc2. UnBBayes-MEBN than
executed the SSBN algorithm and generated the same node structure as shown in
Figure 6, because both procurements have three accounting indices and information
about the demanding experience in only one contract. However, as expected, the
parameters and findings are different giving different results to the query, as shown
below:

*  Non suspect procurement:
o 0.01% that the procurement was directed to a specific company by
using accounting indices;
o 0.10% that the procurement was directed to a specific company.
*  Suspect procurement:
o 55.00% that the procurement was directed to a specific company by
using accounting indices;
o 29.77%, when the information about demanding experience in only
one contract was omitted, and 72.00%, when it was given, that the
procurement was directed to a specific company.

IndexType(ind1) | IndexType(ind2) IndexType(ind3)

IsProcurementDirectedBylndexes(procl)

true 55 true 100

false 45 false

absurd Oﬁ
IsProcurementDirected(procl)

false 28
true 72
absu... @

Fig. 6. Generated SSBN for query IsProcurementDirected(procl).

The specialist analyzed and agreed with the knowledge generated by the
probabilistic ontology reasoned developed using PR-OWL/MEBN in UnBBayes. He
stated that the probabilities represent, semantically (i.e. high, medium, and low
chance), what he would think when analyzing the same entities and findings.

Although the SSBNs generated for this proof of concept present the same structure,
it is common to have a different one as the context varies from procurement to
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procurement. For instance, we have come across several procurements that have all
four common indices and some other different ones. In this case, if there are two
additional indices (ind5 and ind6), then the resulting SSBN would have two more
copies for nodes IndexType(index) andIndexMinValue(index). This would make the
use of BN not applicable. The ability to make multiple copies of nodes based on a
context is only available in a more expressive formalism, as MEBN.

IsA(ofc,Office_label) isA(entA,Enterprise_label) isA(ent8,Enterprise_label) ( ProcurementOwner(procA) = ofc ) ( ProcurementOwner(procB) = ofc )
isA(procA,Procurement_label) isA(procB,Procurement_label) ( ProcurementWinner(procA) = entA ) ( ProcurementWinner(procB) = entB )
ISA(bpA,BasicProject_label) | [ isA(objB,Object label) ][ ( ProcurementBasicProject(procA) = bpA) | [ ( ProcurementObject(procB) = obj8 ) (~ (procA = proc8 ) )

\ BasicProjectDerivedFromObject(bpA,objB)

!

(En(erpmsesusmessRe\aunnshlp[en(AA enlﬂ))

Fig. 7. EnterpriseBusinessNetwork MFrag.

An additional capability not available with BN is to specify constraints on
applicability of knowledge. Such constraints can only be implemented in a more
expressive language. As we are dealing with BN formalism it is only natural to think
of a formalism that extends BN. MEBN, as a Bayesian first-order logic, makes it
possible to define these constraints using FOL.

Figure 7 presents the constraints (context nodes) necessary to model the fraud
detection scenarios considered here. In this MFrag, the criterion is to identify if there
is a suspicious business relationship between enterprises entA and entB. The more
cases where enterprise B wins a procurement that the basic project was developed by
enterprise A, the higher the chance they have some kind of personal business
relationship, which means that it is more likely that enterprise B is developing the
basic projects in such a way that will favor enterprise A, inhibiting the desired
competition.

isA(enterp,Enterprise_label) isA(owner,Person_label) ( Owner(enterp) = owner )
HasHouse(owner, enterp) (HasCar(owner, enlerp)) (Educalion(owner, en )//( EnterpriseSize(enlerp))

terp)
_———"‘_—

— .

( IsOwnerFront(enterp, owner) j Owner(enterp)

Fig. 8. OwnerFront MFrag.

Since the designed model is restricted to just two criteria, the team started to think
about other criteria that could be incorporated and tested further. Figure 8 presents the
suggested MFrag for detecting owners that act as a front to the real owner of the
company (the person who really has the power to make decisions and that gets all the
money), by looking up their socio-economic attributes and checking the size of the
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company. In other words, if a company is highly profitable, yet has an owner with
little education, low income, no car, no house, etc, then the company is probably a
front.

audits and inspections
(Procurement) socio-economic
(Person)

criminal history
(Person)

()

Fig. 9. Knowledge fusion from different Government Offices DBs.

From the criteria presented and modeled in this Section, we can clearly see the
need for a principled way of dealing with uncertainty. But what is the role of
Semantic Web in this domain? Well, it is easy to see that our domain of fraud
detection is a RIS environment. The data CGU has available does not come only from
its audits and inspections. In fact, much complementary information can be retrieved
from other Federal Agencies, including Federal Revenue Agency, Federal Police, and
others. Imagine we have information about the enterprise that won the procurement,
and we want to know information about its owners, such as their personal data and
annual income. This type of information is not available at CGU’s Data Base (DB),
but must be retrieved from the Federal Revenue Agency’s DB. Once the information
about the owners is available, it might be useful to check their criminal history. For
that (see Figure 9), information from the Federal Police must be used. In this example,
we have different sources saying different things about the same person: thus, the
AAA slogan applies. Moreover, there might be other Agencies with crucial
information related to our person of interest; in other words, we are operating in an
open world. Finally, to make this sharing and integration process possible, we have to
make sure we are talking about the same person, who may (especially in case of
fraud) be known by different names in different contexts.

5 Conclusion

The problem that CGU and many other Agencies have faced of processing all the
available data into useful knowledge is starting to be solved with the use of
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probabilistic ontologies, as the procurement fraud detection model showed. Besides
fusing the information available, the designed model was able to represent the
specialist knowledge for the two real cases we evaluated. UnBBayes reasoning given
the evidence and using the designed model were accurate both in suspicious and non
suspicious scenarios. These results are encouraging, suggesting that a fuller
development of our proof of concept system is promising.

In addition, it is fairly easy to introduce new criteria and indicators in the model in
an incremental way. Thus, new rules for identifying fraud can be added without
rework. After a new rule is incorporated into the model, a set of new tests can be
added to the previous one with the objective of always validating the new model
proposed, without doing everything from scratch.

Furthermore, the use of this formalism through UnBBayes allows advantages such
as impartiality in the judgment of irregularities in procurements (given the same
conditions the system will always deliver the same result), scalability (capacity to
analyze thousands of procurements in a short time when compared to human
capacity) and a joint analysis of large volumes of indicators (the higher the number of
indicators to examine jointly the more difficult it is for the specialist analysis to be
objective and consistent).

As a next step, CGU is choosing new criteria to be incorporated into the designed
probabilistic ontology. This next set of criteria will require information from different
Brazilian Agencies’ databases. Therefore, the semantic power of ontologies with the
uncertainty handling capability of PR-OWL will be extremely useful for fusing
information from multiple databases.
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Abstract. Extensive research activities are recently directed towards the Semantic
Web as a future form of the Web. Consequently, Web search as the key technology
of the Web is evolving towards some novel form of Semantic Web search. A very
promising recent approach to such Semantic Web search is based on combining stan-
dard Web search with ontological background knowledge and using standard Web
search engines as the main inference motor of Semantic Web search. In this paper,
we propose to further enhance this approach to Semantic Web search by the use of
inductive reasoning techniques. This adds especially the important ability to handle
inconsistencies, noise, and incompleteness, which are very likely to occur in dis-
tributed and heterogeneous environments, such as the Web. We report on a prototype
implementation of the new approach and experimental results.

1 Introduction

Web search [3] as the key technology of the Web is about to change radically with the
development of the Semantic Web [2]. As a consequence, the elaboration of a new search
technology for the Semantic Web, called Semantic Web search [6], is currently an ex-
tremely hot topic, both in Web-related companies and in academic research. In particular,
there is a fast growing number of commercial and academic Semantic Web search en-
gines. The research can be roughly divided into two main directions. The first (and most
common) one is to develop a new form of search for searching the pieces of data and
knowledge that are encoded in the new representation formalisms of the Semantic Web
(e.g., [6]), while the second (and less explored) direction is to use the data and knowledge
of the Semantic Web in order to add some semantics to Web search (e.g., [9]).

A very promising recent representative of the second direction to Semantic Web search
has been presented in [8]. The approach is based on (i) using ontological (unions of) con-
junctive queries (which may contain negated subqueries) as Semantic Web search queries,
(i1) combining standard Web search with ontological background knowledge, (iii) using
the power of Semantic Web formalisms and technologies, and (iv) using standard Web
search engines as the main inference motor of Semantic Web search. It consists of an off-
line ontology compilation step, based on deductive reasoning techniques, and an online
query processing step. In this paper, we propose to further enhance this approach to Se-
mantic Web search by the use of inductive reasoning techniques for the offline ontology
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compilation step. To our knowledge, this is the first combination of Semantic Web search
with inductive reasoning. The paper’s main contributions can be summarized as follows:

— We develop a combination of Semantic Web search as presented in [8] with an induc-
tive reasoning technique (based on similarity search [11] for retrieving the resources
that likely belong to a query concept [5]). The latter serves in an offline ontology
compilation step to compute completed semantic annotations.

— Importantly, the new approach to Semantic Web search can handle inconsistencies,
noise, and incompleteness in Semantic Web knowledge bases, which are all very likely
to occur in distributed and heterogeneous environments, such as the Web. We provide
several examples illustrating this important advantage of the new approach.

— We report on a prototype implementation of the new approach in the context of desktop
search. We also provide very positive experimental results for the precision and the
recall of the new approach, comparing it to the deductive approach in [8].

2 System Overview

The overall architecture of our Semantic Web search system is shown in Fig. 1. It consists
of the Interface, the Query Evaluator, and the Inference Engine (Fig. 1, dark parts), where
the Query Evaluator is implemented on top of standard Web Search Engines. Standard
Web pages and their objects are enriched by Annotation pages, based on an Ontology.

We thus assume that there are semantic annotations to standard Web pages and to ob-
jects on standard Web pages. Note that such annotations are starting to be widely available
for a large class of Web resources, especially with the Web 2.0. Semantic annotations
about Web pages and objects may also be automatically learned from the Web pages and
the objects to be annotated (see, e.g., [4]), and/or they may be extracted from existing on-
tological knowledge bases on the Semantic Web. Another important standard assumption
that we make is that Web pages and their objects have unique identifiers.

For example, in a very simple scenario, a Web page 7; may contain information about a
Ph.D. student 5, called Mary, and two of her papers, namely, a conference paper ¢3 entitled
“Semantic Web search” and a journal paper ¢4 entitled “Semantic Web search engines” and
published in 2008. A simple HTML page representing this scenario is shown in Fig. 2,
left side. There may now exist one semantic annotation each for the Web page, the Ph.D.
student Mary, the journal paper, and the conference paper. The annotation for the Web
page may simply encode that it mentions Mary and the two papers, while the one for Mary
may encode that she is a Ph.D. student with the name Mary and the author of the papers
i3 and i4. The annotation for the paper i3 may encode that i3 is a conference paper and
has the title “Semantic Web search”, while the one for the paper ¢4 may encode that i4
is a journal paper, authored by Mary, has the title “Semantic Web search engines”, was
published in 2008, and has the keyword “RDF”. The semantic annotations of i1, i, i3,
and 74 are formally expressed as the sets of axioms A;,, A;,, A;,, and A;,, respectively:

A, ={contains(i1, i2), contains (i1, i3), contains(i1,4) },

Ai, = {PhDStudent(i2), name(iz2, “mary”), isAuthorOf(iz,i3), isAuthorOf(iz,i4)},

A, = {ConferencePaper(is), title(is, “Semantic Web search”)}, (1)

Ai, ={JournalPaper(is), hasAuthor(is,i2), title(ia, “Semantic Web search engines”),
yearOfPublication(is, 2008), keyword(is, “RDF”)}.

Inference Engine. Using an ontology containing some background knowledge, these
semantic annotations are then further enhanced in an offline ontology compilation step,
where the Inference Engine adds all properties that can be deduced from the semantic
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Fig. 2. Left side: HTML page p; right side: four HTML pages p1, p2, p3, and pa, which encode
(completed) semantic annotations for p and the objects on p.

annotations and the ontology. In [8], we assume a deductive such step, while here we pro-
pose and explore an inductive one. The resulting (completed) semantic annotations are then
published as Web pages, so that they can be searched by standard Web search engines. For
example, an ontology may contain the knowledge that (i) conference and journal papers
are articles, (ii) conference papers are not journal papers, (iii) isAuthorOf relates scien-
tists and articles, (iv) isAuthorOf is the inverse of hasAuthor, and (v) hasFirstAuthor is a
functional binary relationship, which is formally expressed by:

ConferencePaper C Article, JournalPaper T Article, ConferencePaper C —JournalPaper,
disAuthorOf T Scientist, JisAuthorOf — C Article, isAuthorOf — C hasAuthor,
hasAuthor™ C isAuthorOf, (funct hasFirstAuthor).

(@3]

Using this ontological knowledge, we can derive from the above annotations that the two
papers 3 and 44 are also articles, and both authored by John. These resulting searchable
(completed) semantic annotations of (objects on) standard Web pages are published as
HTML Web pages with pointers to the respective object pages, so that they (in addition
to the standard Web pages) can be searched by standard search engines. For example, the
HTML pages for the completed semantic annotations of the above A; , A;,, A;,, and A;,
are shown in Fig. 2, right side. Note that on the HTML page of each individual, its identifier
is located beside the atomic concept below the row specifying the URIs. Practically, such
an identifier may simply be the HTML address of the Web page/object’s annotation page.
For example, considering the HTML pages of Fig. 2, the individual described by py is iy,
and the one described by p, is i2. Observe that we use a plain textual representation of
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the completed semantic annotations in order to allow their processing by existing standard
search engines for the Web. It is important to point out that this textual representation
is simply a list of properties, each eventually along with an identifier or a data value as
attribute value, and it can thus immediately be encoded as a list of RDF triples.

Query Evaluator. The Query Evaluator (see Fig. 1) reduces each Semantic Web search
query of the user in an online query processing step to a sequence of standard Web search
queries on standard Web and annotation pages, which are then processed by a standard
Web Search Engine. The Query Evaluator also collects the results and re-transforms them
into a single answer which is returned to the user. As an example of a Semantic Web search
query, one may ask for all Ph.D. students who have published an article in 2008 with RDF
as a keyword, which is formally expressed as follows:

Q(z) =3y (PhDStudent(x) A isAuthorOf(z,y) A Article(y) A
yearOfPublication(y, 2008) A keyword(y, “RDF ™)) .

This query is transformed into the two queries ()1 = PhDStudent AND isAuthorOf and
Q2 = Article AND “yearOfPublication 2008” AND “keyword RDF”, which can both be
submitted to a standard Web search engine, such as Google. The result of the original
query ( is then built from the results of the two queries ()1 and Q2. Note that a graphical
user interface, such as the one of Google’s advanced search, or even a natural language
interface can help to hide the conceptual complexity of ontological queries to the user.

3 Semantic Web Search

We now introduce Semantic Web knowledge bases and the syntax and semantics of Se-
mantic Web search queries to such knowledge bases. We then generalize the PageRank
technique to our approach. We assume the reader is familiar with the syntax and the se-
mantics of Description Logics (DLs) [1], which we use as underlying ontology languages.

Semantic Web Knowledge Bases. Intuitively, a Semantic Web knowledge base consists
of a background TBox and a collection of ABoxes, one for every concrete Web page
and for every object on a Web page. For example, the homepage of a scientist may be
such a concrete Web page and be associated with an ABox, while the publications on the
homepage may be such objects, which are also associated with one ABox each.

We assume pairwise disjoint sets D, A, R 4, Rp, I, and V of atomic datatypes, atomic
concepts, atomic roles, atomic attributes, individuals, and data values, respectively. Let I
be the disjoint union of two sets P and O of Web pages and Web objects, respectively.
Informally, every p € P is an identifier for a concrete Web page, while every o€ O is
an identifier for a concrete object on a concrete Web page. We assume the atomic roles
links_to between Web pages and contains between Web pages and Web objects. The former
represents the link structure between concrete Web pages, while the latter encodes the
occurrences of concrete Web objects on concrete Web pages.

Definition 1. A semantic annotation A, for a Web page or object a € P U O is a finite
set of concept membership axioms A(a), role membership axioms P(a,b), and attribute
membership axioms U (a,v), where A€ A, PER4,U€Rp,bel,andv € V. A Seman-
tic Web knowledge base KB = (T, (Ag)q e Puo) consists of a TBox 7 and one semantic
annotation A, for every Web page and object a € P U O.
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Informally, a Semantic Web knowledge base consists of some background terminolog-
ical knowledge and some assertional knowledge for every concrete Web page and for every
concrete object on a Web page. The background terminological knowledge may be an on-
tology from some global Semantic Web repository or an ontology defined locally by the
user site. In contrast to the background terminological knowledge, the assertional knowl-
edge will be directly stored on the Web (on annotation pages like the described standard
Web pages) and is thus accessible via Web search engines.

Example 1. (Scientific Database). We use a DL knowledge base KB = (7, .A) to spec-
ify some simple information about scientists and their publications. The sets of atomic
concepts, atomic roles, atomic attributes, and data values are:

A = {Scientist, Article, ConferencePaper, JournalPaper},
R4 = {hasAuthor, isAuthorOf, contains}, Rp = {name, title, yearOfPublication},
V = {“mary”, “Semantic Web search”, 2008, “Semantic Web search engines” }.

Let I = P U O be the set of individuals, where P = {i; } is the set of Web pages, and O =
{i2,13,14} is the set of Web objects on the Web page i1. The TBox 7 contains the axioms
in Eq. 2. Then, a Semantic Web knowledge base is given by KB = (7, (As)ac PUO)>
where the semantic annotations of the individuals in P U O are the ones in Eq. 1.

Semantic Web Search Queries. We use unions of conjunctive queries with negated con-
junctive subqueries as Semantic Web search queries to Semantic Web knowledge bases.
We now first define the syntax of Semantic Web search queries and then the semantics of
positive and general such queries.

Syntax. Let X be a finite set of variables. A ferm is either a Web page p € P, a Web object
0 € 0, a data value v € V, or a variable « € X. An atomic formula (or atom) « is of one
of the following forms: (i) d(t), where d is an atomic datatype, and ¢ is a term; (i) A(t),
where A is an atomic concept, and ¢t is a term; (iii) P(t,t’), where P is an atomic role,
and ¢, ¢’ are terms; and (iv) U (¢, t’), where U is an atomic attribute, and ¢, ¢’ are terms. An
equality has the form =(¢t,t'), where ¢ and ' are terms. A conjunctive formula Jy ¢(X,y)
is an existentially quantified conjunction of atoms « and equalities =(¢,t’), which have
free variables among x and y.

Definition 2. A Semantic Web search query Q(x) is an expression \/\_; Jy; ¢:(X,y:),
where each ¢; withi € {1,...,n} is a conjunction of atoms « (also called positive atoms),
negated conjunctive formulas not ), and equalities =(¢,t'), which have free variables
among x and y;, and the x’s are exactly the free variables of \/"_, Jy; ¢;(x, y:).

Intuitively, Semantic Web search queries are unions of conjunctive queries, which may
contain negated conjunctive queries in addition to atoms and equalities as conjuncts.

Example 2. (Scientific Database cont’d). Two Semantic Web search queries are:

Q1(z) = (Scientist(x) A not doctoralDegree(x, “oxford university” ) A\ worksFor(z,
“oxford university”)) V (Scientist(z) A doctoralDegree(x, “oxford university”) A
not worksFor(z, “oxford university”));

Q2(x) =3y (Scientist(x) N worksFor(zx, “oxford university”) A isAuthorOf(z, y) A\
not ConferencePaper(y) A not 3z yearOfPublication(y, z)).

Informally, Q1 (z) asks for scientists who are either working for oxford university and did
not receive their Ph.D. from that university, or who received their Ph.D. from oxford uni-
versity but do not work for it. Whereas query Q2 () asks for scientists of oxford university
who are authors of at least one unpublished non-conference paper. Note that when search-
ing for scientists, the system automatically searches for all subconcepts (known according
to the background ontology), such as e.g. Ph.D. students or computer scientists.
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Semantics of Positive Search Queries. We now define the semantics of positive Semantic
Web search queries, which are free of negations, in terms of ground substitutions via the
notion of logical consequence.

A search query Q(x) is positive iff it contains no negated conjunctive subqueries. A
(variable) substitution @ maps variables from X to terms. A substitution 6 is ground iff it
maps to Web pages p € P, Web objects o € O, and data values v € V. A closed first-order
formula ¢ is a logical consequence of a knowledge base KB = (7, (A,)acpuo), denoted
KB = ¢, iff every first-order model Z of 7 U | J,cp o Aa also satisfies ¢.

Definition 3. Given a Semantic Web knowledge base KB and a positive Semantic Web
search query Q(x), an answer for Q(x) to KB is a ground substitution 6 for the variables x
(which are exactly the free variables of Q(x)) with KB = Q(x6).

Example 3. (Scientific Database cont’d). Consider the Semantic Web knowledge base KB
of Example 1 and the following positive Semantic Web search query, asking for all scien-
tists who author at least one published journal paper:

Q(x) =Jy (Scientist(x) N isAuthorOf(x,y) A JournalPaper(y) A 3z yearOfPublication(y, z)).

An answer for Q(x) to KB is § = {x/ia}. Recall that i represents the scientist Mary.

Semantics of General Search Queries. We next define the semantics of general Se-
mantic Web search queries by reduction to the semantics of positive ones, interpreting
negated conjunctive subqueries not v as the lack of evidence about the truth of . That is,
negations are interpreted by a closed-world semantics on top of the open-world semantics
of DLs (we refer to [8] for more motivation and background).

Definition 4. Given a Semantic Web knowledge base KB and search query
Q(x)=Vi, Iyi i 1(X,¥:) A+ A i, (X,¥i) A not ¢, +1(X,y3) A Anot gim, (X,¥3)

an answer for Q(x) to KB is a ground substitution 6 for the variables x such that KB =
QT (x0) and KB [~ Q~ (x0), where Q*(x) and Q™ (x) are defined as follows:

QY (x)=Vi_, Jyidia(x,yi) A+ A iy, (x,y:) and
QT (x)=V13idir1(x,yi) A ANdit, (X, 570) A(Dit;41(X%, 7)) VooV dim, (X,54)) -

Roughly, a ground substitution @ is an answer for Q(x) to KB iff (i) 6 is an answer for
Q7 (x) to KB, and (ii) € is not an answer for Q~ (x) to KB, where Q" (x) is the positive
part of Q(x), while Q~ (x) is the positive part of )(x) combined with the complement of
the negative one. Observe that both Q7 (x) and Q™ (x) are positive queries.

Example 4. (Scientific Database cont’d). Consider the Semantic Web knowledge base
KB =(T,(As)acpuo) of Example 1 and the following general Semantic Web search
query, asking for Mary’s unpublished non-journal papers:

Q(x) =y (Article(x) N hasAuthor(z,y) A name(y, “mary”) A not JournalPaper(x) A
not 3z yearOfPublication(x, z)).

