
Classifying ELH Ontologies in SQL Databases

Vincent Delaitre1 and Yevgeny Kazakov2

1 École Normale Supérieure de Lyon, Lyon, France
vincent.delaitre@ens-lyon.org

2 Oxford University Computing Laboratory, Oxford, England
yevgeny.kazakov@comlab.ox.ac.uk

Abstract. The current implementations of ontology classification proce-
dures use the main memory of the computer for loading and processing
ontologies, which soon can become one of the main limiting factors for
very large ontologies. We describe a secondary memory implementation
of a classification procedure for ELH ontologies using an SQL relational
database management system. Although secondary memory has much
slower characteristics, our preliminary experiments demonstrate that one
can obtain a comparable performance to those of existing in-memory
reasoners using a number of caching techniques.

1 Introduction

The ontology languages OWL and OWL 2 based on description logics (DL) are
becoming increasingly popular among ontology developers, largely thanks to the
availability of ontology reasoners which provide automated support for many
ontology development tasks. One of the key ontology development task is ontology
classification, the goal of which is to compute a hierarchical representation of the
subsumption relation between classes of the ontology called class taxonomy.

The popularity of OWL and efficiency of ontology reasoners has resulted in
the availability of large ontologies such as Snomed CT containing hundreds of
thousands of classes. Modern ontology reasoners such as CEL and FaCT++ can
classify Snomed CT in a matter of minutes, however scaling these reasoners to
ontologies containing millions of classes is problematic due to their high memory
consumption. For example, the classification of Snomed CT in CEL and FaCT++
requires almost 1GB of the main memory. In this paper we describe a secondary-
memory implementation of the classification procedure for the DL ELH—the
fragment of OWL used by Snomed CT—in SQL databases. Our reasoner can
classify Snomed CT in less than 20 minutes using less than 32MB of RAM.

To the best of our knowledge, secondary-memory (database) algorithms
and optimizations for ontology reasoning have been studied only very recently.
Lutz et al. have proposed a method for conjunctive query answering over EL
ontologies using databases [1], but the main focus of their work is on optimizing
query response time once the ontology is “compiled” into a database. The
IBM SHER system (www.alphaworks.ibm.com/tech/sher) has a “db-backed”
module, which presumably can perform secondary-memory reasoning in EL+,
but currently not much information is available about this module.

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

Rinke Hoekstra

Table 1. The syntax and semantics of ELH

Name Syntax Semantics

Concepts:
atomic concept A AI (given)
top concept � ∆I

conjunction C �D CI ∩DI

existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : �x, y� ∈ rI ∧ y ∈ CI}
Axioms:

concept inclusion C � D CI ⊆ DI

role inclusion r � s rI ⊆ sI

2 Preliminaries

In this section we introduce the lightweight description logic ELH and the
classification procedure for ELH ontologies [2].

2.1 The Syntax and Semantics of ELH

A description logic vocabulary consists of countably infinite sets NC of atomic
concepts, and NR of atomic roles. The syntax and semantics of ELH is summarized
in Table 1. The set of ELH concepts is recursively defined using the constructors
in the upper part of Table 1, where A ∈ NC , r ∈ NR, and C, D are concepts.
A terminology or ontology is a set O of axioms in the lower part of Table 1
where C, D are concepts and r, s ∈ NR. We use concept equivalence C ≡ D as
an abbreviation for two concept inclusion axioms C � D and D � C.

The semantics of ELH is defined using interpretations. An interpretation
is a pair I = (∆I , ·I) where ∆I is a non-empty set called the domain of the
interpretation and ·I is the interpretation function, which assigns to every A ∈ NC

a set AI ⊆ ∆I , and to every r ∈ NR a relation rI ⊆ ∆I×∆I . The interpretation
is extended to concepts according to the right column of Table 1. An interpretation
I satisfies an axiom α (written I |= α) if the respective condition to the right of
the axiom in Table 1 holds; I is a model of an ontology O (written I |= O) if I
satisfies every axiom in O. We say that α is a (logical) consequence of O, or is
entailed by O (written O |= α) if every model of O satisfies α.

Classification is a key reasoning problem for description logics and ontologies,
which requires to compute the set of direct subsumptions A � B between atomic
concepts that are entailed by O. A subsumption A � B is direct if there is no
atomic concept C such that O |= A � C and O |= C � B, unless C is equivalent
to either A or B.