An answer for Q(z) to KB is given by § = {x/i3}. Recall that i3 represents an unpub-
lished conference paper entitled “Semantic Web search”. Observe that the membership
axioms Article(i3) and hasAuthor(is, i3) do not appear in the semantic annotations .4,
with a € P U O, but they can be inferred from them using the background ontology 7.
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Ranking Answers. As for the ranking of all answers for a Semantic Web search query
@ to a Semantic Web knowledge base KB (i.e., ground substitutions for all free variables
in @, which correspond to tuples of Web pages, Web objects, and data values), we use a
generalization of the PageRank technique: rather than considering only Web pages and the
link structure between Web pages (expressed through the role /inks_to here), we also con-
sider Web objects, which may occur on Web pages (expressed through the role contains),
and which may also be related to other Web objects via other roles. More concretely, we
define the ObjectRank of a Web page or an object a as follows:

R(a)=d-3 yep, R()/No+ (1 —d)- E(a),

where (i) B, is the set of all Web pages and Web objects that relate to a, (ii)) N, is the
number of Web pages and Web objects that relate from b, (iii) d is a damping factor, and
(iv) E associates with every Web page and every Web object a source of rank.

4 Deductive Offline Ontology Compilation

In this section, we describe the (deductive) offline ontology reasoning step, which com-
piles the implicit terminological knowledge in the TBox of a Semantic Web knowledge
base into explicit membership axioms in the ABox, i.e., in the semantic annotations of
Web pages / objects, so that it (in addition to the standard Web pages) can be searched by
standard Web search engines. For the online query processing step, see [8].

The compilation of TBox knowledge into ABox knowledge is formalized as follows.
Given a satisfiable Semantic Web knowledge base KB = (7, (A4)acpuo), the simple
completion of KB is the Semantic Web knowledge base KB’ = (), (A, )acpuo) such
that every A, is the set of all concept memberships A(a), role memberships P(a, b), and
attribute memberships U (a, v) that logically follow from 7 U | J,cp o Aq, Where A € A,
PeRy,UeRp,bel, and v € V. Informally, for every Web page and object, the simple
completion collects all available and deducible facts (whose predicate symbols shall be
usable in search queries) in a completed semantic annotation.

Example 5. Consider the TBox 7 of Example 1 and the semantic annotations (A, ). ¢ PUO
of Example 1. The simple completion contains in particular the new axioms Article(is),
hasAuthor(is, i2), and Article(iy). The first two are added to A;, and the last one to 4, .

As shown in [8], general quantifier-free search queries to a Semantic Web knowledge
base KB over DL-Lite 4 [10] as underlying DL can be evaluated on the simple completion
of KB (which contains only compiled but no explicit TBox knowledge anymore). Similar
results hold when the TBox of KB is equivalent to a Datalog program, and the query is
fully general. Hence, the simple completion assures (i) always a sound query processing
and (ii) a complete query processing in many cases. For this reason, and since complete-
ness of query processing is actually not that much an issue in the inherently incomplete
Web, we propose to use the simple completion as the basis of our Semantic Web search.

Once the completed semantic annotations are computed, we encode them as HTML
pages, so that they are searchable via standard keyword search. Specifically, we build
one HTML page for the semantic annotation .4, of each individual a € P U O. That is, for
each individual a, we build a page p containing all the atomic concepts whose argument
is a and all the atomic roles/attributes where the first argument is a (see Section 2).

5 Inductive Offline Ontology Compilation

We now describe an inductive inference based on similarity search, which we propose
to use instead of deductive inference for offline ontology compilation in our approach to
Semantic Web search. Section 6 then summarizes the central advantages of this proposal.
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Inductive Inference Based on Similarity Search. In similarity search [11], the basic
idea is to find the most similar object(s) to a query object (i.e., the one to be classified)
with respect to a similarity (or dissimilarity) measure. We review the basics of the k-
nearest-neighbor (k-NN) method applied to the Semantic Web context [5]. The objective
is to induce an approximation for a discrete-valued target hypothesis function h: IS — V'
from a space of instances IS to a set of values V' = {vy,...,v,} standing for the classes
(concepts) that have to be predicted. Let =, be the query instance whose class-membership
is to be determined. Using a dissimilarity measure, the set of the k-nearest (pre-classified)
training instances relative to z, is selected: NN (z,) = {z1,...,2;}. Hence, the k-NN
algorithm approximates h for classifying x, on the grounds of the value that & is known to
assume for the training instances in NN (z,). Precisely, the value is decided by means of a
weighted majority voting procedure: it is the most voted value by the instances in NN (z,)
weighted by the similarity of the neighbor individual. The estimate of the hypothesis func-
tion for the query individual is:

k
h(z,) = argmax Z w;d(v, h(z;)), 3)

veV i=1

where ¢ returns 1 in case of matching arguments and O otherwise, and, given a dissimilarity
measure d, the weights w; are determined by w; = 1/d(x;, ).

Observe that this setting assigns to the query instance x, a value, which stands for
one in a set of pairwise disjoint concepts (corresponding to the value set V). In a multi-
relational setting, as those of the Semantic Web (SW) context, this assumption cannot be
made in general, since it is well known that an individual may be an instance of more
than one concept. The problem is also related to the closed-world assumption (CWA)
usually made in the knowledge discovery context. To deal with the open-world assump-
tion (OWA), generally adopted for the SW representations, the absence of information on
whether a training instance x belongs to the extension of a query concept () should not be
interpreted negatively, as in the standard settings which adopt the CWA, rather, it should
count as neutral (uncertain) information. Assuming this alternate viewpoint, the multi-
class classification problem is transformed into a ternary one and the V' = {+1,—1,0}
value set is adopted for the classification of an individual with respect to a query concept
@ and where the three values denote, respectively, membership, non-membership, and un-
certainty. Hence, the task is cast as follows: given a query concept (), determine the mem-
bership of an instance z, through the NN procedure (see Eq. 3) where V = {—1,0,+1}
and the hypothesis function values for the training instances are determined as:

11 KEQW
hg(x) = { -1 KE -Q(z)

0 otherwise.

That is, the value of hg for the training instances is determined by logical entailment (de-
noted =) of the corresponding assertion from the knowledge base. Alternatively, a look-up
in the ABox of the knowledge base could be considered, thus obtaining a classification
process less complex but also possibly less accurate.

For measuring the similarity between individuals, a totally semantic and language in-
dependent family of dissimilarity measures has been used [5]. It is based on the idea of
comparing the semantics of the input individuals along a number of dimensions repre-
sented by a committee of concept descriptions, say F = {Fy, Fs, ..., F,,, }, which stands
as a group of discriminating features expressed in the OWL-DL sub-language taken into
account. It is formally defined as follows [5]:
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Definition 5 (family of measures). Let KB = (7, A) be a knowledge base. Given a set
of concept descriptions F = {Fy, Fy, ..., F,, }, corresponding weights wy, . . . , Wy, and
p > 0, a family of dissimilarity functions d;} : Ind(A) x Ind(A) — [0, 1] is defined by:

F Y/
1
Va,b € Ind(A):  df(a,b) = T > wi | 8i(ab) P|
i=1
where the dissimilarity function d; (¢ € {1,...,m}) is defined as follows:

0 Fl(a) EA/\FZ(b) cA
1 Fl(a) G.A/\—‘Fi(b) € Aor
‘\Fi((l) c A A Fl(b) S A
1/2 otherwise.

Va,b € Ind(A):  §;(a,b) =

An alternative definition for the projections requires the entailment of an assertion
(instance-checking) rather than the simple ABox look-up; this can make the measure more
accurate yet more complex to compute. Moreover, using instance checking, induction is
performed on top of deduction, thus making it a kind of completion of deductive reasoning.

As for the weights w; employed in the family of measures, they should reflect the
impact of the single feature concept F; relative to the overall dissimilarity. This is de-
termined by the quantity of information conveyed by a feature, which is measured as its
entropy. Namely, the extension of a feature Fj relative to the whole domain of objects may
be probabilistically quantified as Pp, = |F;”|/|A?| (relative to the canonical interpreta-
tion 7). This can be roughly approximated by |retrieval(F;)|/|Ind(.A)|. Hence, considering
also the probability P-r, related to its negation and the one related to the unclassified in-
dividuals (relative to Fj), denoted P, we may give an entropic measure for the feature:

H(F;) = — (Pr, log(Pr,) + P-F, log(P-F,) + Py log(Py)) .

The measures strongly depend on F. Here, we make the assumption that the feature-set
F represents a sufficient number of (possibly redundant) features that are able to discrim-
inate really different individuals. However, an optimal discriminating feature set could be
learned [7]. Experimentally, we obtained good results by using the very set of both primi-
tive and defined concepts found in the knowledge base [5].

Measuring the Likelihood of an Answer. The inductive inference made by the proce-
dure shown above is not guaranteed to be deductively valid. Indeed, inductive inference
naturally yields a certain degree of uncertainty. So, from a more general perspective, the
main idea behind the above inductive inference for Semantic Web search is closely re-
lated to the idea of using probabilistic ontologies to increase the precision and the recall of
querying databases and of information retrieval in general. But, rather than learning prob-
abilistic ontologies from data, representing probabilistic ontologies, and reasoning with
probabilistic ontologies, we directly use the data in the inductive inference step.

In order to measure the likelihood of the decision made by the inductive procedure
(individual x, belongs to the query concept denoted by value v maximizing the argmax
argument in Eq. 3), given the k-nearest training individuals in NN (z,) = {z1,..., s},
the quantity that determined the decision should be normalized by dividing it by the sum of
such arguments over the (three) possible values:

k
Hclass(xg) = 0| NN (1)) = —2=i=1 el ov, ha(@:)) @)
Dowev 2oizt Wi 6(v', hg (@)
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Hence, the likelihood of the assertion Q(z,) corresponds to the case when v = +1.
The computed likelihood can be used for building a probabilistic ABox (which is a collec-
tion of pairs, each consisting of a classical ABox axiom and a probability value).

6 Inconsistencies, Noise, and Incompleteness

In this section, we illustrate the main advantages of using inductive reasoning in Seman-
tic Web search, namely, that inductive reasoning (differently from deductive reasoning)
can handle inconsistencies, noise, and incompleteness in Semantic Web knowledge bases,
which are all very likely to occur when knowledge bases are stored in a distributed and
heterogeneous fashion, like on the Web.

Inconsistencies. Since our inductive method is based on the majority vote of the individ-
uals in the neighborhood, it may be able to give a correct classification even in the case of
inconsistent knowledge bases. This aspect is illustrated by the following example.

Example 6. Consider the description logic knowledge base KB = (7, .A) that consists of
the following TBox 7 and ABox A:

T ={Man = Male N Human; Professor = Person M JabilitatedTo.Teaching M
disSupervisorOf.PhDThesis 1M Researcher; Researcher = GraduatePerson
IworksFor.Researchinstitute 1 —JisSupervisorOf.PhDThesis; . . .} ;

A = {Professor(Franz); isSupervisorOf(Franz, DLThesis); Professor(John);
isSupervisorOf(John, RoboticsThesis); Professor(Flo); isSupervisorOf(Flo, MLThesis);
Researcher(Nick); Researcher(Ann); isSupervisorOf(Nick, SWThesis); ...} .

Actually, Nick is a Professor, indeed, he is the supervisor of a PhD thesis in .4. However,
by human mistake, he is asserted to be a Researcher in A, and by the axiom for Researcher
in 7, he cannot be the supervisor of any PhD thesis. Hence, KB is inconsistent, and thus a
deductive reasoner cannot answer whether Nick is a Professor or not (since everything can
be deduced from an inconsistent knowledge base). On the contrary, by inductive reasoning,
it is highly probable that the returned classification result is that Nick is an instance of
Professor. This is because the most similar individuals are Franz, John, and Flo, and all of
them vote for the concept Professor.

Noise. Inductive reasoning may also be able to give a correct classification in the presence
of noise in a knowledge base (containing, e.g., incorrect concept and/or role membership
assertions), which is illustrated by the following example.

Example 7. Consider the description logic knowledge base KB = (7’,.A), where the
ABox A is as in Example 6 and the TBox 7" is obtained from the TBox 7 of Example 6
by replacing the axiom for Researcher by the following axiom:

Researcher = GraduatePerson I IworksFor.Researchilnstitute .

Again, Nick is actually a Professor, but by human mistake asserted to be a Researcher
in KB. But due to the slightly modified axiom for Researcher, there is no inconsistency
in KB anymore. By deductive reasoning, however, Nick turns out to be a Researcher,
whereas by inductive reasoning, it is highly probable that the returned classification result
is that Nick is an instance of Professor, as above, because the most similar individuals are
Franz, John, and Flo, and all of them vote for the concept Professor.
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Incompleteness. Clearly, inductive reasoning may also be able to give a correct classifi-
cation in the presence of incompleteness in a knowledge base. That is, inductive reasoning
is not necessarily deductively valid, and may produce new knowledge.

Example 8. Consider the description logic knowledge base KB = (7', A'), where the
TBox 7’ is as in Example 7 and the ABox .4’ is obtained from the ABox .A of Exam-
ple 6 by removing the axiom Researcher(Nick). Then, the resulting knowledge base is
neither inconsistent nor noisy, but it is now incomplete. Nonetheless, by the same line of
argumentation as in Examples 6 and 7, it is highly probable that the classification result by
inductive reasoning is that Nick is an instance of Professor.

7 Implementation and Experiments

In this section, we describe our prototype implementation for a semantic desktop search
engine. Furthermore, we report on very positive experimental results on the precision and
the recall under inductively vs. deductively completed semantic annotations.

Implementation. We have implemented a prototype for a semantic desktop search en-
gine. We have realized both a deductive and an inductive version of the offline inference
step for generating the completed semantic annotation for every considered resource. The
deductive version uses PELLET!, while the inductive one is based on the k-NN technique,
integrated with an entropic measure, as proposed in Section 5. Specifically, each individ-
ual ¢ of a Semantic Web knowledge base is classified relative to all atomic concepts and
all restrictions 3R~ .{i} with roles R. The parameter k was set to log(|Ind(.A)|), where
Ind(.A) stands for all individuals in the knowledge base. The simpler distances df were
employed, using all the atomic concepts in the knowledge base for determining the set F.

Precision and Recall of Inductive Semantic Web Search. We next give an experimental
comparison between Semantic Web search under inductive and under deductive reason-
ing. We do this by providing the precision and the recall of the latter vs. the former. Our
experimental results with queries relative to the FINITE-STATE-MACHINE (FSM) and
the SURFACE-WATER-MODEL (SWM) ontology from the Protégé Ontology Library? are
summarized in Table 1. For example, Query (8) asks for all transitions having no target
state, while Query (16) asks for all numerical models having either the domain “lake” and
public availability, or the domain “coastalArea” and commercial availability. The experi-
mental results in Table 1 essentially show that the answer sets under inductive reasoning
are very close to the ones under deductive reasoning.

8 Summary and Outlook

We have presented a combination of Semantic Web search as presented in [8] with an in-
ductive reasoning technique, based on similarity search [11] for retrieving the resources
that likely belong to a query concept [5]. As a crucial advantage, the new approach to Se-
mantic Web search allows for handling inconsistencies, noise, and incompleteness, which
are very likely in distributed and heterogeneous environments, such as the Web. We have
also reported on a prototype implementation and very positive experimental results on the
precision and the recall of the new inductive approach to Semantic Web search.

! http://www.mindswap.org
2 http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
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Table 1. Precision and recall of inductive vs. deductive Semantic Web search.

Onto- Query No. Results No. Results No. Correct Results Precision ~ Recall
logy Deduction  Induction Induction Induction Induction
T FSM Swte(z) I T I I T
2 FSM StateMachineElement(x) 37 37 37 1 1
3 FSM  Composite(z) A hasStateMachineElement(z, accountDetails) 1 1 1 1 1
4 FSM  State(y) A StateMachineElement(x) A hasStateMachineElement(x, y) 3 3 3 1 1
5 FSM Action(zx) V Guard(z) 12 12 12 1 1
6 FSM 3y, z (State(y) A State(z) A Transition(x) A source(z,y) A target(x, z)) 11 2 2 1 0.18
7 FSM  StateMachineElement(x) A not 3y (StateMachineElement(y) A
hasStateMachineElement(x, y)) 34 34 34 1 1
8 FSM Transition(x) A not 3y (State(y) A target(z,y)) 0 5 0 0 1
9 FSM 3y (StateMachineElement(x) A not hasStateMachineElement(x,
accountDetails) N hasStateMachineElement(x, y) A State(y)) 2 2 2 1 1
10 SWM Model(z) 56 56 56 1 1
11 SWM Mathematical(z) 64 64 64 1 1
12 SWM  Model(x) A hasDomain(x, lake) A hasDomain(z, river) 9 9 9 1 1
13 SWM  Model(x) A not 3y (Availability(y) A hasAvailability(z, y)) 11 11 11 1 1
14 SWM Model(x) A hasDomain(z, river) A not hasAvailability(x, public) 2 8 0 0 0
1 1

15 SWM 3y (Model(z) A hasDeveloper(z, y) A University(y)) 1 1 1
16 SWM  Numerical(xz) A hasDomain(x, lake) A hasAvailability(z, public)V

Numerical(z) A hasDomain(z, coastalArea) A

hasAvailability(x, commercial) 12 9 9 1 0.75

In the future, we aim especially at extending the desktop implementation to a real Web
implementation, using existing search engines, such as Google. Another interesting topic is
to explore how search expressions that are formulated as plain natural language sentences
can be translated into the ontological conjunctive queries of our approach. It would also
be interesting to investigate the use of probabilistic ontologies rather than classical ones.
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Abstract. In the line of our investigation on inductive methods for
Semantic Web reasoning, we propose an alternative way for approxi-
mate ABox reasoning based on the analogical principle of the nearest-
neighbors. Once neighbors of a test individual are selected, a combination
rule descending from the Dempster-Shafer theory can join together the
evidence provided by the neighbor individuals. We show how to exploit
the procedure for determining unknown class- and role-memberships or
fillers for datatype properties which may be the basis for many further
ABox inductive reasoning algorithms.

1 Introduction

In the context of reasoning in the Semantic Web (SW), a growing interest is
being committed to alternative procedures extending the standard methods so
that they can deal with the various facets of uncertainty related with Web rea-
soning [1]. Extensions of the classic probability measures [2] offer alternative
ways to deal with inherent uncertainty of the knowledge bases (KBs) in the SW.
Particularly, belief and plausibility measures adopted in the Dempster-Shafer
Theory of Evidence [3] have been exploited as means for dealing with incom-
pleteness [4] and also inconsistency [5], which may arise from the aggregation of
data and metadata on a large and distributed scale. In this work we undertake
again the inductive point of view. Indeed, in many SW domains a very large
number of assertions can potentially be true but often only a small number of
them is known to be true or can be inferred to be true. So far the application
of combination rules related to the Dempster-Shafer theory has concerned the
induction of metrics which are essential for all similarity-based reasoning meth-
ods [4]. One of the applications of such measures was related to the prediction of
assertions through nearest neighbor procedures. Recently a general-purpose ev-
idential nearest neighbor procedure based on the Dempster-Shafer combination
rule has been proposed [6]. In this work this method is extended to the specific
case of semantic KBs through a more epistemically appropriate combination pro-
cedure [7]. In the perspective of inductive methods, the need for a definition of a
semantic similarity measure for individuals arises, that is a problem that so far
received less attention in the literature compared to the measures for concepts.
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Recently proposed dissimilarity measures for individuals in specific languages
founded in Description Logics [8] turned out to be practically effective for the
targeted inductive tasks [9], however they are still based on structural criteria
so that they can hardly scale to more complex languages. We devised families of
dissimilarity measures for semantically annotated resources, which can overcome
the aforementioned limitations [10, 11]. Our measures are mainly based on the
Minkowski’s norms for Euclidean spaces induced by means of a method devel-
oped in the context of relational machine learning [12]. Namely, the measures
are based on the degree of discernibility of the input individuals with respect to
a given context [13] (or committee of features), which are represented by concept
descriptions expressed in the language of choice.

The main contributions of this work regard the extension of a framework for
the classification of individuals through a prediction procedure based on evidence
theory and similarity. In particular we propose using Yager’s rule of combina-
tion and exploiting the mentioned families of metrics defined for individuals in
ontologies. This allows for measuring the confirmation of the truth of candidate
assertions. The prediction of the values (related to class-membership or datatype
and object properties) may have plenty of applications in uncertainty reasoning
with ontologies.

The remainder of the paper is organized as follows. In the next section (§2),
distance measures that shall be utilized for selecting neighbor individuals are
introduced. Then (§3), the basics of the Dempster-Shafer theory and a nearest-
neighbor procedure based on an alternative rule of combination are recalled.
Hence (§4) we present the applications of the method to the problems of de-
termining the class- or role-membership of individuals w.r.t. given query con-
cepts / roles as well as the prediction of fillers for datatype properties. Relevant
related work are discussed in (§5) and we conclude (§6) proposing extensions
and applications of these methods in further works.

2 Dissimilarity Measures for Individuals

Since the reasoning method to be presented in the following is intended to be
general purpose, no specific language will be assumed in the following for re-
sources, concepts (classes) and their properties. It suffices to consider a generic
representation that can be mapped to some Description Logic language with the
standard model-theoretic semantics (see [8] for a thorough reference).

A knowledge base K = (T, A) comprises a TBox 7 and an ABox A. T
is a set of axioms concerning the (partial) definition of concepts (and roles)
through class (role) expressions. A contains assertions (ground facts) concerning
the world state. The set of the individuals occurring in A will be denoted with
Ind(A). Each individual can be assumed to be identified by its own URI (it is
useful in this context to make the unique names assumption).

Similarity-based tasks, such as individual classification, retrieval, and clus-
tering require language-independent measures for individuals whose definition
can capture semantic aspects of their occurrence in the knowledge base [10, 11].
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For our purposes, we need functions to assess the similarity of individuals.
However individuals do not have an explicit syntactic (or algebraic) structure
that can be compared (unless one resorts to language-specific notions [9], such
as the most specific concept [8]). Focusing on the semantic level, the leading
idea may be that, similar individuals should behave similarly w.r.t. the same
concepts. A way for assessing the similarity of individuals in a knowledge base
can be based on the comparison of their semantics along a number of dimen-
sions represented by a set of concept descriptions (henceforth referred to as the
committee or context [13]). Specifically, the measure may compare individuals on
the grounds of their behavior w.r.t. a given context, say C = {C1,Cy,...,Cp},
which stands as a group of discriminating relevant concepts (features) expressed
in the considered language. We begin with defining the behavior of an individ-
ual w.r.t. a certain concept in terms of projecting it in this dimension: Given a

concept C; € C, the related projection function m; : Ind(A) — {0, 1,1} is defined:

1 KECi(a)
Va € Ind(A) mi(a) =< 0 K= -Ci(a)
% otherwise
The case of m;(a) = % corresponds to the case when a reasoner cannot give

the truth value for a certain membership query. This is due to the Open World
Assumption normally made in Semantic Web reasoning. Hence, as in the classic
probabilistic models, uncertainty may be coped with by considering a uniform
distribution over the possible cases. Further ways to approximate these values
in case of uncertainty are investigated in [4].

The discernibility functions related to the context w.r.t. which two input in-
dividuals are compared are defined as follows. Given a feature concept C; € C,
the related discernibility function 0; : Ind(A) x Ind(A) — [0, 1] is defined as:

V(a,b) € Ind(A) x Ind(A) di(a,b) = |mi(a) — m;(b)]

The discernibility function §; assigns 0 if the two individuals @ and b have the
same behavior w.r.t. C;, that is if they are both instance of C; or both instance
of =C; or nothing is known about this. This is because, if a and b have the same
bahavior w.r.t. C; then there are no other information for discriminating them.

Finally, a family of dissimilarity measures for individuals that is inspired to
the Minkowski’s metrics can be defined [10,11]: Let K = (7, A) be a knowledge
base. Given a context C and a related vector of weights w, a family of dissimi-
larity measures {dS}pen, dS : Ind(A) x Ind(A) — [0,1] is defined as follows:

P
V(a,b) € Ind(A) x Ind(4)  dS(a,b) = [Z w;6i(a, b)p]
C;eC
The effect of the weights! is to normalize w.r.t. the other features involved.
Obviously these measures are not absolute, then they should be also considered
1 A possible way for determining the w; is to assign a high value if the corresponding

feature concept reflects high information content, low value otherwise (see [10] for
more details).
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w.r.t. the context of choice, hence comparisons across different contexts may not
be meaningful. Larger contexts are likely to decrease the measures because of the
normalizing factor yet these values is affected also by the degree of redundancy of
the features employed. In other works the choice of the weights is done according
to variance or entropy associated to the various concepts in the context [10,11].

Compared to other proposed measures [14,9,15], the presented functions
do not depend on the constructors of a specific language, rather they require
only (retrieval or) instance-checking for computing the projections through class-
membership queries to the knowledge base. The complexity of measuring the
dissimilarity of two individuals depends on the complexity of such inferences
(see [8], Ch. 3). Note also that the projections that determine the measure can be
computed (or derived from statistics maintained on the knowledge base) before
the actual distance application, thus determining a speed-up in the computation
of the measure. This is very important for algorithms that massively use this
distance, such as instance-based methods.

One should assume that C represents a set of (possibly redundant) features
that are able to discriminate individuals that are actually different. The choice
of the concepts to be included (a feature selection problem [12]) may be cru-
cial. Therefore, specific optimization algorithms founded in randomized search
have been devised which are able to find optimal choices of discriminating con-
texts [10, 11]. However, the results obtained so far with knowledge bases drawn
from ontology libraries showed that (a selection) of the primitive and defined
concepts are often sufficient to induce sufficiently discriminating measures.

3 Evidence-Theoretic Nearest-Neighbor Prediction

In this section the basics of the theory of evidence and combination rules [3]
are recalled then a nearest neighbor classification procedure based on the rule of
combination [6] is extended in order to perform prediction of unobserved values
(related to datatype properties or also class-membership).

3.1 Basics of the Evidence Theory

In the Dempster-Shafer theory, a frame of discernment {2 is defined as the set
of all hypotheses in a certain domain. Particularly, in a classification problem it
is the set of all possible classes. A basic belief assignment (BBA) is a function
m that defines a mapping m : 2 [0, 1] verifying: }_ 4., m(4) = 1. Given
a certain piece of evidence, the value of the BBA for a given set A expresses a
measure of belief that is committed exactly to A. The quantity m(A) pertains
only to A and does not imply any additional claims about any of its subsets. If
m(A) > 0, then A is called a focal element for m.

The BBA m cannot be considered a proper probability measure: it is de-
fined over 2% instead of 2 and it does not require the properties of monotone
measures [2]. The BBA m and its associated focal elements define a body of
evidence, from which a belief function Bel and a plausibility function Pl can
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be derived as mappings from 2% to [0,1]. For a given A C (2, the belief in A,
denoted Bel(A), represents a measure of the total belief committed to A given
the available evidence. Bel is defined as follows:

VA€2?  BellAd)= Y  m(B) (1)
P#£BCA

Analogously, the plausibility of A, denoted PI(A), represents the amount of belief
that could be placed in A, if further information became available. Pl is defined
as follows:

vAe2?  PA)= Y m(B) (2)
BNA#D

It is easy to see that: PI(A) = Bel(2) — Bel(A). Moreover m(()) = 1 — Bel({2)
and for each A # 0: m(A) = 3 zc4(=1)*\BIBel(B). Using these equations,
knowing just one function among m, Bel, and Pl allows to derive the others.

The Dempster-Shafer rule of combination [3] is an operation for pooling ev-
idence from a variety of sources. This rule aggregates independent bodies of
evidence defined within the same frame of discernment into one body of evi-
dence. Let my and ms be two BBAs. The new BBA obtained by combining m;
and mo using the rule of combination, mys is the orthogonal sum of m; and m..
Generally, the normalized version of the rule is used:

0 — (M1 B m _ 2pnc=am(B)ma(C)
vAE2PN{0}  maa(A) = (my @ m2)(A) = 5 %BmC:@ m1(B) m2(C)

(and mq2(@) = 0) where the numerator (1 — ¢) normalizes the values of the
combined BBA w.r.t. the amount of conflict ¢ between m; and ms.

Different evidence fusion rules have been proposed [2]. A more epistemolog-
ically sound combination rule [7] for our purposes places the probability mass
related to the conflict between the BBAs to the case of maximal ignorance.

Y proeami(B)ma(C) A#QNAF#D

VA €2?  mpp(A) = m1(2) ma(2) + ¢ A=0
0 A=10

This means that the conflict between the two sources of evidence is not hidden,
but it is explicitly recognized as a contributor to ignorance.

Due to the associativity and commutativity of the operations involved, it is
easy to prove that the resulting combination operator is associative and commu-
tative, and admits the vacuous BBA ({2 unique focal set) as neutral element.

3.2 The Nearest Neighbors Procedure

Let us consider the finite set of instances X and a finite set of integers V' C ZZ to
be used as labels (which may correspond to disjoint classes or distinct attribute
values). The available information is assumed to consist in a training set TrSet =
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{(z1,v1), ..., (xar,var)} C Ind X V of single-labeled instances (ezamples). In our
case, X = Ind(A), the set of individual names occurring in the ontology.

Let 4 be a new individual to be classified on the basis of its nearest neighbors
in TrSet. Let Ni(2q) = {(2o(j), Vo)) | 7 = 1,...,k} be the set of the k nearest
neighbors of z, in TrSet sorted by a function o(-) depending on an appropriate
metric d which can be applied to ontology individuals (e.g. one of the measures
in the family defined in the previous section §2).

Each pair (z;,v;) € Ni(zq) constitutes a distinct item of evidence regarding
the value to be predicted for x4. If x4 is close to z; according to d, then one
will be inclined to believe that both instances are associated to the same value,
while when d(z,, z;) increases, this belief decreases and that leads to a situation
of almost complete ignorance concerning the value to be predicted for z,.

Consequently, each (z;,v;) € Ni(xq) may induce a BBA m; over V' which
can be defined as follows [6]:

Ao (d(zq, i) A={v}
vAe2Y  mi(A) =< 1-do(d(zg,2)) A=V (3)
0 otherwise

where A €]0, 1] is a parameter and o (-) is a decreasing function such that o(0) = 1
and limg_,oo o(d) = 0 (e.g. o(d) = exp(—~d™) with v > 0 and n € IN). The values
of the parameters can be determined heuristically.

Considering each training individual in Ny (z4) as an separate source of ev-
idence, k BBAs m; are obtained. These can be pooled by means of the rule of
combination leading to the aggregated BBA m that synthesizes the final belief:

k
m=Pm; =m @ omy (4)
j=1

In order to predict a value, functions Bel and Pl can be derived from m using
the equations seen above, and the query individual x, is assigned the value in V'
that maximizes the belief or plausibility:

v, = argmax Bel({v;}) or wv,= argmax Pl({v;})
(@i,0:) €N (mq) (wi,0i) €N (mq)

The former choice (select the hypothesis with the greatest degree of belief the
most credible) corresponds to a skeptical viewpoint while the latter (select the
hypothesis with the lowest degree of doubt the most plausible) is more credulous.
The degree belief (or plausibility) of the predicted value provides also a way to
compare the answers of an algorithm built on top of such analogical procedure.
This is useful for tasks such as ranking, matchmaking, etc..

Finally, it is possible to combine the two measures Bel and Pl analogously
to necessity (Nec) and possibility (Pos) in Possibility Theory (which can be
considered a special case? of Dempster-Shafer theory). One can define a single

2 Precisely, the body of evidence must contain consonant focal sets, i.e. when the set
of focal elements is a nested family [2].
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ENNp(xgq, TrSet, V)

[

. Compute the neighbor set Ni(z4) C TrSet.
. for each i 1 to k do
Compute m; (Eq. 3)
3. for each v € V do
Compute m (Eq. 4) and derive Bel and Pl (Eqgs. 1-2)
Compute the confirmation C' (Eq. 5) from Bel and Pl
. Select v € V that maximizes C (Eq. 6).

[\

W~

Fig. 1. The evidence nearest neighbor procedure.

measure of confirmation C, ranging in [—1, +1], by means of a simple one-to-one
transformation [2]:

VACQ  C(A) = Bel(A) + Pl(A) — 1 (5)

Hence, denoted with C the combination of Bel and PI, the resulting rule for
predicting the uncertain value for the test individual can be written as follows:

vy = argmax C({v;}) (6)
(24,vi)ENg (24q)

Summing up, the procedure is as reported in Fig. 1:

It is worthwhile to note that the complexity of the method is polynomial
in the number of instances in the TrSet. If this set is compact and contains
very prototypical individuals with plenty of related assertions, then the result-
ing predictions are likely to be accurate. Another source of complexity in the
computations may be the number of values in V' which may yield a large number
of subsets 2!V for which BBAs are to be computed. However this depends also
on the kind of problem that is to be solved (e.g. in class membership detection
|V| = 2). Moreover what really matters in the number of focal sets for each BBA
which may be much less than 2!V

4 Assertion Prediction

The utility of the presented procedure when applied to ontology reasoning can be
manifold. In the following we propose its employment in the inductive prediction
of unknown values related to class-membership and datatype / object property
fillers. This feature may be easily embedded in an ontology management system
in order to help the knowledge engineers elicit assertions which may be not be
derived from the knowledge base yet they can be rather made in analogy with
the others [9].

In the following, the symbol R in expressions like K k¢ a will denote the
derivation of the assertion « from the knowledge base K obtained through an al-
ternative procedure (like the evidence nearest neighbor presented in the previous
section).
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4.1 Class-Membership

Let us suppose a (query) concept @ is given. In this case one may consider only
examples made up of individuals with a definite class-membership leading to a
binary problem with a set of values Vg = {41, —1} denoting, resp., membership
and non-membership w.r.t. the query concept. Alternatively, one may admit
ternary problems with some labels set to 0 to explicitly denote an indefinite (un-
certain) class-membership [9, 10]. We shall also consider the related training set
TrSetg C Ind(A) x V. The values of the labels v; for the training examples can
be obtained through deductive reasoning (instance-checking) or specific facilities
made available by the knowledge management systems [16].

Now to predict the class-membership value v, for some individual x4, w.r.t. @,
it suffices to call the procedure ENNy (x4, TrSetg, Vi) and decide on the grounds
of the returned value. Thus in a binary setting (Vo = {+1, —1}), one will either
conclude that K & Q(z,) or K Rk =Q(z,) depending on the value that maximizes
C in Eq. 6 (resp., v, = +1 or v, = —1). Moreover the value of the confirmation
function which determined the returned value v, can be exploited for ranking
the hits by comparing the strength of the inductive conclusions.

Adopting a ternary setting, it may turn out that the most likely value is
vg = 0 resulting in an uncertain case. One may force the choice among the
values of C for v, = —1 and v, = +1, e.g. when the confirmation degree exceeds
a some threshold.

The inductive procedure described above can be trivially exploited for per-
forming the retrieval of a certain concept inductively. Given a certain concept @,
it would suffice to find all individuals a € Ind(A) that are such that K k& Q(a).
The hits could be returned ranked by the respective confirmation value C'(+1).

4.2 Datatype Fillers

In this case, let us suppose a certain (functional) datatype property P is given
and the problem is to predict its value for a certain test individual a (which has
to be supposed to be in its domain). The set of values Vp may correspond to the
(discrete and finite) range of the property or to its restriction to the observed
values for the training instances: Vp = {v € range(P) | 3P(a,v) € A}. Different
settings may be devised allowing for some special value(s) denoting the case of
a yet unobserved value(s) for that property.

The related training set will be some TrSetp C domain(P) x Vp, where
domain(P) C Ind(.A) is the set of individual names that have a known P-value in
the knowledge base. Differently from the previous problem, datatype properties
generally do not have a specific intensional definition in the knowledge base
(except for the specification of domain and range), hence a mere look-up in the
ABox should suffice to determine the TrSet.

Now to predict the value in Vp of the datatype property P for some indi-
vidual a, the method requires calling the procedure with ENN(a, TrSetp, Vp).
Thus in this setting, if v, is the value that maximizes Eq. 6 then we can write
K [k P(a,vq). Also in this case the value of the confirmation function which



Evidential Nearest-Neighbors Classification for Inductive ABox Reasoning 35

determined choice of the value v, can be exploited for comparing the strength
of an inductive conclusion to others.

In case of special settings with dummy values indicating unobserved values,
when these are found to be the most credible among the others, a knowledge
engineer should be contacted for the necessary changes to the ontology.

The inductive procedure described above can be trivially exploited for per-
forming alternate forms of retrieval, e.g. finding all individuals with a certain
value for the given property. Given a certain value v, it would suffice to find all
individuals a € Ind(A) that are such that & k P(a,v). Again, the hits could be
returned ranked according to the respective confirmation value C(+1).

The limitation of treating only functional datatype properties may be over-
come by considering a different way to assign the probability mass to BBAs than
Eq. 3, including subsets of all possible values. Examples are to be constructed
accordingly (labels will be chosen in 27). Alternatively, more complex frames
of discernment, e.g. 2/ = 29, so consider sets of values as possible fillers of
the property. In all such settings the computation of the BBAs and descending
measures would become of course much more complex and expensive, yet clever
solutions (or approximations) proposed in the literature [6] may contribute to
mitigate this problem.

4.3 Relationships among Individuals

In principle, a very similar setting may be used in order to establish the possi-
bility that a certain test individual is related through some object property with
some other individual [17, 18].

Since the set Ind(A) is finite (the target is not discovering relations with
unseen individuals), one may want to find all individuals that are related to a
test one through some object property, say R. The problem can be decomposed
into smaller ones aiming at verifying whether K = R(a,b) holds:

for each b € Ind(A) do
for each a € Ind(A) do
TrSet — {(z,v) | z € Ind(A) \ {a}, if K = R(z,b) then v — +1else v — —1}
vft «— ENNj(a, TrSet, {+1,—1})
if v = +1 then
return K & R(a,b)
else
return K = —R(a,b)

Note that, in the construction of the training sets, the inference K = R(z, b)
may turn out to be merely an ABox lookup operation for the given assertions
(when roles are not intensionally defined in a proper RBox). Conversely, if an
RBox is available (sometimes as a subset of the TBox) the values of the label for
the training examples can be obtained through deductive reasoning (instance-
checking) or the mentioned facilities made available by advanced reasoners or
knowledge management systems [16].
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This simple setting makes a sort of closed-world assumption in the decision of
the induced assertions descending from the adoption of the binary value set and
the composition of the TrSet. A more cautious setting would involve a ternary
value set Vg = {—1,0,+1} which allows for an explicit treatment of those indi-
viduals a for which R(a,b) is not derivable (or just absent from the ABox). The
final decision on the induced conclusion has to consider also this new possibility
(e.g. using a threshold of confirmation for accepting likely assertions).

5 Related Work

The proposed method is related to those approaches devised to offer alternative
ways of reasoning with ABoxes for eliciting hidden knowledge (regularities) in
order to complete and populate the ontology with likely assertions even in the
occurrence of incorrect parts, supposing this kind of noise is not systematic.

The tasks of ontology completion and population have often been tackled
through formal methods (such as formal concept analysis [19]). Discovering new
assertions (and related probabilities in a classical setting) is another related
task for eliciting hidden knowledge in the ontologies. In [18] a machine learning
method is proposed to estimate the truth of statements by exploiting regularities
in the data. In [17] another statistical learning method for OWL-DL ontologies is
proposed, combining a latent relational graphical model with Description Logic
inference in a modular fashion. The probability of unknown role-assertions can be
inductively inferred and known concept-assertions can be analyzed by clustering
individuals.

Similarity-based reasoning with ontologies is the primary aim of this work
which follows a number of related methods founded on dissimilarity measures for
individuals in knowledge bases expressed in Description Logics [9,10]. Mostly,
they adopt some alternate form of the classic Nearest-Neighbor lazy learning
scheme [12] in order to draw inductive conclusions that often cannot be deduc-
tively entailed by the knowledge bases.

Similar approaches based on lazy learning have been proposed that adopt
generalized probability theories such as the Dempster-Shafer. In [6], which was a
source of inspiration for this paper, the standard rule of combination is exploited
in an evidence-theoretic classification procedure where labels were not assumed
to be mutually exclusive. Rules of combination had been used in [4] in order
to learn precise metrics to be exploited in a lazy learning setting like those
mentioned above.

One of the most appreciated advantages of performing inductive ABox rea-
soning through these methods is that they can naturally handle inconsistent
(and inherently incomplete) knowledge bases, especially when inconsistency is
not systematic. In [5] a method for dealing with inconsistent ABoxes populated
through information extraction is proposed: it constructs ad hoc belief networks
for the conflicting parts in an ontology and adopts the Dempster-Shafer theory
for assessing the confidence of the resulting assertions.
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6 Concluding Remarks and Outlook

In the line of our investigation of inductive methods for Semantic Web reasoning,
we have proposed an alternative way for approximate ABox reasoning based on
the nearest-neighbors analogical principle. Once neighbors of a test individual
are selected through some distance measures, a combination rule descending
from the Dempster-Shafer theory can fuse the evidence provided by the various
neighbor individuals. We have shown how to exploit the procedure for assertion
prediction problems such as determining unknown class- or role-memberships
as well as attribute-values which may be the basis for many ABox inductive
reasoning algorithms. The method is being implemented so to allow an extensive
experimentation on real ontologies.

Special settings to accommodate cases of uncertain or unobserved values
are to be investigated. One promising extension of the method concerns the
possibility of considering infinite sets of values V following the studies [20, 2].
This would allow dealing with domains where the total amount of values is
unknown (also due to the inherent nature of the Semantic Web). Moreover the
predicted values often need not to be exclusive. Hence the prediction procedure
would require an extension towards the consideration of sets of values instead of
singletons.

As necessity and possibility measures are related to the belief measures (see
note 2 at page 32) a natural extension may be towards the possibilistic theory and
its calculus which is, in general, different from the Dempster-Shafer theory and
calculus. Further possible extensions concern all other monotone measures such
as the Sugeno A-measures [2]. The extension towards the Possibility Theory is
interesting also because of its parallelism with modal logics [20] and possibilistic
extensions of Description Logics [21].
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The popularity of ontologies for representing the semantics behind many real-world domains has
created a growing pool of ontologies on various topics. While different ontologists, experts, and
organizations create the vast majority of ontologies, often for closed world systems, their domains
frequently overlap in an open world system, such as the Semantic Web. These overlapping ontologies
sometimes model similar or matching theories, that may be inconsistent. To assist in the reuse of these
ontologies, this paper describes a technique for enriching manually created ontologies by
supplementing them with inductively derived rules, and reducing the number of inconsistencies. The
derived rules are translated from decision trees created by executing a tree based data mining algorithm
with probability measures over the data being modeled. These rules can be used to revise the ontology
adding a higher level of granularity, in order to identify possible similarities missed by the original
ontologists. We then discuss how this may be applied to ontology matching. We demonstrate the
application of our technique by presenting an example, and discuss how various data types may be
treated to generalize the semantics of an ontology for an open world system.

Keywords: probabilistic ontology, ontology granulation, ontology matching, decision trees.

1. Introduction

In today’s open community, more organizations are willing to share their data, in the hopes of improving
their processes through collaboration. A problem arises when their internal, closed world, information and
assumptions are un-interpretable in the open-world environment. Upper ontologies such as DOLCE [14],
OpenCYC [22], and SUMOI[23], have been used to serve as a place for defining general concepts, heavily
based on natural language and common sense. Cross-references through such general concepts has been
envisioned as helping in matching one ontology to another, promoting their reusability, assisting in
automated inference and natural language processing [11]. Manual ontology creation and matching has
been conducted by ontologists and subject matter experts, based on their experiences and context [12], but
is time consuming and error prone [12].

We propose an algorithm for enhancing an existing ontology? with decision trees (DT) obtained from
domain specific data, and refining observations made, for the purpose of increasing the probability of
finding a match between ontologies. In previous work, ontologies have been utilized to build decision trees.
As demonstrated in the development of the Ontology-driven Decision Tree (ODT) algorithm [29],
ontologies provide ISA relations to link instances in the data with super-classes in the ontology. ODT
considers an attribute’s information gain, but modifies the decision tree by inserting the super-class of each
instance from the ontology as a sub-node, instead of the actual instances. A similar approach to ODT was
used in combination with user ratings to develop a recommender system called SemTree [5]. The advantage
in using an ontology is that the key factor of the building process, the information-gain used to associate an
attribute to a concept, is based on the attribute’s semantic relation to that concept, in addition to its value as
in traditional DTs. This paper proposes using those semantic relationships to create identification rules, in
the form of DTs, to differentiate concepts from each other, based on their relationships in the ontology.

A possible domain where this is applicable is in scientific research, where the results are only as accurate
as their underlying data. When qualifying collected specimens or observed phenomena, the researcher often
relies on a combination of data-driven and theory-driven information [4]. In fields such as geology,
qualifying various types of rock depends greatly on the specimens found and the geologist’s knowledge

! This paper is a progress report about the 1** author’s master’s thesis.
2 This paper targets ontologies which are represented by a direct acyclic graph (DAG) and compatible languages.
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about the region, rock types, and properties which are infrequently observed but theoretically important.
Due to personal bias, some theoretical knowledge may be used incorrectly due to incorrect qualification of
the location, for example as a lake instead of stream. Brodaric et al. [4] observed that more consistent, and
presumed correct, qualifications were exhibited using data-driven information, versus theory-based.

For example, the classification of cat, tiger, and panther as subclasses of felinae do not have enough
non-lexical information to differentiate them from each other. The addition of physical attributes such as
weight ranges or geographical locations may provide information which allows for differentiation. Further,
attribute level information may be consistent amongst the instances observed by other ontologists, even
when it does not apply to their domain. If so, it may be used to match these concepts® at a more detailed
level based on a learned model from instance data [11], in the form of DTs, which are association with
edges in the ontologies. As will be expanded on in Section 4, the consistency demonstrated between
clusters in Figure 1 may be used to match the classified concepts from one ontology to another. In section 2
we give relevant background information on the covered topics, and describe how it may be used for
ontology matching*. Section 3 gives a detailed definition of our contribution, the granulation algorithm. In
Section 4 we expanded on the applicability of the algorithm, and summarize our findings in section 5.

weight weight

height height I

7
(b)

Fig 1. Classifying instances using concepts of different ontologies based on a pair of attributes weight and
height, reveal similarity correlation between the same pair of attributes, in separate ontologies (a) and (b).

2. Background Knowledge

2.1 Description Logic and Uncertainty

The current work on including inductively derived information has focused on classification of assertions
(ABox) in a Description Logic (DL) knowledge base, by associating uncertainty to its terminology (TBox).
Description Logic provides constructors to build complex concepts and roles out of atomic ones [10], with
various extensions derived to handle different types of constructs [17][10]. In recent years, much attention
has been placed on the S family of extensions, because it provides sufficient expressivity, useful for
intended application domains. More recently, the SHOQ(D) extension has added the capability to specify
qualified number restrictions, and the SHOIN(D) extension has combined singleton classes, inverse roles
and unqualified number restrictions. Further, SHOIND) has been used to create the Web Ontology
Language (OWL), which has been adopted as the web ontology standard by W3C [17]. OWL implements
the open world assumption (OWA) [32] that if a statement is unknown it has not been falsified. In contrast,
the closed world assumption (CWA) states that if a statement is not known to be true, it is false. These
assumptions are related to defaults, which resolve ambiguities and missing values in a closed world system,
benefits which cannot be assumed in the open world. New developments in inductive methods have been
proposed to close the gap between CWA defaults and any ambiguities they introduce in the open world.

In the past several years, significant contributions have been made to introducing uncertainty to DL.
Some notable ones have been the introduction of P-S#0Q (D)[15], a probabilistic extension to SHOQ (D)
[18][24], fuzzy SHOIN (D) [26], a fuzzy extension to SHOIN (D) [17], as well as BayesOWL [8] and
PR-OWL [6], probabilistic extensions to OWL. These techniques offer new ways of querying, modeling,
and reasoning with DL ontologies. P- S#OQ (D) has provided a sound, complete, and decidable reasoning
technique for probabilistic Description Logics. Fuzzy SHOIN (D) demonstrates subsumption and

3 The choice of the word concept is used in order to differentiate the general ontology concept and the lowest level of
the use case Felinae ontology called Class, which will be identified by a capital letter and italics.

4 We make a distinction between matching as the alignment between entities of different ontologies, and mapping as
the directed version alignment of entities in one ontology to at most one entity in another, as in [11].
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entailment relationship to hold to a certain degree, with the use of fuzzy modifiers, fuzzy concrete domain
predicates, and fuzzy axioms. Fuzzy SHOIN (D) is an extension to work done on extending the ALC DL
with fuzzy operators [27][28] (see Straccia et. al. [26] for a more complete list of extensions). BayesOWL
converts an OWL TBox to a directed acyclic graph (DAG) with concept and relation nodes associated with
Bayesian probabilities. PR-OWL is a language as well as a framework which allows ontologists to add
probabilistic measures and reasoning to OWL ontologies. PR-OWL implements Multi-Entity Bayesian
Networks (MEBN) [21], which extends axioms with Bayesian Network (BN) probabilities to first-order-
logic (FOL) expressiveness. It should be noted that the key differences between probabilistic and fuzzy
systems are that fuzzy uncertainty represents a degree of vagueness and lacks determinism [15], while
probabilities represent dependencies and allow for deterministic reasoning.

A key task in probabilistic description logic is identifying which attributes to use, the relationships
between them, and calculating the probabilities assigned to those relations. The goal is the capability of
predicting the likelihood of corresponding attribute values. Various techniques have been applied to create
probabilistic description logics. In [13], classification is performed by deriving a classification equation for
non-linear models with the use of a support-vector-machine (SVM) classifier, with the optimal equation
features, called kernel features, derived with genetic programming [7]. Rough Sets [25] have been applied
to create a static probabilistic DL ontology [19], for the purpose of reasoning over data from different
sources. In this work [19], rough fuzzy SHOIN (D) is introduced as an extension to fuzzy SHOIN (D).
BayesOWL creates probabilities for OWL DLs by converting a DL to a DAG, and assigning probabilities
to each edge using a conditional probability table (CPT), for two types of nodes; concept nodes and L-
nodes (logical relations) [8]. As an example, the CPT probabilities for an equivalent L-node between c; and
Cy, 18 True=1.0 if [(c;Acy) vV (=c;A=cy)]=True, and True=0.0 otherwise, while a complement L-node is
True=1.0if [(=c,;Ac;y) Vv (=c;A=cy)]=True, and True=0.0 otherwise.

2.2 Decision Trees

As a data structure, decision trees are used to represent the logical structures of classification rules for
domain specific empirical data. The basic algorithm selects the attribute with the highest information gain
for a particular class, and creates disjoint subsets based on that attribute’s values. Ordinal attributes are split
into two branches on the < and > number restriction. For example the size attribute could be split to large
and small classes based on the number of instances and their size values. Nominal attributes are treated as
categorically disjoint sets, with as many branches as there are values. For example, the transitive relation,
and more specifically enumerable instances of S#09Q, would be able to express the ontology @, relation
xRy : [x € {Country} A y € {France, Italy, Spain}]. A DT classifying Country would be represented with a
parent node Country, and three sub-nodes, France, Italy, and Spain. These could be further split on an
ordinal attribute such as population size ranges, or another nominal attribute such as language. These
subsets are smaller in cardinality, but more exact in precision in classifying a concept. The key factor in the
classifying process is the attribute and value combinations which identify concepts best, which make up the
classification rules. As mentioned in Section 1, the advantage in using an ontology is that this
attribute/value factor is guided by the attribute’s semantic relation to a particular concept. As described
further in Section 3.2, this advantage is utilized in our algorithm to build DTs which select the most
appropriate attributes and values which identify a semantic relationship deductively from the data.

2.3 Granular Computing

In section 2.1, we presented current work on introducing uncertainty to DL. As can be seen, it is beneficial
to study the individual elements which make up a concept or cluster of concepts. It gives us a new
understanding of what we viewed as atomic structures, and a new way of reasoning with them. This is the
fundamental goal of granular computing [34], to view elements as parts of groups, and study the reasons
why elements are grouped together by indistinguishability, similarity, proximity, and functionality [35].

Definition 1 (Granule). Granules are partitions of object space where objects are indistinguishable [19].

Any proposition which holds for a granule Gr, also holds for the complex concepts Gr is meant to identify,
within a group of similar concepts. The benefits of using rough and fuzzy sets, is that they provide a level
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of granularity through inductive means, by defining crisp sets from fuzzy or possibilistic scoring models
[30][19], and similar to DTs, are non-parametric [31]. The attributes used with granular boundaries are
completely induced by the instances themselves. When viewed in the scope of ontologies, the notion of a
granular ontology has been defined as “an inventory of entities existing in reality all of which belong to the
same level of some granular partition” [2]. The authors argue that both the enduring entities such as
substances, qualities, roles, and functions (SPAN), as well as perduring entities such as processes and their
parts and aggregates (SNAP), are required in order to give a non-reductionism account of complex domains
of reality. By inductively reducing the dimensionality of a concept, both rough sets and DTs are able to
provide discrete partitions, required to identify and distinguish instances. Bitnner et al. [1] identifies the
requirements for crisp and vague boundaries, which are provided by rough and fuzzy sets, respectively.

2.4 Ontology Matching

Ontology matching consists of matching a concept from one ontology to another. Several issues have been
brought up as obstacles in the manual matching process [12][16], specifically inconsistency, incompletes
and redundancy. This results in incorrectly defined relationships, missing information, or simply human
error. Various techniques have been identified by Euzenat et al. [11], for automated and semi-automated
matching techniques. Specifically instance identification techniques, such as comparing data values of
instance data, are described to determine data correspondences, especially when ID keys are not available.
When datasets are not similar to each other, disjoint extension comparison techniques are described, which
can be based on statistical measures of class member features matched between entity sets [11]. The
information created by our algorithm is targeted at datasets for such matchings. Random effects of DT
classification algorithms can be stabilized using techniques such as bagging and stacking [33], where
multiple trees are created and combined, and increase similarity measures of derived models. BayesOWL
has been proposed to perform automatic ontology mapping [9] by associating probabilities with text based
information, and using Jeffrey’s Rule to propagate those probabilities. Text documents are classified using
a classifier such Rainbow?, and probabilities are assigned using the CPT process described in section 2.1.
Tools such as OWL-CM [4] have begun looking at how similarity measures and uncertainties in the
mapping process can be improved to improve access correspondences between text ontology entities.

2.5 Rule Insertion and Enhancement

Generating rules by inductive means allows us to add the axioms which govern an ontology. It would also
be beneficial to enhance existing axioms, by introducing exceptions, and splitting axioms into two or more
variations, to cover a broader scope of observations. To maintain a level of consistency, we require an
increase in the granularity of the enhanced axiom, as it now covers a less broadly described observation.
Ripple down rules (RDR) [20] allow us to add knowledge to existing axioms represented by a hierarchical
structure, through such exceptions. This prolongs the usability and maintainability of existing rules, while
they are refined and added to [20]. RDR exceptions can also introduce closed world defaults [20].

n=1
Category-1
n=2
Category-2

””””””””””” n=4
grain bird mammal fish reptile © category-4

tiy<at human
srmllc/et hu\g&cet
smaliyird  penguin mid-cat  large-cat  smallfish, / large-fish
mid-bird  large-bird mid-fish

small-plant | large-plant
mid-plant

Fig 2. An ontology, split by levels n, which are used for iterating edges in our algorithm in section 3.2.

5 http://www-2.cs.cmu.edu/~mccallum/bow/rainbow
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3. Ontology Granulation

In this section, we describe our algorithm for adding granularity to ontologies, by using the decision trees
induced from the data built to create the ontology. Our work differs from ODT [19] and SemTree [5], in
that while they use an ontology to build a DT, we use DTs to add granules to an existing ontology. The
deductively derived DTs will hold classification rules which may overlap with another set of rules for
similar concepts in a different ontology. Our sample ontology is a small hierarchy of objects, with a
breakdown on physical objects, and further broken down to grains and animals, as depicted in Figure 2.
Target ontologies are ones which can be represented by a directed acyclic graph (DAG).

3.1 Database Preparation

Our algorithm uses supervised learning to build a decision tree model of the instances, the ontology @ is
trying to describe semantically. In order to apply the learning algorithm, & must first be represented in a
format which can be used to perform classification. For that reason, instances which @ describes are
represented by a tuple, and for our purpose, we assume it is stored in a database DB. For a relational
database, multiple tables must be denormalized. In this process, all attributes and relationships are brought
into a single table, with logical and hierarchical relations being represented as attributes in a single row. It
is important to represent concepts at equivalent levels® by the same column C,, with different classes as
separate values’. This is depicted in Figure 2, with all nodes at level n=4, for example, representing possible
values for the column Category-4 = C, = {bird, mammal, grain, fish, reptile}. Table 1 demonstrates this
hierarchy as a denormalized table with all other attributes. Multiple parent nodes are represented by a
duplication of records with different category values, as illustrated by instances 10 to 14, being represented
by a different parent in Category-4, reptile and fish, but the same Class value of small-fish.

Definition 2 (Data preparation). Given the ontology @being granularized, the related database 23 has

f := number of attributes in normalized version of DB
a; :=attribute; i = {0, ... ,f }
{ value of g; if g, is defined
V; .
! null otherwise
C, = @, representing a concept group at level n; i.e. {Category-1, ... ,Class}

Table 1. Normalized Data Sample

Py = B B P

=] 2 = - = o S S S

2 £ %ﬂ £ £ = 2 E 2 % g &7 FN Fm g¢ g

|72] = - E 5 3 . = E > E a 8 = = = 5

= S B & = & = & E w82 @©w © o © © O

1 Algeria 12 4 6 115 N Y N Y Y 63 small physical organism animal mammal small-cat
2 Amrcn-Samoa 4 1 3 4 N Y N Y Y 353 tiny physical organism animal mammal tiny-cat
3 Armenia 51 14 29 8282 N Y ? Y Y 354 ?  physical organism animal mammal huge-cat
4 New-Zealand 7 1 3 2 Y Y N Y Y 469 small physical organism animal bird  small-bird
5 New-Zealand 14 6 6 50 Y Y N ? Y 617 ?  physical organism animal bird mid-bird
6 Aland-Islands 17 10 17 280 Y ? N Y Y 767 large physical organism animal bird large-bird
7 Antarctia 5 5 28 560 N Y Y Y 7?7 841 ? physical organism animal bird penguin
8 Antig&Brbda 89 58 99 255519 N Y N Y Y 909 mid  physical organism animal mammal human
9 Aruba 75 55 43 8888 N Y N Y Y 912 mid physical organism animal mammal human
10 New-Zealand 8 1 3 72 N N Y Y Y 1183 small physical organism animal fish small-fish
11 New-Zealand 8 1 3 72 N N Y Y Y 1183 small physical organism animal reptile small-fish
12 New-Zealand 7 1 4 8.4 N N Y Y Y 1185 ? physical organism animal fish small-fish
13 New-Zealand 7 1 4 84 N N Y Y Y 1185 ? physical organism animal fish small-fish
14 New-Zealand 7 1 4 84 N N Y Y Y 1186 ? physical organism animal reptile small-fish
15 Bahrain 0.001 0.001 0.001 0.000 ? ? ? N Y 945 small physical organism plant grain  small-plant
16 Anguilla 1.001 0.001 3.001 0.000 ? ? ? N Y 1100 mid physical organism plant grain  mid-plant
17 Bahamas  4.000 3.000 10.00 1.200 ? ? ? N Y 1164 ?  physical organism  plant  grain  large-plant

® It is not required for levels to align when matching concept signatures (see section 3.2) across ontologies, only when
initially creating the DTs, since the parent-to-child concept classification is done in isolation from the rest of the tree.
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3.2 Ontology Granulation Algorithm

The granulation process involves deriving rules which use ordinal number ranges and nominal category
identifiers to classify specific ontology concepts. By identifying relationships between attributes in
classifying an ontology concept, a class signature’ may become apparent. This signature may later be used
for ontology matching. We begin by listing elements needed to prepare the ontology for classification.

Definition 3 (Ontology hierarchy). A given ontology (@has a hierarchical representation which contains

g, := hierarchical representation of @ (see Figure 2)
levels( O,) := number of levels in @,
n ={1,...,levels(®,) }; where n =0 is the tree root
Cn := concept € @ at level n; where j={0,...,|C,|}
Ici := number of instances classified as ¢
edge( Cos Cn, ) := edge between node C, and its parent node c,. I

Definition 4 (Attribute relevance). The attributes chosen to build a decision tree to granularize ¢, , depend
J
on rank(c,, a;)), which is the relevance of a; in classifying ¢, and can be chosen by an expert or
J J
automatically through a ranking algorithm such as Definition 5.
Attributes of DB, mainly, A = { a,, a,, ..., a; }, are selected into the subset A, : A, C A, based on their ability
to classify concepts at level n, and construct a DT. When constructing DTs, however, only attributes which

are required to differentiate between DT models are included in the final tree. This subset A,,: A,, © A,, is
chosen to granularize c, .
J

When choosing an attribute automatically based on its contribution to classification, various rankings
can be used. The data mining tool we are using is an open source package called Weka [33], which
provides several algorithms, such as information gain, entropy, and principal component. The information
gain algorithm has produced the best results for our dataset.

Definition 5 (Information gain)®. We evaluate the worth of an attribute by measuring the information gain
with respect to the class. InfoGain(Class, Attribute) = H(Class) - H(Class | Attribute).

Our experience has indicated that choosing an attribute which is ranked significantly less than the attribute
representing the parent node of ¢, , Equation 2, will prevent choosing a; which resembles a parent node, and
]

cause classification to suffer from over-fitting, producing less meaningful classification rules. In the same
sense, attributes ranked closely to ones representing child nodes or which are close to 0 should be avoided,
Equation 3, otherwise they will have a relatively high level of misclassification.

rank(a;) rank(c,. I ). 2)

0 rank(c,,+,j) rank(a;) . 3

Definition 6 (Concept granulation). Given the set A,,, attributes utilized by the DT, we use a classification
algorithm® which produces several Bayesian models of the concept c,, as leaf nodes of the DT. Each leaf
J

node, which we call a granule Gr, produced

o = Bayesian probability of classifying c, correctly with a Gr.
]
@ = coverage (number of instances in a Gr classifying c,) out of Icl.
]
Pr = o (@ / Icl) : probability of Gr being correct and its accuracy covering

entire set of ¢, instances.

7 By signature, we mean an identifying characteristic of the object being classified, and not a signature which describes
non-logical symbols of a formal logic, or a signature in cryptography.

8 Definition taken from the Weka 3.6.0 module weka.attributeSelection.InfoGainAttributeEval

9 The Weka 3.6.0 module weka.classifiers.trees.J48 contained good options for controlling the size of the tree, but the
weka.classifiers.trees. NBTree module provided trees with the more useful Naive Bayes classifiers at the leaf nodes.
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where the k-th granule Gr, is comprised of a DT branch, producing an associated clause with
Op €{s > =}
Pr, Gry(c,.) < (a, Opyv,) A (a,Op;vy) A ... A (a,Op,Vv,) .
J

The clause derived by the classification process uses values associated with the instances in the learning
dataset. This places a dependency on all probabilities and the given value v; of each used attribute @, in the
associated granule Gr. Any attribute not supplied with a value acts as a wild card and increases the
probability (PR) of the associated granule Gr, while decreasing the accuracy. For probabilities to be
meaningful, the number of instances of concepts should be approximately equal. This ensures each concept
has equal representation in the DT. For example, if 95% of observations are of concept A and 5% of
concept B, B will not be represented by the DT, as the probability of incorrectly choosing A is only 5%.

Definition 7 (Concept signature). Given a set of granules Gr, used to classify ¢, , we create a clause with
I

£ = Probability of c,, calculated as sum of ¢, probabilities (Pr) with an
J

associated coverage Icl .
QjSigj(cnf) «— (Pr,Gr,) v (Pr,Gr,) v ...v(PrGr,) .

The basic algorithm, as described below, discovers a set of features important ' to the identification and
differentiation of a set of classes (steps 1 - 3). It then uses the features to build a DT (step 4), which results
in a set of rules that identify the classes with different levels of coverage, accuracy, and probability. Each
concept has an associated concept signature and probability (step 5). The derived rules are used to build the
signature clause (step 8) and probability (step 9). The concept signature is then associated with ¢ in the
ontology hierarchy @, (step 11).

Granulation Algorithm

1) Denormalize DB, applying ontology classes as attributes (see Section 3.1 for a
discussion and Table 1 for an example).

2) For each n € levels(O,)

3) Select attribute set A, using rank(a;), to best classify C,, by combining:

- Ontology author
- Subject matter expert (SME)
- Definition 4 and 5.

4) Execute classification algorithm (Definition 6) to produce a DT classifying
C,, producing models in the form of conjunctions of (a; Op v;) as branches in
the tree.

5) Initialize Sig; and associated probability £; for each ¢, .

bl
6) For each k € z; where z is the number of granules (leaf nodes) classifying c.
7) Capture entire branch of a DT model for c¢,, giving Gr, and associated Pry.
i
8) Append Gry(c, ) to the Sig(c, ) clause with the OR operator.
J bl

9) Q; = Q5 + Pry .

10) End

11) Associate stig(cnj) to edge(cnj, Cn-1k ) using ripple down rule (RDR).

12) End

3.3 Matching Granules

The process of matching granules is comprised of 1) classifying an ontology node using A,, 2) associating
the derived signature Sig; with that concept’s node, and finally 3) identifying characteristics in Sig; which
resemble another signature Sig,, of another ontology’s concept. Guided by the edges in hierarchies of the
individual ontologies (by associating classification targets with ontology nodes as in Figure 3), various
combination of attributes reveal resembling patterns, as was demonstrated in Figure 1, and is expanded on
in the use case in section 4.1. The implementation of the matching process is outside the scope of this
paper, but we provide key ideas and issues which we have identified in section 5, and covered the state of
the research in section 2.4. With successful granulation and concept matching, any existing signatures in

10 Importance here is dependant on the application and available resources. We describe several possibilities in the
following section.
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the form of FOL rules, DL roles, or hierarchical DTs are attached to the edges or relations between
concepts, possibly through the use of RDR.

Wammai» MAC Ontology /)
7
g CAP Ontology
’
Fd Mammal
/\ K
Felinae Fyd
’
| MAC (Tiger) <=> CAP (Tiger) |
v ’ Wild
Sig,(large-cat) ‘ House Cat
Sig,(small-cat) Fd Cat
,,,,,,,,,,,,,, A
{MAC (Cat) <=> CAP (Cat); Sig,(large-cat)

’

6 A 1’ Sig,(small-cat)
\ K
L smail-cat NS
derived F ‘{.
-A- granular / /
L small-cat

Fig 3. Concepts are mapped using derived signatures between two ontologies from section 4.1.1.

4. Motivating Example

4.1 Commerce Scenario

In a typical commerce use case, a manufacturer’s goal is to find customers interested in purchasing their
product. Our manufacturer Mats for Cats (MAC) has a set of criteria identifying the size and weight of cats,
on which they base their product design. What they need now is a way to find a target market to advertise
their product to. As part of the Semantic Web, the group Cats as Pets (CAP) has opened up their database
and associated ontology of cat owners, with various types of felinae. CAP stores easily obtainable
information about their cats, such as height, length, weight, colour, and location, and does not store a full
ontology like the one stored by the Animal Diversity Web!! (AWD) database. Also, because this is a world
wide group, the pets range from house cats to large felines such as tigers. As a result, the stored information
will vary, but correlation between attributes will classify various types of felinae. The MAC and CAP
datasets are simulated, but suffer from real-world data issues such as incomplete and incorrect data, in
addition to exhibiting features required for the matching process, to and test the attribute ranking and
classification algorithms for their ability to handle such cases. Related data is required to map concepts, and
the hypothesis is that even though perceptions may differ, the underlying occurrences will remain
somewhat consistent [11]. Using the NBTree classifier in Weka, we classify Felinae as F = {tiny-cat,
small-cat, mid-cat, large-cat, huge-cat}, and derive the DT in Figure 4. Each leaf node represents a
Bayesian model for each concept, with various degrees of probability o and coverage ¢, and represent a
single granule Gr. At this level, the decision is being made on height, width, weight, and country, but
country was omitted by the DT, due to its low rank in its contribution to the classification.

4.1.1 MAC Felinae Ontology Granulation

<= 2.996447> 2.996447 <=45 > <= 145 > 145

4.5
<=85 >85

Fig 4. NBTree classifying MAC Felinae based on height, width, weight (omitted) and country (omitted).

' Animal Diversity Web: http://animaldiversity.ummz.umich.edu
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Table 2. MAC granules build from the decision tree in Figure 2, using height (x) and width (y).

Pr

0.78 93 Gry(large-cat) | « (x> 10.5) A (y = 10) A (y > 14.5)

Model Granule
o %
A 0.89 101 Gr,(tiny-cat) | «— (x = 10.5) A (y =2.5) A (x =2.99)
0.09 9 Gr,(small-cat) | « (x=<10.5) A (y =2.5) A (x=2.99)
B 0.92 44 Gry(small-cat) | « (x=10.5) A (y>2.5) A (x>2.99)
C 0.90 34 Gry(small-cat) | « (x=105) A (y>25) A (y=4.5) A (x=<8.))
D 0.58 13 Gry(small-cat) | « (x=<105) A (y>25) A (y=4.5) A (x>8.5)
0.29 6 Grg(mid-cat) | « (x=105) A (y>25) A (y=4.5) A (x>8.5)
E 0.64 6 Grg(mid-cat) | « (x=10.5) A (y>2.5) A (y>4.5)
F 0.87 26 Gr,(mid-cat) | « (x> 10.5) A (y = 10) A (y = 14.5)
G
H

0.96 105 Gr,y(huge-cat) | « (x> 10.5) A (y > 10)

Table 3. MAC Signatures classifying Felinae built from granules in Table 2.

Q
2 Pr Icl

Signature

0.89 101 Sig,(tiny-cat) | « (Pr,Gr,)

0.78 100 Sig,(small-cat) | < (Pr,Gr,) v (Pr,Gr,) v (Pr;Gr;) v (Pr,Gr,)

0.78 60 Sig,(mid-cat) | « (Pr; Grs) v (Pr,Gry) v (Pr,Gr,) v (Pr,Gr,)

0.78 93 Sig,(large-cat) | « (Pry Gry)

0.96 105 Sig,(huge-cat) | < (Pr,, Gr,,)

4.1.2 CAT Felinae Ontology Granulation

<= 1202.4 > 1202.4

<=3 > 35 <=8 >6\ <= 115 > 115
— — ~
T =
<=25 > 25 <= 24 >?.4\
=
-
<= 4.495437 > 4495437 <= 3.999649 > 3.993643
— S <= —
el sl e

Fig 5. NBTree classifying CAP Felinae based on height, width, weight, (omitted) and country (omitted).

Table 4. CAP granules for Felinae classification based on height (x), width (y), weight (z).

Model Pr Granule
o @
A 0.51 24 Gry(small-cat) | « (weight < 12024) A (y < 1.5)
043 20 Gr,(mid-cat) | « (z=<1202.4) A (y < 1.5)
B 0.09 4 Gry(small-cat) | « (z=<12024) A (y>15)A(y=35)A(y=<25) A (x=<45)
0.85 45 Grj(tiny-cat) | «— (z=12024) A (y>15)A(y=35) A (y=25) A (x=45)
c 0.38 13 Gry(small-cat) | « (z=12024) A (y>15)A(y=<35) A (y=25) A (x>4.5)
0.54 19 Grs(mid-cat) | «— (z=<12024) A (y>15) A (y=<35) A (y=2.5) A (x>45)
D 0.15 10 Gry(small-cat) | « (z=<12024) A (y>15) A (y=35)A(y>25)r(x=4)
0.80 56 Gr,(tiny-cat) | «— (z=<12024) A (y>135) A (y<35) A (y>25)A(x=<4)
B 0.40 15 Grg(small-cat) | « (z=12024) A (y>15)A(y=<35)A(y>25)A(x>4)
0.53 20 Gry(mid-cat) | «— (z=12024) A (y>15)A(y=35)A(y>25) A (x>4)
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F 0.48 19 Gr (small-cat) | « (z=12024) A (y>1.5) A (y > 3.5)]

0.45 18 Gr,,(mid-cat) | « (z=12024) A (y>1.5) A (y>3.5)
G 0.67 7 Gr,(mid-cat) | « (z>12024) A (y=8.5) A (y=<6)
H 0.87 26 Gr ;(large-cat) | «— (z>12024) A (y<8.5) A (y > 6)
1 0.96 97 Gr,(large-cat) | « (z>12024) A (y>85) A (y=11.5) A (x =24)
J 095 78 Gr,s(huge-cat) | <« (z>12024) A (y>85) A (y=11.5) A (x>24)
K 0.87 26 Gr q(huge-cat) | « (z>1202.4) A (y >8.5) A (y> 11.5)

Table 5. CAP Signatures classifying Felinae built from granules in Table 4.

Q .
SPr ol Signature
0.82 101 Sig(tiny-cat) | < (Pr;Gr;) v (Pr,Gr,)
0.40 85 | Sig,(small-cat) | « (Pr,Gr,) v (Pr,Gr,) v (Pr,Gr,) v (Pr,Grg) v (PrGry) v (Pr,,Gr,,)
0.50 84 Sig,(mid-cat) | « (Pr,Gr,) v (Pr;Grs) v (Pr,Gry) v (Pr,,Gr;) v (Pr;,Gr,,)
0.94 123 | Sigs(large-cat) | « (Pr;Gr;) v (Pr.,Gr.,)
0.93 104 | Sig,(huge-cat) | «— (Pr;;Gr;5) v (Pr;Gr,s)

4.2 Matching CAP and MAC Granules
For similar or equivalent domain databases, some attributes may demonstrate similarities, not only in
individual attributes, but also in relation to another attribute in the database. The simplest measure is
identifying similarities between each attribute and the concepts themselves. For example, the ranges of
width, height, and weight values grouped by Class, may exhibit similarities between the MAC and CAP
instances, showing a correlation between these two databases for the three attributes. A granule such as
Gr(mid-cat) <= (width > 0) A (width < 4) A (height > 4) A (height < 8) A (weight > 20) A (weight < 50),
could represent such clusters. A definition could be built by classifying a Class with a single attribute, like
Sig(mid-cat) < ((width > 0)A(width <0.7)) v ((width > 1.1)A(width <2.1)) v ((width > 3 4)A(width <4.7)).
Further, concentrating on the intersection of weight and height, we see a pattern of clusters, as depicted
in Figure 6 (a) and (b). By representing these cluster graphs, we see overlapping clusters from (a) to (b),
specifically cluster A (tiny-cat), B (small-cat), and E (huge-cat). In the centre of the graphs, we see two
clusters C (mid-cat) and D (large-cat) overlapping each other to a lesser extent. We can begin to infer not
only a matching between the Classes represented by these clusters (tiny-cat, small-cat, etc), but also
between the attributes themselves (height, weight, etc).

weight weight width width
p S )
[4 E]
13 D
height height . S
il € X d
Eﬁ R
(A=l BAL a8l
(a) (c) (@

Fig 6. Attribute associations: weight x height for (a) MAC, (b) CAP; height x width for (c) MAC, (d) CAP.

Unfortunately, not all databases are this well aligned, and various measures of similarity must be
considered. In Figure 6 (c) and (d), the correlation between the height and width attributes are analyzed,
without a definite cluster correlation and overlapping as was observed in Figure 6 (a) and (b). As a result, a
mix of similarities would need to be considered as a characteristics of a classification. As with Figure 6 (a)
and (b), (c) and (d) contains a correlation between E (huge-cat) in the top-right, and the A (tiny-cat) and B
(small-cat) clusters in the bottom-right. Unlike (a) and (b), however, no significant correlation exists
between mid-cat and large-cat. A series of decision trees with various permutations of attributes would
produce the best signature, such as a combination of both sets in Figure 6, for successful matching with
another ontology’s set of trees.
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5. Conclusion

5.1 Discussion

In this paper, we present an algorithm for enhancing ontologies with inductively derived decision trees, in
order to granulate the information being modeled by the ontology. The granulation process aims to produce
partitions of characteristics of ontology concepts, based on the ontology’s observed instances, such that the
concepts are indistinguishable within those partitions, as per Definition 1. We then describe how these
granules can be used to match concepts of different but similar ontologies with each other. We apply our
algorithm to a simulated dataset of Felines, with a matching scenario in the commerce domain. The paper
describes potential benefits of correlated data, which describes similar concepts, and how this relation can
be utilized. The simulated database for MAC and CAP contained key real-life database features, positive
and negative, required to demonstrate our algorithm.

5.2 Future Work

In our research, we have identified several key ontology matching observations and issues. It is important
to find attributes in one ontology which are subsumed by a hybrid attribute derived from multiple attributes
in the other. Relevant work has been done in the field of Object Based Representation Systems (OBRS) [3],
where looking at subsumptions made about classified instances can lead to deducing new information about
those instances. Our granules and signatures represent ranges and clusters which identify some class. For
ordinal values, units of measure may be less relevant then ratios of values and their ranges, specifically
when matching concepts at higher levels. For example, identifying traits in objects may depend on a
correlation between two or more attributes. A long life span for one animal is short for another, so when
grouping long life span factors, for example, it would make most sense to use the “relative” life span (in the
form of ratios) of a particular species, when comparing life expectancy factors across multiple species.
Matching nominal attributes which may exist as sets (Colour(chair) = Red), attributes (chair.colour =
Red) or properties (chair.Red) pose a challenge. In our preliminary research, the creation of a Boolean
attribute in the normalized database for all possible sets or a value of an attribute or property, and assigning
True or False to the values associated with a particular instance, the NBTree classification algorithm in
Weka looked promising in identifying relationships between patterns of these values or sets. Properties
such as Colour, which take on a single value, can be identified by recognizing a disjoint set amongst all
instances, where a group of attributes (such as Red=True, Blue=False, Green=False, etc) which never have
more then one True value for a group, can be a clue to a single set, attribute or property. During the
matching process, any missing attributes would need to be inserted with default values of False. Further
investigation is needed as this is a closed world assumption, which can be more harmful then beneficial.
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Soutchanksi of Ryerson University, and the numerous reviewers for their suggestions and comments.

References

[1] Bittner, T., Smith, B. Granular Partitions and Vagueness, In Formal Ontology in Information Systems: Collected
Papers from the Second International Conference, pp. 309-320 (2001)

[2] Bittner, T., Smith, B., Granular Spatio-Temporal Ontologies, In Proceedings of the AAAI Spring Symposium on
Foundations and Applications of Spatio-temporal Reasoning (FASTR) (2003).

[3] Bisson, G., Why and How to Define a Similarity Measure for Object Based Representation Systems, In Towards
Very Lare Knowledge Bases, pp. 236--246, IOS Press, Amsterdam (1995)

[4] Brodaric, B., Gahegan, M., Experiments to Examine the Situated Nature of Geoscientific Concepts. Spatial
Cognition & Computation: An Interdisciplinary Journal, 7 (1), pp. 61--95 (2007)

[5] Bouza, A., Reif, G., Bernstein, A., Gall, H., SemTree: Ontology-Based Decision Tree Algorithm for
Recommender Systems, In Proceedings of the 7th International Semantic Web Conference, Germany (2008)

[6] da Costa, P.C.G., Laskey, K.B., Laskey, K.J., PR-OWL: A Bayesian Ontology Language for the Semantic Web,
Uncertainty Reasoning for the Semantic Web workshop (LNCS Vol.) pp. 88--107 (2008)



50

(71

(8]

(9]

[10]
(11]
[12]
[13]
[14]
[15]
[16]
(171
(18]
[19]
[20]
(21]
[22]

(23]

[24]

[25]
[26]

[27]
(28]
[29]
[30]
[31]

(32]
(33]

[34]

[35]

B. Gajderowicz, A. Sadeghian

De Jong, K.: Evolutionary computation: A unified approach. In: Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation 2008, pp. 2245--2258 (2008)

Ding, Z., Peng, Y., Pan, R., BayesOWL: Uncertainty modeling in semantic web ontologies, Studies in Fuzziness
and Soft Computing, 204, pp. 3--29 (2006)

Ding, Z., Peng, Y., Pan, R., Yu, Y., A bayesian methodology towards automatic ontology mapping, AAAI
Workshop - Technical Report, WS-05-01, pp. 72--79 (2005)

Erdur, Cenk, R., Seylan, Inanc, The design of a semantic web compatible content language for agent
communication. Expert Systems , 25 (3), pp 268--294 (2008)

Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, 67 illus., Hardcover, ISBN 978-3-540-49611-3, pp. 104--
107 (2007)

Falconer, S., Noy, N.F., Storey, M.A.: Ontology mapping - a user survey. In: Workshop on Ontology Matching
(OM2007) at ISWC/ASWC2007, Busan, South Korea, November 2007, pp. 113--125 (2007)

Fanizzi, N., d’Amato, C., Esposito, F., Statistical Learning for Inductive Query Answering on OWL Ontologies,
In the proceedings of the International Semantic Web Conference, pp. 195--212 (2008)

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Sweetening WordNet with Dolce, In: AI Magazine, 24 (3),
pp- 13-24 (2003)

Giugno, R., Lukasiewicz, T., P-SHOQ(D): A Probabilistic Extension of SHOQ(D) for Probabilistic Ontologies in
the SemanticWeb, Logics in Artificial Intelligence, 2424, pp. 86--97, Springer (2002)

Gomez-Perez, A.: Handbook on Ontologies. In: International Handbooks on Information Systems, Springer, pp.
251--274 (2005)

Horrocks, I., Patel-Schneider, P.F., van Harmelen, F., SHIQ and RDF to OWL: The Making of a Web Ontology,
pp 7--26 (2003)

Horrocks, 1., Sattler., U., Ontology Reasoning In The SHOQ(D) Description Logic. In Proceedings of the 7th
International Joint Conferences on Artificial Intelligence, pp 199--204 (2001)

Klinov, P., Mazlack, L.J., Granulating Semantic Web Ontologies, In Proceedings of the 2006 IEEE International
Conference on Granular Computing, pp. 431--434 (2006)

Kwok, R., Translations of ripple down rules into logic formalisms, Proceedings of the Fourth Australian
Knowledge Acquisition Workshop, The University of New South Wales, Sydney, Australia, pp. 44--56 (1999)
Laskey, K.B., MEBN: A Language For First-Order Bayesian Knowledge Bases. Artificial Intelligence, 172(2-3),
pp- 140-178 (2008)

Matuszek, C., Cabrai, J., Witbrock, M., DeOliveira, J., An introduction to the syntax and content of Cyc, In:
AAAI Spring Symposium - Technical Report, SS-06-05, pp. 44--49 (2006)

Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS 2001. Proceedings of the international
conference on Formal Ontology in Information Systems, Ogunquit, Maine, ACM Press, New York, NY, USA,
pp- 2-9 (2001)

Pan, J.Z., Horrocks., I., Semantic Web Ontology Reasoning In The SHOQ(Dn) Description Logic. In Proceedings
of the Description Logic Workshop (2002)

Pawlak, Z., Rough Sets, International Journal of Information and Computer Sciences, 11, pp. 341-356 (1982)
Straccia, U., A Fuzzy Description Logic for the Semantic Web, In Fuzzy Logic And The Semantic Web,
Capturing Intelligence, 4, pp. 167--181, Elsevier (2005)

Straccia. U., A Fuzzy Description Logic. In Proceedings of the 15th National Conference on Artificial
Intelligence, pp 594--599, Madison, USA (1998)

Straccia, U., Reasoning Within Fuzzy Description Logics. Journal of Artificial Intelligence Research, 14, pp.
137--166 (2001)

Zhang, J., Silvescu, A., Ontology-Driven Induction of Decision Trees at Multiple Levels of Abstraction. In:
Proceedings of Symposium on Abstraction, Reformation, and Approximation. (2002)

Yao, Y.Y., Granular Computing: Basic Issues and Possible Solutions, In Proceedings of the Joint Conference on
Information Sciences, 5 (1), pp. 186-189 (2000)

Sikder, I.U., Munakata, T., Application of Rough Set and Decision Tree for Characterization of Premonitory
Factors of Low Seismic Activity, In Proceedings of Expert Systems with Applications, 36, 1, pp. 102--110 (2009)

Stojanovic, L., Methods and tools for ontology evolution, Ph.D. Thesis, University of Karlsruhe, Germany (2004)
Witten, IH., Frank, E., Data Mining: Practical machine learning tools and techniques, 2nd Edition, Morgan
Kaufmann, San Francisco (2005)

Zadeh, L.A. Fuzzy Sets And Information Granularity, In Advances in Fuzzy Set Theory and Applications, Gupta,
N., Ragade, R. and Yager, R. (Eds.), North-Holland, Amsterdam, pp. 3-18 (1979)

Zadeh, L.A. Towards A Theory Of Fuzzy Information Granulation And Its Centrality In Human Reasoning And
Fuzzy Logic, In Fuzzy Sets and Systems, 19, pp.111-127 (1997)



Axiomatic First-Order Probability

Kathryn Blackmond Laskey

Department of Systems Engineering and Operations Research
George Mason University, Fairfax VA 22030, USA
klaskey @gmu.edu

Abstract. Most languages for the Semantic Web have their logical basis in
some fragment of first-order logic. Thus, integrating first-order logic with
probability is fundamental for representing and reasoning with uncertainty in
the semantic web. Defining semantics for probability logics presents a
dilemma: a logic that assigns a real-valued probability to any first-order
sentence cannot be axiomatized and lacks a complete proof theory. This paper
develops a first-order axiomatic theory of probability in which probability is
formalized as a function mapping Gddel numbers to elements of a real closed
field. The resulting logic is fully first-order and recursively axiomatizable, and
therefore has a complete proof theory. This gives rise to a plausible reasoning
logic with a number of desirable properties: the logic can represent arbitrarily
fine-grained degrees of plausibility intermediate between proof and disproof; all
mathematical and logical assumptions can be explicitly represented as finite
computational structures accessible to automated reasoners; contradictions can
be discovered in finite time; and the logic supports learning from observation.

Keywords: First-Order Logic, Probability.

1 Introduction

Logic-based languages have long been recognized as an effective means to represent
information clearly, unambiguously, and in a manner that facilitates processing by
machines. By far the most common logical basis for Semantic Web languages is
classical first-order logic (FOL). This is no accident: its clear syntax, well-understood
semantics, and complete proof theory make FOL a natural choice for computational
knowledge representation and reasoning. However, FOL lacks a fundamental
capability essential for semantically aware systems. As Jeffreys [1] put it, “Traditional
or deductive logic admits only three attitudes to any proposition: definite proof,
disproof, or blank ignorance.” An intelligent reasoner must do more: it must assess
the plausibility of uncertain hypotheses, make reasonable choices when the outcome
is uncertain, and use observations to improve its representation of the world.
Probability is the unique plausible reasoning calculus that satisfies certain
intuitively satisfying axioms of coherent reasoning (e.g., [2]). For this reason,
probability has achieved a privileged status for plausible reasoning akin to FOL’s
privileged status with respect to logical reasoning. The past few decades have given
rise to increasingly expressive probability-based languages, as well as a host of
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restricted languages designed for scalability. There is increasing interest in probability
for semantic web applications [3].

It is often taken for granted that a new kind of logic is needed to capture essential
aspects of plausible reasoning: “Ordinary logic seems to be inadequate by itself to
cope with problems involving beliefs. In addition a theory of probability is required”
[4]. Because of their built-in machinery for reasoning about functions, higher-order
logic has been proposed as a natural logical basis for combining probability and logic
[5]. On the other hand, its complete proof theory makes first-order logic attractive as
a computational logic. Moreover, it is attractive to use the same logic to reason both
about the domain itself and about the plausibility of statements about the domain.
The question thus arises of whether an adequate formalization of probability is
possible within first-order logic itself.

This paper formalizes, within standard first-order logic, a probabilistic logic pow-
erful enough to express uncertainty about arbitrary first-order sentences. By formal-
izing probability as an axiomatic first-order theory, probabilities can be associated
coherently with arbitrary first-order sentences, with no modification of traditional
first-order semantics. To stay within axiomatic first-order logic, probabilities are
defined not as real numbers, but as elements of a real closed field. An axiom schema
is added to the standard axioms of the probability calculus to give “logical teeth” to
the idea that probability zero events do not happen. The semantics proposed here
connects naturally to algorithmic notions of randomness as proposed by Kolmogorov
and Martin-Lof [6], [7], as well as to Dawid’s [8] calibration criterion.

2 First-Order Probability

We begin with a first-order language ¢/ used to make assertions about a domain. &/
includes the usual logical symbols (variables, logical connectives, universal and
existential quantifiers), together with a set of domain-specific predicate, function and
constant symbols. Without loss of generality, ¢/is taken to be a traditional, untyped
first-order language.' To operationalize the requirement that assertions be expressible
as a finite computational structure, a knowledge base (KB) is taken to be an axiomatic
theory of & That is, a KB contains a consistent, recursive set A of sentences of &
The logical consequences of these axioms comprise a recursively enumerable set 7, =
Cn(A), called the theory of A. Godel’s completeness theorem implies that 7, is equal
to the set {0 : A + o} of sentences provable from A.

In general, a KB may be incomplete — it need not imply a definite truth-value for
every sentence. In fact, a sufficiently powerful theory is necessarily incomplete. It is
useful for a reasoner to grade the plausibility of propositions it can neither prove nor
disprove. Probability is a natural candidate for this purpose.

It seems reasonable to define probability as a function mapping each sentence to a
real number between zero and 1, in a manner that satisfies the standard identities of
probability theory, and so that sentences provable (disprovable) from A are assigned

"' It is well known that a typed first-order logic can be re-expressed via a syntactic
transformation as an untyped logic (cf., [7]).
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probability 1 (0). This approach, natural as it seems, runs into difficulty. The first
roadblock is that in standard first-order logic, arguments of functions must be ele-
ments of the domain, not sentences or propositions. The second roadblock is that the
theory of the real numbers cannot be fully characterized as an axiomatic first-order
theory. Several authors have shown that formalizing probabilities as a real numbers in
the unit interval results in a theory that cannot be axiomatized, and that does not admit
a complete proof theory (cf., [10], [11]). On the other hand, by abandoning the re-
quirement that probabilities be real-valued, Bacchus [12] developed axiomatic
probability logics that have a complete proof theory.

Given the mathematical impossibility of both an axiomatic first-order theory and a
function mapping sentences to real numbers, which should be preferred? To answer
this question, we step back to first principles, and consider fundamental requirements
for a computational probabilistic logic. First, a computational logic should explicitly
represent all mathematical and logical assumptions as finite computational structures
accessible to an automated reasoner. Second, it should be possible for a reasoner to
discover contradictions in a knowledge base, to identify when observations are
inconsistent with a theory, and to prove any consequence entailed by a theory. Third,
a logic for plausible reasoning must be able to associate measures of plausibility with
propositions, to express degrees of plausibility intermediate between proof and
disproof, and to do so in a logically coherent manner. All these requirements are met
by the proposed formalism. Furthermore, the first two requirements are automatically
satisfied if probability is formalized as a traditional first-order axiomatic theory, while
the final requirement can be met without demanding either that probability be
formalized as a function on sentences, or that probability values be real numbers.
Hence, a first-order axiomatic theory is a fundamental requirement, whereas a
function from sentences to real numbers is dispensable.

If probability is not a function mapping sentences to real numbers, then what is it?
We formalize probability as a function mapping Goédel numbers to elements of a real-
closed field (RCF). A RCF is the closest one can come to formalizing the real
numbers within first-order logic. The real numbers are uniquely characterized up to
isomorphism as an ordered field with the least upper bound property. The ordered
field axioms formalize familiar properties of the real and rational numbers: addition,
multiplication, additive and multiplicative inverses (hence, subtraction and division),
distribution of multiplication over addition, and complete ordering. These axioms can
be formalized fully in FOL. The defining property of the real numbers, that every
bounded non-empty set of real numbers has a least upper bound, is not a first-order
property. In a RCF, the least upper bound property holds for all definable relations.
The RCF axioms are sufficient to characterize all first-order properties of the real
numbers (cf., [13]). Thus, we assume probabilities are elements of a RCF.

Godel showed that, given a sufficiently powerful formal system, domain elements
(e.g., numbers) can be associated with sentences, formulas, and proofs. This device
allows indirect expression of and reasoning about logical notions such as proof and
consistency, while complying with FOL’s prohibition against direct reference to sen-
tences. Defining probabilities as a mapping from Godel numbers to elements of a
RCF allows us to develop a fully first-order axiomatization of probability. We argue
later that our axioms capture the essential requirements for a computational logic of
plausible reasoning.



54 K. Laskey

3 The Probability Axioms

The original language ¢/ and axioms A are augmented with additional symbols and

axioms to provide the necessary logical apparatus for probabilistic reasoning. The
augmented language and axioms are called &* and A*, respectively.

3.1 The Language

The language </* has numerical constants 0 and 1; arithmetic ordering predicate <;
arithmetic operators + and x; one-place predicate symbols R and N to represent real
and natural numbers; and the two-place function symbol P to represent probability. In
addition, there is a predicate D to represent elements of the domain; and a countable
collection L, L,, ... of labels as names for individuals. If & already has mathematical
symbols and mathematical axioms consistent with our probability axioms, we can
make use of the existing logical machinery; otherwise new symbols are added.

3.2 The axioms

Domain axioms. Our first step is to relativize the domain axioms to D. This is
achieved through a standard syntactic translation, e.g., Vx @(x) becomes Vx
D(x)— @(x), and the sentence Ix @(x) becomes Ix D(x)A ¢(x) (c f., [9]).

Integer arithmetic. We require enough integer arithmetic to allow Godel
numbering and reasoning about provability. The following axioms, together with the
RCF axioms defined below (which apply to natural numbers by virtue of inclusion)
serve this purpose:

N1. Vx Mx)— R(x)

N2. MO0)

N3. Vx Mx)— Mx+1)

N4. Vx Vy Nx) A M) = (x<y+1) = (x = y))

N5. Vx N(x)— =(x < 0)

N6. All universal closures of formulas M(x)— (@(0)AVx(p(x) = @x+1))) —
Vx ¢(x), where ¢(x) has x (and possibly other variables) free.

Real closed field axioms. As described above, probabilities are formalized as
elements of a real closed field (RCF), the first-order theory of the real numbers.
Axioms for a real closed field can be found in [13]. Note that by virtue of being
natural numbers, the constants O and 1 are also real numbers.

R1. Additive and multiplicative closure: Yx Yy R(xX)AR(y) = R(x+y) A R(x - y)

R2. Commutativity: Vx Vy ROOARY) = (x+y=y+x) A (x -y =y X)

R3. Associativity: VxXVyVz ROOARMAR(EZ) — ((x+y) +z=x+ (¥ +2))
Ay z=x(y-2)

R4. Identity: R(0) A R(1) A0zl A (VX R(x) = (x+0=x) A (x - 1 =X)))

R5. Inverses: Vx R(x) = (y(x+y=0) A (x20 = Ay (xz=1)))

R6. Distributive Law: YxXVyVz ROOARMAREZ) —= (x-+2) =G y) +(x-2))
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R7. Total order: VXVyVz ROARGAR(Z) = (x<yvy<x)AXx=<yAy=<x
— x=y) A (X<y A y<z —> x<7))
R8. Agreement of ordering with field operations: : YxVy¥Vz R(X)AR(Y)AR(Z) —
((x=y = x+z2=y+2) A ((0=xA0=<y)—=0=<x"y))
R9. First-order closure: The following axiom schema holds for all one-place
formulas @(x): Vx (¢p(x) = R(x)) A Ix @(x) A Iy (R(Y) A Vx (p(x) = x<y))
= Iy (RO A Vx (¢px) = x=<y) A VZ(R(2) A Vx (¢(x) > x<z) <> y=<2)

Axiom schema RO is the first-order “image” of the least upper bound axiom. It
states that if ¢(x) represents a non-empty subset of the real numbers and ¢(x) has a
real upper bound, then ¢(x) has a real least upper bound. Tarski [14] showed that the
theory of real closed real fields can be characterized as an ordered field in which
every element has a square root and every polynomial of odd degree has a root. R9
covers not only relations definable in the language of the real numbers, but also any
real relation definable in &*. Thus, the above axioms are stronger than the standard
RCF axioms.

Probability axioms. Good [4] stresses that probability is properly a two-place func-
tion P(EIH), taken to mean the probability that would be assigned to the proposition £
if the proposition H were known to be true. Good introduces the symbol H* to denote
“the usual assumptions of logic and pure mathematics,” which must be taken as given
in all probability assessments. He makes no attempt to decide exactly what should be
assumed as part of H*, and says it is conceivable that H* cannot be expressed in a
finite number of words. Because our concern is reasoning by computational agents,
we depart from Good and insist that the underlying assumptions be formalized as a
first-order axiomatic theory. We require that H* be expressed as a finite comp-
utational structure, with an effective procedure for generating the axioms explicitly,
and an effective procedure for checking whether any given sentence is an axiom. In
particular, we assume that H* includes the axioms N1-N5, R1-R9, and P1-P6 (below).

We introduce into &* the two-place function symbol P. The value of P represents
a meaningful probability whenever the following conditions are met (i) the first
argument of P is the Godel number #0 of a sentence o of &*; (ii) the second
argument of P is the Godel number #@(x) of a one-place open formula ¢(x) defining a
relation representable in 7,. = Cn(A*); and (iii) the relation represented by g¢(x)
contains the Godel numbers of all axioms in A*. The formula ¢(x) is used to represent
the set of sentences whose Godel numbers satisfy @. P(#o, #@(x)) represents the
probability of o, given that all sentences in the set represented by g¢(x) are true.
Condition (#ii) says that the domain axioms and probability axioms are taken as given.
For readability, we write P(o | ¢) for P(#o, #¢(x)) and P(o | 7, ) for P(#0, #y(x)),
where #1(x) represents the union of the relation defined by ¢ and {#7}. That is, P(o|
7, @) represents the likelihood of o under the assumption that 7 and all sentences in
the set represented by ¢(x) are true.

With this preamble, we now present the probability axioms. The axioms are stated
informally for readability; stating them formally is straightforward. The axioms are
universally quantified over (Godel numbers of) sentences o and , and formulas ¢.

Pl. 0=<P(olp) =< 1.
P2. If A* + o, then P(ol A*) =1.
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P3. If P(ont! @) =0, then P(ovtl @) =P(ol @) + P(t| ¢).
P4. P(ontl @) =P(ol T, p) x P(t| ¢)
P5. If o<1, then P(ol @) = P(t| ¢), and P(y| 0, A*) = P(y| T, A*) for all y.

The first three axioms are the usual axioms for finitely additive probability. P4
formalizes Bayesian conditioning. P5 is taken from Good [4], and formalizes the
notion that logically equivalent propositions should be interchangeable with regard to
rational degrees of belief.

Some authors (including Good and de Finetti) regard finite additivity as sufficient
to formalize rational degrees of belief. Other authors consider countable additivity to
be essential. Because countable additivity is typically taken for granted in
applications, we regard it as essential. However, full formalization of countable
additivity is not possible within FOL, because FOL cannot express the notion of an
arbitrary infinite sequence of Godel numbers. To formalize countable additivity, we
adopt a condition introduced by Gaifman [15]. Gaifman’s condition can be formalized
as a first-order axiom schema. Informally, it is stated as:

P6. P(Vx y(x) | @) is the supremum of the values P(y(k;)v---viy(k,) | ¢), for all
finite conjunctions y(k,)v:--vy(k,) of sentences, formed by substituting
constant terms of & into Y(x).

The constants k; may be constants of the original language &, numerical constants
(0 or 1), or label constants (one of the £;). The label constants provide enough con-
stants to cover individuals that might not otherwise be referenced explicitly.

3.3 Terminology

The following definitions provide some necessary terminology.

Definition 1: Let ¢/be a first-order language. A p-language &* for “/is a language
that augments ¢ with symbols for domain elements, real and natural number
arithmetic, and probability, as described in Section 3.1 above. A p-theory T,. for an
axiomatic theory 7, in ¢/ augments the axioms A of 7, as described in Section 3.2
above, to include: (i) axioms relativizing axioms in A to elements of the original
domain; (if) axioms N1-NS5, R-1R9, and P1-P6; and (i) additional axioms defining a
domain-specific probabilistic theory. A p-theory T,. containing only N1-N5, RCF,
and P1-P6, with no domain axioms, is called the base p-theory for &

Definition 2: Let &/ be a first-order language; let & be a p-language for & An
axiomatic theory T,. of &* is probabilistically complete if it assigns a unique prob-
ability P(o | A*) to every sentence o of ¢ That is, T is probabilistically complete if
for every sentence o there is a unique real number p, such that 7. - P(o | A*) = p,.

A probabilistically complete p-theory assigns a single RCF element to each
sentence. Incomplete p-theories give rise to interval probabilities. Some writers have
advocated founding the theory of probability on interval rather than point-valued
probabilities (e.g., [4]). The possibility of incomplete p-theories is attractive when the
KB designer is not able to specify a probability for every sentence. With the advent of
first-order languages based on graphical probability models, it is now possible to
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define probabilistically complete p-theories suitable for many interesting problems, to
develop workable knowledge engineering procedures for specifying p-theories, and to
devise tractable inference and learning algorithms for p-theories.

Definition 3: Let &be a first-order language; let T be a theory of & and let &* be
a p-language for & An axiomatic theory T,. of &* corresponds to T if T |- o implies
T, "P(ol A*) =1 for any sentence o of & T4« corresponds strongly to Tif T - o if
and only if T« - P(ol A*) = 1.

Clearly, if the axioms A of T, are included among the axioms A* of T, then T,
corresponds to T,. In general, augmenting A with N1-N5, RCF, and P1-P6, will not
determine a unique p-theory. If it is assumed that A incorporates all objective,
incontrovertibly true domain knowledge, then adding probabilistic axioms to com-
plete a p-theory brings subjectivity into the KB.

Of course, in actual applications, it is rarely the case that all logical axioms are
incontrovertibly true assertions. More realistically, some axioms will be highly
questionable; others, though quite useful, may be downright false. Axioms in real
KBs are carefully engineered to be “good enough for the task.” A great deal of
subjective judgment goes into developing a “good enough” KB. In short, the logical
axioms of a KB are often as subjective as the probabilities, and sometimes more so.

Definition 4: Let &/ be a first-order language, ¢/* a p-language for ¢ and T,. a
probabilistically complete axiomatic theory of &*. Let ¢(x.y) be a formula of &* that
functionally represents a recursive sequence of Godel numbers of sentences of &*
(i.e., for each natural number 7, there is exactly one sentence o, such that ¢(n, #0,) is
provable from A*). We say the sequence 0;, 0,, ... of sentences is negligible if for

every RCF element u > 0 there is a natural number n such that P(o, A =+ A 0, | A*) <
u. The sequence 0y, 0y, ... is certain if for every RCF element u > 0 there is a natural

number #n such that P(o;A°- A0, | A*) > 1- u.

A negligible sequence is vanishingly improbable. That is, the probabilities of its
finite-length leading segments tend to zero as their lengths increase without bound.
Clearly, any sequence containing a zero-probability sentence is negligible. We can
define negligible or certain individual sentences or finite-length sequences of
sentences in the obvious way, by appending infinitely many copies of a tautology to
the end of the sequence. An individual sentence is certain if it has probability 1 and
negligible if it has probability zero.

Defintion 5: Let &/be a first-order language; let &* be a p-language for ¢ let T*
be a theory of &*. The core of T* is the set of sentences {0 : ois certain under 7%}.

4 Semantics

This section defines semantics for p-theories.

Standard first-order semantics. The logic set forth in this paper is a standard,
untyped first-order logic. As such, it can be given standard first-order model-theoretic
semantics.

A first-order structure for a theory in &* is a pair (D, m), where D is a non-empty
set called the domain of interpretation, and m assigns to each function, constant, and
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relation symbol of &* a function, constant or relation of the correct arity on D. A
structure (D, m) implies a truth-value for each sentence of &*. (D, m) is called a
model of T* if every sentence in T* is true in (D, m). Models of T* are sometimes
called possible worlds for T*. A sentence o is implied by A* if it is true in all models
of A*, and satisfiable if it has a model.

Standard semantics for p-theories gives rise to a seeming conflict between logical
truth and probabilistic certainty: there may be logically possible sentences that have
probability zero. For example, we might represent successive tosses of a symmetric
die as independent and identically distributed with probability 1/6 of landing on each
face. In a hypothetical infinite sequence of tosses, the frequency of tosses that land on,
say, the number 2 is certain to be 1/6. Any sequence of outcomes that does not have a
limiting frequency of 1/6 is negligible, in the sense of D4. Nevertheless, every
sequence of outcomes is logically possible. Standard first-order semantics cannot
distinguish between typical realizations of this probabilistic process (i.e., “random
looking” sequences with limiting frequency 1/6) and highly atypical realizations (e.g.,
sequences that have the incorrect limiting frequency, or exhibit some other unusual
regularity, such as a 2 on every sixth toss). Suppose the sentence o; asserts that the
limiting frequency is 1/6 that the die lands on 2; the sentence o, asserts that every toss
comes up 2; and the sentence o; asserts that a 2 occurs on the first two tosses. The
sentence o; has probability 1; o, has probability zero; and o3 has probability 1/36.
None of these sentences is either implied by or inconsistent with the logical axioms.
Traditional first-order semantics seems to provide no way to differentiate among
them. For this reason, many authors have considered standard first-order semantics
inadequate for probabilistic theories, and have turned to alternative semantics.

Measure models. A common approach to giving semantics to probabilistic logics is
through a probability measure on structures. Using results from measure theory,
Gaifman [15] showed that a coherent probability assignment to quantifier-free
sentences can be extended to a countably additive probability measure on a o-algebra
of subsets of {(D, m)}, the set of all structures on D = {£,, £,, ...}.2 In measure
model semantics, a sentence is assigned probability equal to the measure of the set of
models of the sentence.

Just as traditional first-order semantics is defined in terms of set theory, measure
model semantics is defined in terms of measure theory. Measure theory is the branch
of real analysis used to formalize probability. In measure model semantics, it is
generally taken for granted that probabilities are interpreted as real numbers. As noted
above, the semantic condition that probabilities must be interpreted as real numbers
results in a non-axiomatizable logic that lacks a complete proof theory. On the other
hand, axiomatic set theory provides sufficient mathematical machinery to prove the
standard results of measure theory. If A* contains set theory axioms, then the results
of measure theory hold in all models of A*. Therefore, a probabilistically complete p-
theory that includes set theory axioms has a unique measure model. A probabil-
istically incomplete p-theory has a family of measure models, one for each

2 Gaifman’s domain of interpretation included the constants of the original language as well as
the added constants; the original constants are then self-interpreted. This requires that no two
constants be equal, an assumption we do not make.
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distribution consistent with 7,.. Any measure model assigns probability zero to the set
of models of negligible sequences.

Under measure model semantics, the logical and probabilistic aspects of a theory
remain semantically distinct. Provable sentences are true in all ordinary models of
T,:, and hence have probability 1 in any measure model of T,.. Unsatisfiable sen-
tences are false in all models and hence have probability zero in any measure model.
Other than P1-P6, probabilities for other sentences are unrestricted. In particular, a
sentence may provably have probability 1 and yet be false in some models.

Certainty restriction semantics. If a sentence has probability 1, then conditioning
on the sentence does not change its probability or the probability of any other
sentence. Furthermore, because there are only countably many sentences, we can
condition on all certain sentences — the core of the p-theory — without changing any
probabilities. We can use this fact to rule out negligible sentences as models of a p-
theory. Note that a p-theory T,. has enough logical machinery to define a provability
predicate. We can thus introduce an axiom schema that infers o from 7,. - P(o| A*)
= 1. Adding this axiom schema excludes provably negligible sentences as models of
T,.. We call this axiom schema the certainty restriction. Adding the certainty
restriction schema to 7. reduces the set of models of T,. without changing either the
probability of any sentence or any of the measure models consistent with 7.

A rational agent makes no practical distinction between propositions with
probability one and those provable from its knowledge base. Many texts use limiting
frequencies (as well as other certain events) to define the meaning of probability
statements (e.g., that “fair die” means that the limiting frequency of tosses landing on
each face is 1/6). This suggests that the certainty restriction captures some aspect of
the intuitive semantics of probability as it is commonly applied and understood.

Strong probabilistic semantics. The certainty restriction and the conditioning
restriction can be formulated in first-order logic. This means that these conditions can
be imposed as satisfaction criteria for p-theories without any change to first-order
semantics. However, these conditions cannot capture the stronger semantic notion that
infinite-length negligible sequences should not occur in models of a probabilistic
theory. Strong probabilistic semantics requires that no model of a p-theory may
contain all sentences in a negligible sequence of sentences.

Each negligible sequence can be identified with an effectively null binary string, as
defined by Martin-Lof [6]. Martin-Lof randomness has been studied extensively (c.f.,
[7]), and is popular as a characterization of what it means for a sequence to be a
typical realization of a probability distribution on sequences. Dawid’s [8] calibration
criterion is closely related to Martin-Lof randomness: the set of uncalibrated
sequences for a given probability distribution is effectively null for that distribution.

If the axioms A* of our p-theory are strong enough to formalize measure theory,
then we can prove that the set of negligible sequences has probability zero under the
measure model for A*. Thus, negligible sequences can be excluded as models of A*
without changing any probabilities. However, excluding the negligible sentences as
models means abandoning traditional first-order semantics, because the proposition
that a sequence is negligible cannot be formalized as a recursive first-order axiom
schema. As a consequence, there is no complete proof system for probabilistic logic
with strong probabilistic semantics.
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Frequency probability. Some authors have argued that fundamentally different
kinds of probability are required to formalize different metaphysical notions such as
subjective degrees of belief, long-run frequencies, physical randomness, or
algorithmic randomness. Others argue that a single kind of probability is adequate for
all these metaphysical positions. Good ([4], [16]) and Barnett [17] discuss the
different viewpoints on this issue.

Because the same mathematics is applied to reason about all these kinds of
probability, and a proliferation of different logics complicates knowledge
representation and knowledge interchange, it seems reasonable to investigate whether
a single computational logic might be applicable to different notions of probability.

We have argued above that p-theories can represent subjective degrees of belief
about propositions that can neither be proven nor disproven. We argue that p-theories
can represent long-run frequencies and physical randomness. The basic idea derives
from a theorem of de Finetti [18] stating that an infinitely exchangeable sequence of
events is mathematically equivalent to one a frequentist or proponent of physical
propensity would model as independent and identically distributed (iid) given an
unknown parameter, together with a subjective probability distribution on values of
the parameter. To the frequentist, the parameter corresponds to the unknown long-run
frequency. To the propensity theorist, the parameter corresponds to the unknown
propensity. To the strict subjectivist, the parameter is a modeling fiction that provides
a parsimonious representation for an exchangeable sequence.

Infinitely exchangeable sequences in p-theories are represented as first-order
axiom schemas stating that different orderings of finite-length initial segments of a
sequence are equally probable. P-theories can also represent iid propositions with
unknown parameters. Incomplete p-theories can be used if no subjective distribution
is available (perhaps due to philosophical aversion to subjective probability) for the
unknown parameter. Thus, frequency and propensity probability as well as degree of
belief probability can be represented with p-theories.

Summary: Semantics for p-theories. With no change to standard first-order
semantics, a complete p-theory assigns probabilities consistently to sentences of &*
such that the axioms A* have probability 1. By including the certainty restriction
axiom schema in A*, we can identify probability 1 with provability from A*. If A*
includes set theory axioms, there is a unique measure model (probability measure
over models) for each complete p-theory. Requiring that all models of a p-theory be
non-negligible in the sense of Martin-Lof would take us out of the realm of first-order
model theory.

5 Learning and Dogmatism

An attractive feature of probability theory is its inbuilt support for learning from
observation. We can add any new non-negligible axiom to a p-theory, and Bayesian
conditioning can be used to obtain an updated p-theory with the evidence as an axiom.
As new observations accrue, we obtain a sequence of p-theories, each containing
additional axioms representing new information obtained since the previous p-theory
in the sequence.
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Fundamental to the scientific attitude is lack of dogmatism. In our context, non-
dogmatism means assigning probability zero only to propositions known in-
controvertibly to be false. A dogmatic theory will be overturned if it makes definite
empirical predictions that turn out to be false. However, a theory can be dogmatic
without ever being proven false. For example, if a theory starts out certain that a coin
is fair, it can never learn that the coin is biased, no matter how many trials are
observed. A theory that allows for bias will eventually become convinced that a
biased coin is biased, even if it begins with a high likelihood that the coin is fair.

If we begin with an axiomatic theory T, of & and assume that the axioms A
represent a set of sentences known incontrovertibly to be true (whether by definition
or by meticulous empirical observation), we would like to be able to represent a p-
theory that assigns probability zero to exactly those sentences that can be disproven
from A. We say such a p-theory corresponds non-dogmatically to T,. There are many
reasons, including tractability, convenience of specification, economy of commu-
nication, and the like, that we might choose to represent and reason with a dogmatic
theory, as long as it is judged “good enough” for the task at hand. But as a matter of
principle, we want the capability to represent a non-dogmatic theory, even if
reasoning with it is impractical.

A result of Gaifman and Snir [11] would seem to doom any hope of finding a non-
dogmatic theory. They proved that, under measure-model semantics, every axiomatiz-
able theory is dogmatic. On the other hand, Laskey [19] described how to specify a
non-dogmatic p-theory corresponding to any consistent, finitely axiomatizable first-
order theory. This apparent inconsistency is resolved by noting that Gaifman and Snir
assume that all true sentences of natural number arithmetic are base axioms of the
logical language, which is therefore not axiomatizable. Gaifman and Snir’s no-go
result does not apply to axiomatic first-order probability logics. An inevitable price of
the axiomatic first-order approach, implied by Tarski’s undefinability theorem, is that
any complete p-theory must assign probability intermediate between O and 1 to some
sentences in the language of arithmetic. This is natural if we view probability as a
degree of provability. No first-order axiom system can prove all true sentences of
arithmetic; therefore, no axiomatic first-order probability logic can assign probability
1 to all true sentences of arithmetic.

6 Conclusion

As probabilistic languages find increasing application to the Semantic Web (e.g.,
[20]), there is a need for a logical foundation that integrates traditional SW logics with
probability logic. The logic presented here formalizes probability as a standard
axiomatic first-order theory, with no alteration to traditional first-order model
theoretic semantics. Advantages of this approach are the ability to represent p-theories
as finite computational structures amenable to machine processing, the availability of
a complete proof system, and compatibility with semantics of traditional logic-based
languages. While this paper focuses on expressive power of the logic, SW
applications require tractability and scalability. Future work will consider tractable
restrictions of the logic, as well as fast approximate inference methods.
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Abstract. Probabilistic Description Logics are the basis of ontologies
in the Semantic Web. Knowledge representation and reasoning for these
logics have been extensively explored in the last years; less attention has
been paid to techniques that learn ontologies from data. In this paper
we report on algorithms that learn probabilistic concepts and roles. We
present an initial effort towards semi-automated learning using proba-
bilistic methods. We combine ILP (Inductive Logic Programming) meth-
ods and a probabilistic classifier algorithm (search for candidate hypothe-
ses is conducted by a Noisy-OR classifier). Preliminary results on a real
world dataset are presented.

1 Introduction

Ontologies are key components of the Semantic Web, and among the formalisms
proposed within Knowledge Engineering, the most popular ones at the moment
are based on Description Logics (DLs) [1]. There are however relatively few
ontologies available, and on very few subjects. Moreover, building an ontology
from scratch can be a very burdensome and difficult task; very often two domain
experts design rather different ontologies for the same domain [2]. Considerable
effort is now invested into developing automated means for the acquisition of
ontologies. Most of the currently pursued approaches do not use the expressive
power of languages such as OWL, and are only capable of learning ontologies of
restricted form, such as taxonomic hierarchies [3].

It is therefore natural to try to combine logic-based and probabilistic ap-
proaches to machine learning for automated ontology acquisition. Inspired by
the success of Inductive Logic Programming (ILP) [4] and statistical machine
learning, in this paper we describe methods that learn ontologies in the recently
proposed Probabilistic Description Logic CRALC [5]. In using statistical methods
we wish to cope with the uncertainty that is inherent to real-world knowledge
bases, where we commonly deal with biased, noisy or incomplete data. Moreover,
many interesting research problems, such as ontology alignment and collective
classification, require probabilistic inference over evidence.

Probabilistic Description Logics are closely related to Probabilistic Logics
that have been extensively researched in the last decades [6,7]. Some logics [8]
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admit inference based on linear programming, while other resort to indepen-
dence assumptions and graph-theoretical models akin to Bayesian and Markov
networks. Despite the potential applicability of Probabilistic Description Logics,
learning ontologies expressed in these logics is a topic that has not received due
attention. In principle, it might be argued that the same methods for learning
probabilistic logics might be applied, with proper account of differences in syntax
and semantics. In this paper we follow this path and report on some similarities
and differences that may be of interest.

The semantics of the Probabilistic Description Logic CRALC [5] is based on
measures over interpretations and on assumptions of independence. Scalability
issues for inference in CRALC have been addressed so that we can run inference
on medium size domains [9]. There are two learning tasks that deserve atten-
tion. First, learning probability values, perhaps through a maximum likelihood
estimation method. We use this technique and, due to uncertainty in Semantic
Web datasets, we employ the EM algorithm. The second task is learning logical
constructs, where we are interested in finding a set of concepts and roles that
best fit examples and where probabilistic assessments can be assigned. In ILP al-
gorithms such as FOIL [10], one commonly relies on a cover function to evaluate
candidate hypotheses. We approach learning concepts as a classification task,
and based on an efficient probabilistic Noisy-OR classifier [11,12], we guide the
search among candidate structures.

Section 2 reviews key concepts useful to the remainder of the paper. In Sec-
tion 3, algorithms for learning CRALC ontologies are introduced. Once these
algorithms have formally stated, we wish to explore semi-automated reasoning
from a real world dataset — the Lattes curriculum platform. A first attempt at
constructing a probabilistic ontology using this dataset is reported in Section 4.

2 Background

Assume we are provided with a repository of HTML pages where researchers and
students have stored data about publications, courses, languages, and further
relational data. In order to structure such knowledge we might choose to use
ontologies. We may extract concepts such as Researcher and Person, and we
may establish relationships such as C among them. These concepts are often
expressed using Description Logics (Section 2.1). Suppose we are not able to
precisely state membership relations among concepts, but instead we can give
probabilistic assessments such as P(Student|Researcher) = 0.4. Such assessments
are encoded in Probabilistic Description Logics such as CRALC (Section 2.2).
Suppose further that we look for automated means to learn ontologies given
assertions on concepts such as Student(jane); this task is commonly tackled by
Description Logic Learning algorithms (Section 2.3).

2.1 Description Logics

Description Logics (DLs) form a family of representation languages that are typ-
ically decidable fragments of First Order Logic (FOL) with particular seman-



An Algorithm for Learning with Probabilistic Description Logics 65

tics [13,14]. DLs represent knowledge in terms of objects, concepts, and roles.
Each concept in the set of concepts Nc = {C,D,...} is interpreted as a subset
of a domain (a set of objects). Each role in the set of roles Ng = {r,s,...} is
interpreted as a binary relation on the domain. Individuals represent the objects
through names from the set of names Nz = {a,b,...}. Information is stored in
a knowledge base divided in (at least) two parts: the TBox (terminology) and
the ABox (assertions). The TBox describes the terminology by listing concepts
and roles and their relationships. The ABox contains assertions about objects.

Complex concepts are built using atomic concepts, roles and constructors.
Depending on the constructors involved one can obtain different expressive power
and decidability properties. The semantics of a description is given by a domain
A and an interpretation, that is a functor -Z. We refer to [13] for further back-
ground on Description Logics.

One of the central ideas in DL is subsumption [14]: Given two concepts de-
scriptions C and D in 7, C subsumes D denoted by C J D, iff for every inter-
pretation Z of 7 it holds that C* O DZ. Also, C = D amounts to C 3 D and
D3C

Subsumption is a useful inference mechanism that allow us to perform stan-
dard reasoning tasks such as instance checking and concept retrieval. Instance
checking is valuable for our ILP methods because it amounts to produce class-
membership assertions: K = C(a), where K is the knowledge base, a is an individ-

ual name and C is a concept definition given in terms of the concepts accounted
for in KC.

2.2 The Logic cRALC

The logics mentioned in Section 2.1 do not handle uncertainty through prob-
abilities. It might be interesting to assign probabilities to assertions, concepts,
roles; the Probabilistic Description Logic CRALC does just that.

CRALC is a probabilistic extension of the DL ALC. The following construc-
tors are available in ALC: conjunction (CMD), disjunction CUD, negation (=C),
existential restriction (Ir.C), and value restriction (Vr.C). Concepts inclusions
and definitions are allowed and denoted by C C D and C = D, where C is a
concept name. The semantics is given by a domain D and an interpretation Z.
A set of concept inclusions and definitions is a terminology. A terminology is
acyclic if it is a set of concept inclusions/definitions such that no concept in the
terminology uses itself.

A key concept in CRALC is probabilistic inclusion, denoted by P(C|D) = «,
where D is a concept and C is a concept name. If the interpretation of D is the
whole domain, then we simply write P(C) = «. We are interested in comput-
ing a query P(A,(ag)|A) for an ABox A = {A;(a;)}}L, (this is an inference).
Assume also that C in role restrictions 3r.C and Vr.C is a concept name. As prob-
abilistic inclusions must only have concept names in their conditioned concept,
assessments such as P(¥r.C|D) = a or P(3r.C|D) = « are not allowed.

We assume that every terminology is acyclic; this assumption allows one to
draw any terminology 7 as a directed acyclic graph G(7): each concept name
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is a node, and if a concept C directly uses concept D, then D is a parent of C
in G(7). Each existential and value restriction is added to the graph G(7'). As
each one of these restrictions directly uses r and C, the graph must contain a
node for each role r, and an edge from r to each restriction directly using it. Each
restriction node is a deterministic node in that its value is completely determined
by its parents.

The semantics of CRALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences can be computed by a first order
loopy propagation algorithm that has been shown to produce good approxima-
tions for medium size domains [9].

2.3 Inductive Logic Programming and Description Logic Learning

ILP is a research field at the intersection of machine learning [15] and logic
programming [16]. It aims at a formal framework as well as practical algorithms
for inductively learning relational descriptions from examples and background
knowledge. Learning is commonly regarded as a search problem [17]; indeed, in
ILP there is a space of candidate solutions, the set of “well formed” hypotheses
H. and an acceptance criterion characterizing solutions. In concept-learning and
ILP the search space is typically structured by means of the dual notions of
generalization and specialization.

A significant algorithm for ILP is FOIL [10]. This algorithm moves from an
explicit representation of the target relation (as a set of tuples of a particular
collection of constants) to a more general, functional definition that might be
applied to different constants. For a particular target relation, FOIL finds clauses
in FOL one at a time, removing tuples explained by the current clause before
looking for the next through a cover method. FOIL uses an information-based
heuristic to guide its search for simple, general clauses. Because of its simplicity
and computational efficiency, we have chosen to develop a covered approach
when learning Probabilistic Description Logics.

There have been notable efforts to learn ontologies in Description Logics;
some of these previous results have directly inspired our work. As noted by
Fanizzi et al [14], early work on learning in DLs essentially focused on demon-
strating the PAC-learnability for various languages derived from CLASSIC.
Many approaches to the problem of learning concept definitions in DL formalisms
can be classified in two categories [2]: in one category the problem is approached
by translating it to another formalism in which concept learning has already
been investigated, while in the other category the problem is approached in the
original formalism.

One example of the first approach can be found in the work of Kietz [18],
where the hybrid language CARIN-ALN is used [19]. This language combines a
complete structural subsumption service in a DL with Horn logic, where terms
are individuals in the domain. Likewise, in the AL-log framework [20], DATA-
LOG clauses are combined with ALC constructs. In the same direction, DL+log
[21] allows for the tight integration of DLs and DATALOG. Arguably, the decid-
able knowledge representation framework SHZQ+log [1], is the most powerful
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among the ones currently available for the integration of DLs and clausal logic.
First, it relies on the very expressive DL SHZ Q. Second, it allows for inducing a
definition for DL concepts thus having ontology elements not only as input but
also as output of the learning process.

The problem of translation turns out to be similar to an ILP problem. There
are two issues to address: incompatibilities between DLs and Horn Logic, and
the fact that the OWA! is used in DLs.

The other approach, solving the learning problem in the original formalism,
can be found in the work of Cohen and Hirsh [22], which uses a pure DL-based
approach for concept learning, in this case on the CLASSIC DL language. In
these algorithms, ILP has been a significant influence, as refinement operators
have been extensively explored. Badea and Nienhuys-Cheng [23] suggest a re-
finement operator for the ALER description logic. They also investigate some
theoretical properties of refinement operators that favour the use of a downward
refinement operator to enable a top-down search.

Learning algorithms for DLs (in particular for the language ALC) were cre-
ated by Tannone et al [2] that also make use of refinement operators. Instead
of using the classical approach of combining refinement operators with a search
heuristic, they developed an example driven learning method. The language,
called YINYANG, requires lifting the instances to the concept level through a
suitable approximate operator (most specific concepts MSCs) and then start
learning from such extremely specific concept descriptions. A problem of these
algorithms is that they tend to produce unnecessarily long concepts. One reason
is that MSCs for ALC and more expressive languages do not exist and hence
can only be approximated.

These disadvantages have been partly mitigated in the work of Lehmann
[24], where approximations are not needed because it is essentially based on a
genetic programming procedure lying on refinement operators whose fitness is
computed on the grounds of the covered instances. In the DL-LEARNER system
[3] further refinement operators and heuristics have been developed for the ALC
logic.

The DL-FOIL system [14] is a new DL version of the FOIL [10] algorithm,
that is adapted to learning the DL representations supporting the OWL-DL
language. The main components of this new system are represented by a set of
refinement operators borrowed from other similar systems [2, 3] and by a differ-
ent gain function (proposed in FOIL-I [25]) which must take into account the
OWA inherent to DLs. In DL-FOIL, like in the original FOIL algorithm, the
generalization routine computes (partial) generalizations as long as they do not
cover any negative example. If this occurs, the specialization routine is invoked
for solving these sub-problems. This routine applies the idea of specializing us-
ing the (incomplete) refinement operator. The specialization continues until no
negative example is covered (or a limited number of them).

! Open World Assumption mantains that an object that cannot be proved to belong
to a certain concept is not necessarily a counterexample for that concept [14].
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3 Probabilistic Description Logic Learning

In this section, we focus on learning DL axioms and probabilities tailored to
CRALC. To learn the terminology component we are inspired by Probabilistic
ILP methods and thus we follow generic syntax and semantics given in [16]. The
generic supervised concept learning task is devoted to finding axioms that best
represent assertions positive (covered) and negatives, in a probabilistic setting
this cover relation is given by:

Definition 1. (Probabilistic Covers Relation) A probabilistic covers rela-
tion takes as arguments an example e, a hypothesis H and possibly the back-
ground theory B, and returns the probability value P(e|H, B) between 0 and 1 of
the example e given H and B, i.e., covers(e, H, B) = P(e|H, B).

Given Definition 1 we can define the Probabilistic DL learning problem as
follows [16]:

Definition 2. (The Probabilistic DL Learning Problem) Given a set E =
E,UE; of observed and unobserved examples E, and E; (with E,NE; = 0) over
the language Lg, a probabilistic covers relation covers(e, H, B) = P(e|H, B), a
logical language Ly for hypotheses, and a background theory B, find a hypothesis
H* such that H* = argmaxpscore(E, H, B) and the following constraints hold:
Ve, € E, : covers(ep,, H*, B) > 0 and Ve, € E; : covers(e;, H*,B) = 0. The
score is some objective function, usually involving the probabilistic covers relation
of the observed examples such as the observed likelihood HepeEp covers(ep, H*, B)
or some penalized variant thereof.

Negative examples conflict with the usual view on learning examples in sta-
tistical learning. Therefore, when we speak of positive and negative examples we
are referring to observed and observed ones.

As we focus in CRALC, B = K = (7, A), and given a target concept C,
E = Ind{(A) U Ind: (A) 3 Ind(A), are positive and negative examples or
individuals. For instance, candidate hypotheses can be given by C 3 Hy, ..., Hg,
where H; =BMdD. T, H, = AUE,...

We assume each candidate hypothesis together with the example e for the tar-
get concept as being a probabilistic variable or feature in a probabilistic model?;
according to available examples, each candidate hypothesis turns out to be true,
false or unknown whether result for instance checking C(a) on K, Ind(A) is re-
spectively true, false or unknown. The learning task is restricted to finding a
probabilistic classifier for the target concept.

A suitable framework for this probabilistic setting is the Noisy-OR classifier,
a probabilistic model within the Bayesian networks classifiers commonly referred
to as models of independence of clausal independence (ICI) [12]. In a Noisy-OR
classifier we aim at learning a class C given a large number of attributes.

As a rule, in an ICI classifier for each attribute variable A;,7 = 1,...,k
(A denotes the multidimensional variable (4;,...,A;) and a = (a1,...,ax)

2 A similar assumption is adopted in the nFOIL algorithm [26].
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its states) we have one child A; that has assigned a conditional probability
distribution P(A;|Aj). Variables A;-,j = 1,...,k are parents of probability of
the class variable C. Py(C|A’) represents a deterministic function f that assigns
to each combination of values (af,...,qa}) a class c. A generic ICI classifier is
illustrated in Figure 1 .

/—@

Fig. 1. ICI models [12].

The probability distribution of this model is given by [12]:

E

Pu(c,a’,a) = Par(cla’) [] Pu(aflay) - Par(ay),
j=1

where the conditional probability Pys(c|a’) is one if ¢ = f(a’) and zero otherwise.
The Noisy-OR model is an ICI model where f is the OR function:
Py(C =0[A"=0) =1 and Py(C =0|A’ #0) = 0.

The joint probability distribution of the Noisy-OR model is

k
Pr () = Pu(ClAY, ..., A - <H Par (A A;) .PM(AJ-))

j=1
It follows that
Py(C =0]A =a) =[] Pu(4; =0|4; = a;), (1)
J

Py(C=1A=a)=1-[]Pu(4; =04, = a;). (2)

Using a threshold 0 < ¢ < 1 all data vectors a = (ay...,ax) such that
Py (C =0]A = a) < ¢ are classified to class C = 1.
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The Noisy-OR classifier has the following semantics. If an attribute A; is in a
state a; then the instance (a1,...,a;,...,ax) is classified as C' = 1 unless there
is an inhibitory effect, with probability Py (A} = 0[A; = a;). All inhibitory
effects are assumed to be independent. Therefore the probability that an in-
stance does not belong to class C' (C = 0), is a product of all inhibitory effects
[1; Pr (A} = 0|A; = a;). For learning this classifier the EM-algorithm has been
proposed [12]. The algorithm is directly applicable to any ICI model; in fact, an
efficient implementation resort to a transformation of an ICI model using a hid-
den variable (further details in [12]). We now shortly review the EM-algorithm
tailored to Noisy-OR, combination functions.

Every iteration of the EM-algorithm consists of two steps: the expectation
step (E-step) and maximization step (M-step). In a transformed decompos-
able model the E-step corresponds to computing the expected marginal count
n(4], A;) given data D = {el,...,e"} (e! = {c},a’} = {c%,al,...,al}) and
model M:

n(A;, A1) =Y Pu(Aj, Alle’) forall 1 =1,k
i=1
where for each (aj, a;)

Py (A = a”ei) if qp = a},

1 _ AN
Pu(A = a, A = ayfe’) = { 0 otherwise.

Assume a Noisy-Or classifier Py; and an evidence C' = ¢, A = a. The updated
probabilities (the E-step) of Aj for I =1,...,k can be computed as follows [12]:

1 if c=0and a; =0,
0 if c=0and q; =1,
—11i PM(A;_0|Al_al)HjPM(A;._mAj_aj)) if c=1and aj =0,
%'PM(A;:HAIZUJ) if c=1and q) =1,

where z is a normalization constant. The maximization step corresponds to set-

ting

_ (4, A
n(A)

Given the Noisy-OR classifier, the complete learning algorithm is described
in Figure 2, where A denotes the maximum likelihood parameters. We have used
the refinement operators introduced in [3] and the Pellet reasoner? for instance
checking. It may happen that during learning a given example for a candidate
hypothesis H; cannot be proved to belong to the target concept. This is not
necessarily a counterexample for that concept. In this case, we can make use of

Py (AjlA) Jforalll=1...,k.

3 http://clarkparsia.com/pellet/.
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Input: a target concept C, background knowledge K = (7,.A), a training set E =
Ind(A) U Indc (A) C Ind(A) containing assertions on concept C.
Output: induced concept definition C.

Repeat
Initialize C' = L
Compute hypotheses C' J Hj,..., H, based on refinement operators for ALC

logic

Let hi,..., hy be features of the probabilistic Noisy-OR classifier, apply the EM
algorithm

For all h;

Compute score [ | covers(ep, hi, B)

ep€EE,
Let A’ the hypothesis with the best score

According to ' add H' to C

Until score({h1,...,hi}, i, E) > score({hi, ..., hit1}, Xit1, E)

Fig. 2. Complete learning algorithm.

the EM algorithm of the Noisy-OR classifier to estimate the class ascribed to
the instance.

In order to learn probabilities associated to terminologies obtained for the
former algorithm we commonly resort to the EM algorithm. In this sense, we
are influenced in several respects from approaches given in [16].

4 Preliminary Results

To demonstrate feasibility of our proposal, we have run preliminary tests on
relational data extracted from the Lattes curriculum platform, the Brazilian
government scientific repository*. The Lattes platform is a public source of re-
lational data about scientific research, containing data on several thousand re-
searchers and students. Because the available format is encoded in HTML, we
have implemented a semi-automated procedure to extract content. A restricted
database has been constructed based on randomly selected documents. We have
performed learning of axioms based on elicited asserted concepts and roles, fur-
ther probabilistic inclusions have been added according to the CRALC syntax.
Figure 3 illustrates the network generated for a domain of size 2.

For instance, to properly identify a professor, the following concept descrip-
tion has been learned:

Professor = Person
M(3hasPublication.Publication LI Jadvises.Person LI 3worksAt.Organization)

When Person(0) ® is given by evidence, the probability value P(Professor(0)) =
0.68 (we have considered a large number of professors in our experiments), as

4 http://lattes.cnpq.br.
5 Indexes 0,1 ...n represent individuals from a given domain.
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Fig. 3. Relational Bayesian network for the Lattes curriculum dataset.

further evidence is given the probability value changes to:
P(Professor(0)|3hasPublication(1)) = 0.72,

and
P(Professor(0)|3hasPublication(1) L Jadvises(1)) = 0.75.

The former concept definition can conflict with standard ILP approaches,
where a more suitable definition might be mostly based on conjuntions. In con-
trast, in this particular setting, the probabilistic logic approach has a nice and
flexible behavior. However, it is worth noting that terminological constructs ba-
sically rely on the refinement operator used during learning.

Another query, linked to relational classification, allows us to prevent dupli-
cate publications. One can be interested in retrieving the number of publications
for a given research group. Whereas this task might seem trivial, difficulties arise
mainly due to multi-authored documents. In principle, each co-author would
have a different entry for the same publication in the Lattes platform, and it
must be emphasized that each entry is be prone to contain errors. In this sense,
a probabilistic concept for duplicate publications was learned:

DuplicatePublication = Publication
M(3hasSimilarTitle.Publication LI hasSameYear.Publication
LihasSameType.Publication))

It clearly states that a duplicate publication is related to publications that
share similar titleS, same year and type (journal article, chapter book and so on).
At first, the prior probability is low: P(DuplicatePublication(0)) = 0.05. Evidence
on title similarity increases considerably the probability value:

P(DuplicatePublication(0)|3hasSimilarTitle(0,1)) = 0.77.

6 Similarity was carried out by applying a “LIKE” database operator on titles.
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Further evidence on type almost guarantees a duplicate concept:
P(DuplicatePublication(0)|3hasSimilarName(1) M 3hasSameType(1)) = 0.99.

It must be noted that title similarity does not guarantee a duplicate document.
Two documents can share the same title (same author), but nothing prevents
them from being published on different means (for instance, a congress paper
and an extended journal article). Probabilistic reasoning is valuable to deal with
such issues.

5 Conclusion

In this paper we have presented algorithms that perform learning of both prob-
abilities and logical constructs from relational data for the recently proposed
Probabilistic DL ¢cRALC. Learning of parameters is tackled by the EM algo-
rithm whereas structure learning is conducted by a combined approach relying
on statistical and ILP methods. We approach learning of concepts as a classifi-
cation task; a Noisy-OR classifier has been accordingly adapted to do so.

Preliminary results have focused on learning a probabilistic terminology from
a real-world domain — the Brazilian scientific repository. Probabilistic logic
queries have been posed on the induced model; experiments suggest that our
methods are suitable for learning ontologies in the Semantic Web.

Our planned future work is to investigate the scalability of our learning meth-
ods.
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Abstract. The OWL is a language for representing ontologies but it
is unable to capture the uncertainty about the concepts for a domain.
To address the problem of representing uncertainty, we propose in this
paper, the theoretical aspects of our tool BeliefOWL which is based on
evidential approach. It focuses on translating an ontology into a directed
evidential network by applying a set of structural translation rules. Once
the network is constructed, belief masses will be assigned to the different
nodes in order to propagate uncertainties later.

1 Introduction

Many ontology definition languages have been developed to define ontologies in a
formal way. Among them the OWL 2 which is based on crisp logic. This language
suffers from its lack to represent real domains containing incomplete knowledge
or uncertain information. To overcome this, an extension of the OWL seems
to be a convenient solution. Many researches find this extension important and
try to propose approaches for handling uncertainty in ontology field. For that
purpose, two main mathematical theories have been applied: the probability
theory ([2],[7]) and the fuzzy sets theory ([4],[6]).

However not all the problems of uncertainty lend themselves to one of these
theories. We can find ourselves faced to situations where we are called to repre-
sent the total ignorance or the partial one about information concerning classes.
This can be resolved by applying the Dempster-Shafer theory [5]. At this stage,
we are interested to use this theory and especially we are encouraged to work
with the directed evidential networks [1] which are viewed as effective and appro-
priate graphical representation for uncertain knowledge. Adding to that, the use
of conditional belief functions provides a well representation of the uncertainty
in the relationships among the variables of a graph.

In this position paper we present our tool BeliefOWL as an approach for
extending an OWL ontology with belief functions as well as the translation of
this ontology into an evidential network.

3 http://www.w3.org/2001/sw/webOnt



78 A. Essaid and B. Ben Yaghlane

2 Uncertainty in OWL

The OWL is an expressive language for representing classes and the relations
between them for a domain of discourse. However the source of information
itself can suffer from giving a sufficient information of a concept. Sometimes we
can find ourselves unable to express the exact relation existing between classes
because of an incomplete knowledge about the domain of discourse or missed
values. Uncertainty extension to the OWL is starting to know a considerable
focus during the last years.

To cope with uncertain information in OWL extension, we propose the use
of the Dempster-Shafer theory [5]. In fact this theory allows assigning beliefs
not only to a single element but to a set of elements. Furthermore, it gives
the experts the possibility to represent the total ignorance or the partial one
about information concerning the classes of an ontology and the relations that
may exist between them. Besides, this theory provides a method for combining
several pieces of evidence from different sources to establish a new belief by using
Dempster’s rule of combination.

One of our goal is to translate an OWL taxonomy into a directed evidential
network (DEVN). The DEVN is a model introduced in [1] to represent knowledge
under uncertainty by using the belief functions. It is defined as a directed acyclic
graph (DAG) where the nodes represent variables and the directed arcs linking
nodes describe conditional dependence relations between these variables. These
relations are expressed by conditional belief functions for each variable given
its parents. Two kinds of belief functions are depicted to represent uncertainty
in the DEVN: the prior belief function and the conditional belief function. The
former concerns the root node and the latter expresses the belief function of a
node given the value taken by its parents.

3 Presentation of the BeliefOWL

The figure 1 resumes the different steps followed leading to our tool. In fact the
BeliefOWL has as input an OWL ontology and as output a directed evidential
network (DEVN).

Step 1: A Belief Extension to OWL: An OWL ontology can define
classes, properties and individuals. In this paper we will focus on attributing
belief masses to the different classes of an OWL taxonomy. For this purpose,
we define some new classes able to represent and to introduce this uncertain
information.

— Prior evidence: We define two classes to express the prior evidence <belief-
Distribution> and<priorBelief>. The former is used to enumerate the dif-
ferent masses related to the different classes of an OWL taxonomy. It has an
object property <hasPriorBelief> that specifies the relation between classes
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Fig. 1. BeliefOWL Framework

<beliefDistribution> and <priorBelief>. The latter expresses the prior evi-
dence and has a datatype property <massValue> which enables to assign a
mass value between 0 and 1.

Conditional evidence: It is defined through two main classes <beliefDistri-
bution> and<condBelief>. The former is the same as in the case of prior
evidence but has an object property <hasCondBelief>. The latter identifies
the conditional evidence and has a datatype property<massValue>.

Step 2: Constructing an Evidential Network: Given an OWL ontology, we
translate it in a DAG by specifying the different nodes to be created as well as the
relations existing between these nodes. The construction of the DAG interests
some of the OWL statements those related to classes.

<owl:class>: It is represented as a variable node in the translated DEVN.
<rdfs:subClassOf>: When a class is a subclass of another one, a directed arc
is drawn from the superclass node to the child subclass node.

<owl:disjoint With>,<owl:equivalentClass>:When two classes are related to
each other by one of these statements, a new node is created in the translated
DEVN and a directed arc is drawn between the two classes and the node
added.

<owlintersectionOf>: A class C may be defined as the intersection of some
classes C;(i,...,n). This can be represented in the translated DEVN by an
arc from each C; to C and another one from C and each C; to a new node
created for representing the intersection.

<owl:unionOf>: A class C may be defined as the union of some classes
C;(i,...,n). This can be represented in the translated DEVN by an arc from
C to each C; to C and another one from C and each C; to a new node created
for representing the union.

Step 3: Evidence Attribution: Once the DAG of our network is constructed,
the remaining issue is to assign masses for each node of the network. Considering
the DAG that we have got, we can depict two kinds of nodes:
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— ClassesNodes: are the nodes representing the different classes of our taxon-
omy and defined by <owl:class>. To this kind of nodes we attribute the prior
belief functions and the conditional ones given into the evidential ontology.

— ConstNodes: are those related to the constructors of our taxonomy with-
out considering <rdfs:subClassOf> because this kind of constructor is not
represented by a specific node. Concerning the constNodes, masses will be
attributed according to the constructor we are talking about. In fact if we
have a node created to depict an intersection between two classes, the mass
will be attributed by applying the Dempster’s rule of combination. Concern-
ing the node representing an union, the disjunctive rule of combination will
be applied in that case.

Once our evidential network is constructed and the masses are assigned to
each node a propagation process can be performed.

4 Conclusion

In this paper, we have presented the beliefOWL which is a new approach for
representing uncertainty in an OWL ontology. We considered only the case for
including uncertainty in classes. This uncertainty is modeled via the Dempster-
Shafer theory of evidence. We have presented the theoretical aspects of our tool
which consists on translating an OWL ontology into a network. For this purpose,
we extend the OWL ontology classes with belief masses, then we apply structural
translation rules in order to get a DAG of a directed evidential network. The
masses added to the ontology will be extracted and will be attributed to the
network’s nodes classes.

Further work can carry about the properties and the individuals. The prior
beliefs assigned to the different nodes of the network are given by an expert, in
the future the assignment can be done automatically through a learning process.
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Abstract. A systematic form of creative knowledge discovery is outlined,
requiring taxonomies to generalise knowledge structures and mappings between
taxonomies to find parallels between knowledge structures from different
domains. These share many of the features needed to handle uncertainty in the
semantic web, and results will be relevant to the URSW community.

Keywords: fuzzy taxonomy, creative knowledge discovery, fuzzy association
rules, uncertainty in semantic web

1 Introduction

Almost by definition, creative knowledge discovery is difficult to automate and
harder to assess objectively. By creative knowledge discovery, we mean finding
previously unknown links between concepts or small “chunks” of knowledge in such
a way that useful additional knowledge is generated. It can be distinguished from
“standard” knowledge discovery by defining the latter as the search for explanatory
and/or predictive patterns and rules in large volume data within a specific domain. For
example, a knowledge discovery process might examine an ISP(internet service
provider)’s customer database and determine that people who have a high monthly
spend and who send more than three emails to the support centre in a single month are
very likely to change to a different provider in the following month. Such knowledge
is implicit within the data but is useful in predicting and understanding behaviour.

By contrast, creative knowledge discovery is more concerned with “thinking the
unthought-of” and looking for new links, new perspectives, etc. Such links are often
found by drawing parallels between different domains and looking to see how well
those parallels hold - for example, compare the ISP example mentioned above to a
hotel chain finding that regular guests who report dissatisfaction with two or more
stays often cease to be regular guests unless they are tempted back by special
treatment (such as complimentary room upgrades). This is a simple illustration of
similar problems (losing customers) in different domains. A solution in one domain
(complimentary upgrades) could inspire a solution in the second (e.g. a higher
download allowance at the same price). Of course, such analogies may break down
when probed too far but they often provide the creative insight necessary to spark a
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new solution through a new way of looking at a problem. In many cases, this
inspiration is often referred to as “serendipity”, or accidental discovery.

It is possible that many serendipitous discoveries are subsequently rationalised as
the outcome of rigorous application of the scientific process. The traditional view of
the scientist is as a generator and tester of hypotheses - often this is presented as an
almost mechanical process and systems such as King’s robot scientist [1] take this to
an extreme, using an inductive logic programming approach to systematically
generate and test hypotheses in a laboratory.

In this paper we outline a project to automate creative knowledge discovery. The
aim is to find parallels between different knowledge repositories - in this case,
semantically annotated networks of documents or process models - in the hope of
transferring useful links from one network to another. In the case of process models
from different domains, the aim is to identify possible improvements in one process if
its analogue in the other domain is more efficient in some way.

This work shares many of the problems faced by research into uncertainty in the
semantic web - the mapping between repositories is very similar to a mapping
between ontologies, and the creation of knowledge networks encounters several issues
that are well-known from the semantic web, such as the need for imprecise concepts,
integration of sources that represent entities and classes at different levels of detail
etc. The work is at an early stage, and this paper briefly outlines (i) a possible
approach to automating creativity which relies on the use of fuzzy taxonomies and (ii)
preliminary work on automatic extraction of taxonomies from data; this requires a
representation of uncertainty similar to that needed for the semantic web.

2 A Method for Creative Knowledge Discovery

Can creativity - in this sense of suddenly making novel connections - be
automated? Koestler [2] summarised this view of creativity as follows:
“The creative act is not an act of creation in the sense of the Old Testament. It does not create
something out of nothing: it uncovers, selects, re-shuffles, combines, synthesizes already
existing facts, idea, faculties, skills. The more familiar the parts, the more striking the new
whole”

Table 1 - attributes of two music players (taken from [4])

Conventional tape recorder Sony Walkman

big small

clumsy neat

records does not record

plays back plays back

uses magnetic tape uses magnetic tape
tape is on reels tape is in cassette
speakers in cabinet speakers in headphones
mains electricity battery

Sherwood [3] proposes a systematic approach, in which a situation or artefact is
represented as an object with multiple attributes, and the consequences of changing
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attributes, removing constraints, etc are progressively explored. For example, given
an old style reel-to-reel tape recorder as starting point, Sherwood’s approach is to list
some of its essential attributes, substitute plausible alternatives for a number of these
attributes, and evaluate the resulting conceptual design or solution. Table 1 shows
how this could have led to the Sony Walkman in the late 70s [4]. Again, with the
benefit of hindsight the reader should be able to see that by changing magnetic tape to
a hard disk and considering the way music is purchased and distributed, the same
method could (retrospectively, at least) lead one to invent the iPod. Of course, having
the vision to choose new attributes and the knowledge and foresight to evaluate the
result is the hard part - and the creative steps are usually only obvious with hindsight.
This systematic approach is ideally suited to handling data which is held in an
object-attribute-value format, provided we have a means of changing/generalising
attribute values. We intend to use taxonomies for this purpose, so that “sensible”
changes can be made (e.g. mains, battery are both possible values for a power
attribute). Representing an object O as a set of attribute-value pairs
{(ai,v,-)‘attribute a; of object O has value vl-} we generate a new “design” o = {(a,-, T(vl-))}

by changing one or more values using 7;, a non-deterministic transformation of a
value to another value from the same taxonomy. Given sufficient time, this would
simply enumerate all possible combinations of attribute values. We can reduce the
search space by looking at the solution to an analogous problem in a different domain.

Our aim is to adapt previously developed tools for taxonomy matching [5] so that
analogies can be found; the next section briefly outlines a way to extract taxonomic
structure when it is not explicitly available.

3 Extracting Embedded Soft Taxonomies

An ontology essentially consists of a taxonomy of concepts, one or more relations
between concepts, and rules which impose constraints and allow data transformation.
The idea of an ontology is central to the semantic web [6], although there can be a
very high cost in creation and maintenance. This is reflected in practical experience -
it is rare to find web-based data that is fully marked up with RDF or OWL metadata.
It is far more common to encounter data that is stored in a relational database or an
equivalent XML-tagged format. Such data often contains implicit taxonomies - a
relational table may flatten hierarchical data into one or more attributes. For example,
a film database may record genre(s) and sub-genre(s) as separate fields, hiding the
hierarchical dependency. The hierarchy may be obvious to a human reader of the data,
but it is invisible to the machine. Similarly, XML tags can hide structure. XML relies
on human interpretation for its “semantics” - a programmer can take advantage of the
fact that <iPod> and <walkman> are subtypes of <music Player>, but a program has
no way of knowing this unless it is made explicit by means of a taxonomy. Although
a well-designed schema will make hierarchical structure explicit, our experience is
that a significant proportion of data sources rely on programmer intuition instead.

We have investigated formal concept analysis (FCA) [7, 8] as a way of extracting
hidden structure from a dataset in object-attribute-value form. In its simplest form,
FCA considers a binary-valued table, where each row corresponds to an object and
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each column to an attribute (property). The extension to a fuzzy case is (relatively)
straightforward, by considering a fuzzy relation R* and alpha-cuts which reduce the
problem to the crisp case. A brief outline and promising initial results are given in [9].

4 Applications

Two specific domains form demonstrators for this work. XML process mining
algorithms exist to discover process model from log files; various additions include
heuristic and fuzzy approaches to handle noisy data. Semantic processing mining
involves ontology knowledge. The ProM [www.processmining.org] platform takes
SA-MXML (semantic annotated mxml) files as input, where the annotation conforms
to the Web Service Modelling Language. The aim of this demonstrator is to find
(partial) similarities between process models in different domains, and use process
simulation tools to determine whether one process can be improved by slightly
altering it to match the second process more closely. The second demonstrator is
based on web forum discussions and support centre documentation, and will attempt
to improve the automated provision of “help” information.

S  Summary

This paper has briefly outlined a project to automate aspects of creative knowledge
discovery. The project is in early stages. Although not a direct application of
uncertain reasoning in the semantic web, it shares many of the same problems and
useful cross-fertilisation of ideas should be possible.

Acknowledgement : this work was partly funded by the FP7 BISON (Bisociation
Networks for Creative Information Discovery) project, number 211898.
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Abstract. Linked open data offers a set of design patterns and correnfor
sharing data across the semantic web. In this position papenwearate some
key uncertainty representation issues which apply to linked dad suggest
approaches to tackling them. We suggest the need for voc#sila enable
representation of link certainty, to handle ambiguous or inpeegalues and to
express sets of assumptions based on named graph combinators.
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1 Introduction

The need for reasoning over uncertain information within the semamticoccurs in
many different situations. It can arise from intrinsic uncertainty ia #orld being
modeled or from limitations of the sensing or reasoning agent itspi§t@mic). The
termuncertainty is often used to refer to many different notions including ambiguity,
randomness, vagueness, inconsistency, incompleteness [1][9].

In recent years an approach to the semantic web, cdllégd data, has been
developed and offers a promising route to practical and widesperadrgic web up-
take. It provides a set of design guidelines or patterns for how thearsiemweb
technologies, and broader web architecture, can be used for gliafionmation. The
existing guidelines and practices have no provision for represemtatiancertainty;
yet linked data is indeed fraught with many of these differenesypf uncertainty.

In this brief position paper we examine the ways in which uncertaintyocanr in
a linked data setting and sketch possible approaches to addressisgubs raised.

2 Linked data

Linked Data is a set of conventions for publishing data on the semantic web. It is
based on principles outlined by Tim Berners-Lee [2]. These princigeeate the use
of http URIs for naming entities, the publication of data about thesésUWRing the
standards (RDF, SPARQL) and inclusion of links to other URIs so thattagen
discover more information. While quite simple these guidelines,galgith a growing
body of practical advice [3], have led to publication and linking of mdayasets in
this form [4]. This has resulted in high profile commercial applicagisnch as [5].
While not explicitly stated, the style of linked data places an emphasidata
sharing and simplicity, with corresponding less emphasis on ddptinodeling and
reasoning. Yet the intrinsic nature of the linked data approach leads uesissf
uncertainty representation and reasoning. This is due to the emphasisssHinking
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multiple data sources that have been independently developed awiglato
Uncertainty can arise from the instance linking process, from the mgg@tween
different sources models and due to differing hidden assumpiiotize underlying
datasets. Yet the essence of linked data, and a large part of the readsnifitake, is
simplicity. The data is intended to be self-descriptive and accessitagh simple
link following and graph union or through SPARQL endpoints. Our lemgle is to
develop a common, easy to deploy, approach to uncertainty represantdtich can
be applied to linked data sets without losing this simplicity.

3 Some sources of uncertainty in linked data applications

In this section we enumerate some key sources of uncertaintyrfieedi data. We
focus on the sources which directly result from the intrinsic nadditenked data — the
cross-linking of independently developed RDF datasets.

3.1 Ambiguity resulting from data merging

In linked data, entities (Individuals) which co-occur with differéfiRls in different
datasets are unified. This is achieved by publishing: saneAs relations between
identified entities, either within the dataset or as a separate link ketpfocess of
identifying such co-references is imperfect. Firstly, the cenafices are typically
found by a mixture of string matching, attribute matching, and typesiraimts,
generally based on a statistical or machine learning algorithm [G]s Tb-references
are only identified with some probability (or less formal heuristic wéigd). Yet the
asserted links are binary and the strength of association is lost. @gctive nature of
the entities is ambiguous in some datasets. For example, Wikipedidasn@dBPedia
conflate the concepts of the CitBristol in the UK and the associated Unitary
Authority. A co-reference link that identified the ambiguous DBPediacept with
one that specifically denotes the Unitary Authority would be an error mega, even
though it may be an acceptable approximation in some situations.

3.2 Misalignment of precision and assumptions between merged sour ces

Many datasets in the linked data web publish property values for ritides they
describe; for example, thpopulation of the City of London. Yet those values are
sometimes imprecise or dependent upon measurement assusnpidd are not made
explicit. For example, thepopulation of a city depends on the time of the
measurement, the measurement methodology and the precisgtidefiof the
boundary of the city; it is also subject to statistical uncertainty. Assalt, at the time
of writing, a linked data query on London returns a graph with fasgertions on its
population ranging from 7,700,000 to 8,500,000. One of these sswt variation,
the time of measurement, is sometimes made explicit in data and ineeedfdhe
four assertions is (indirectly) time qualified. However, such con@bqualification is
not consistently available and, in any case, only accounts for amee of variation.
Thus when datasets are linked the resulting union will often have mutigpiélicting
values for supposedly functional properties.
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3.3 Misalignment of models

When linking datasets we also want to map the associated ontologierohiss is
just as error prone as entity co-reference since the axiomatizatiooncepts in the
ontologies is rarely so complete as to allow a unambiguous mappimngrsEn the
ontology mapping can lead to global effects such as unexpected identificati
related concepts. Determining and publishing such alignment errors &itfject of
considerable research and is outside the scope of this paper.

3.4 Absence of sourcereliability information

Separate from the uncertainty arising from combination and linkihdatasets then
the datasets themselves can be uncertain or contain errors (eittiderdal or
malicious). While this is true in general in the semantic web, theslinttata approach
implies broad cross linking with no provision for narrow scoping oklreferences.
This exacerbates the problems of the veracity or trustworthinesslofied datasets.

4  Mitigation approaches

We now discuss approaches to mitigate the effects of these untgsaurces on the
consumers of linked data. In keeping with linked data methodologyeg& simple,
broadly applicable, design patterns. In particular, we suggest the foeedesign
patterns for making the uncertainty inherent in the linked datasete mqlicit, and
mechanisms to enable selective combination of datasets (so that pabicleaiues or
links can be omitted). In this a short position paper we only sketchsthygested
approaches as a basis for discussion in the workshop.

4.1 Link vocabulary

The link vocabulary would provide a common representation for co-reference links,
enabling publication of the link certainty information on which per-limclusion
decisions can be made. This can be achieved by extending the voiD on[8]ogigh

a conceptUncertainLinkSet (as a subclass ofoi d: Li nkSet), and associated
properties for describing the method used for deriving the link SBte
UncertainLinkSet itself would contain n-ary relationdMeightedLink) comprising the
link and associated link weight. Different subclasses ViaightedLink indicate
different interpretations of the link weight (such as probabilistiadhoc).

4.2 Imprecise value vocabulary

The imprecise value vocabulary would provide a common representation for
imprecise values that arise from data set merger, as discussed th& would allow
republication of merged datasets which explicitly show the variatioeadurce data
values. Returning to our example of the population of London the atesgt might
look like:
:London : popul ation [a :InpreciseVal ue;
: sanpl eval ue [:val ue 7700000; :source :sl1; :context :y2009]
: sanpl eval ue [:val ue 7900000; :source :s2; :context :y2008]
restimat edVal ue 785123]
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4.3 Overridegraphs

Finally we suggest the need for override graphs so that one agentpablish
retractions and overrides to the link assertions or data assertiatesbyanother.

The current approach to this, in linked data applications, is to partdeta and
link sets into named graphs [7]. For example, rather than includeealtdireference
links directly in the same graph as the entity descriptions, we partitiem into a
separate named graph. In this way a RESTful access can see theofittie relevant
graphs but a SPARQL endpoint can support selection of which graphelide.
This allows agents to avoid selected link sets or sub-sources but oty gtdin size
of the entire graph. To overcome this limitation we suggest extgnthie \VoiD
vocabulary to include graph combinatalifference, union andreplace. So one source
can decide which subsets of the data and links to trust, and can then piitgish
assumptions it is making as a set of deltas over the source grapbsdifference
graphs enable per-link and per-assertion changes to be expressa if the
underlying source only publishes the link set or data assert®nsoaolithic graphs.

5 Discussion

Of the issues in section 3 we have suggested an agenda for how tesaddme of
them. The link and imprecise value vocabularies enable publication of link
uncertainty (3.1) and value ambiguity (3.2) information in linked dsé¢ds. The
vocabularies themselves would not remove the uncertainties, nor theeprs of
estimating them. However, simply having a means to publish thisrrimdtion is
already a step forward. The suggestgdph combinators would enable an agent to
make and publish more selective data combinations, based on its@tsgipn of link
strengths and data values. This does not solve the problems of decidiiciy parts of
which sources to trust, but it does enable more effective sharingcbfdecisions.
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