2.2 Normalization of ELH Ontologies

Normalization is a preprocessing stage that eliminates nested occurrences of
complex concept from ELH ontologies using auxiliary atomic concepts and

IR1
A � A

IR2
A � � CR1

A � B
A � C

: B � C ∈ O

CR2
A � B A � C

A � D
: B � C � D ∈ O CR3

A � B
A � ∃r.C : B � ∃r.C ∈ O

CR4
A � ∃r.B
A � ∃s.B : r � s ∈ O CR5

A � ∃s.B B � C
A � D

: ∃s.C � D ∈ O

Fig. 1. The Completion Rules for ELH

axioms. The resulting ontology will contain only axioms of the forms:

A � B, A �B � C, A � ∃r.B, ∃s.B � C, r � s, (1)

where A, B,C ∈ NC and r, s ∈ NR. Given an ELH concept C, let sub(C)
be the set of sub-concepts of C recursively defined as follows: sub(A) = {A}
for A ∈ NC , sub(�) = {�}, sub(C � D) = {C � D} ∪ sub(C) ∪ sub(D), and
sub(∃r.C) = {∃r.C}∪sub(C). Given an ELH ontology O, define the set of negative
/ positive / all concepts in O by respectively sub−(O) = {sub(C) | C � D ∈ O},
sub+(O) = {sub(D) | C � D ∈ O}, and sub(O) = sub−(O) ∪ sub+(O). For
every C ∈ sub(O) we define a function nf(C) as follows: nf(A) = A, if A ∈ NC ,
nf(�) = �, nf(C �D) = AC � AD, and nf(∃r.C) = ∃r.AC , where AC and AD

are fresh atomic concepts introduced for C and D.
The result of applying normalization to O is the ontology O� consisting of

the following axioms: (i) AC � AD for C � D ∈ O, (ii) r � s for r � s ∈ O,
(iii) nf(C) � AC for C ∈ sub−(O), and (iv) AD � nf(D) for D ∈ sub+(O), where
the axioms of the form A � B � C are replaced with a pair of axioms A � B
and A � C. It has been shown [2] that this transformation preserves all original
subsumptions between atomic concepts in O.

2.3 Completion Rules

In order to classify a normalized ELH ontology O, the procedure applies the
completion rules in Fig. 1. The rules derive new axioms of the form A � B and
C � ∃r.D which are logical consequences of O, where A, B, C, and D are atomic
concepts or �, and r, s atomic roles. Rules IR1 and IR2 derive trivial axioms for
A ∈ NC ∩ sub(O). The remaining rules are applied to already derived axioms
and use the normalized axioms in O as side conditions. The completion rules are
applied until no new axiom can be derived, i.e., the resulting set of axioms is
closed under all inference rules. It has been shown [2] that the rules IR1–CR5 are
sound and complete, that is, a concept subsumption A � B is entailed by O if
and only if it is derivable by these rules.

3 Implementing ELH Classification in a Database

In this section we describe the basic idea of our database implementation for the
ELH classification procedure, the performance problems we face with, and our

at conc

name id

MuscularOrgan 1
Organ 2
MuscularSystem 4
Heart 6
CirculatorySystem 10

at role

name id

isPartOf 3
belongsTo 8

conj

A � B pos neg id

2 5 � � 1
4 10 � 11
2 12 � 13

exis

∃ r. B pos neg id

3 4 � � 5
8 11 � 12

ax c incl

A � B

1 2
1 5

11 4
11 10
13 2
13 12
6 13

ax r incl

r � s

8 3

ax conj

A � B � C

2 5 1

ax exis pos

A � ∃ r. B

5 3 4
12 8 11

ax exis neg

∃ s. B � C

3 4 5

Fig. 2. Storing ELH concepts and normalized axioms in a database: the first part of
every table is introduced for axiom (2), the second part is introduced for axiom (3).

solutions to these problems. Although our presentation is specific to the MySQL
syntax, the procedure can be implemented in any other SQL database system.

3.1 The Outline of the Approach

In this section we give a high level description of the ELH classification procedure
using databases. We use the ELH ontology O consisting of axioms (2)–(4) as a
(rather artificial but simple) running example.

MuscularOrgan ≡ Organ � ∃isPartOf.MuscularSystem (2)
Heart � Organ � ∃belongsTo.(MuscularSystem � CirculatorySystem) (3)

belongsTo � isPartOf (4)

The first step of the procedure is to assign integer identifiers (ids) to every
concept and role occurring in the ontology, in order to use them for computing
normalized axioms (1). In order to represent all information about concepts, it is
sufficient to store, for every concept, its topmost constructor together with the
ids of its direct sub-concepts. Thus, all information about concepts and roles can
be represented in a database using four tables corresponding to possible types
of constructors shown in Fig. 2, left: at conc for atomic concepts, at role for
atomic roles, conj for conjunctions, and exis for existential restrictions. The
assignment of ids is optimized so that the same ids are assigned to concepts that
are structurally equivalent or declared equivalent using axioms such as (2).

Apart from the ids, for every complex concept we store flags indicating
whether the concept occurs positively and/or negatively in the ontology. The
polarities of concepts are used consequently to identify normal forms of axioms
which are stored in five tables corresponding to five types of normal forms (1)
(see Fig. 2, right). Table ax c incl stores inclusions between concepts: for every
row (A, B, pos, neg, id) in table conj with pos = true, table ac c incl contains

inclusions between id and A as well as between id and B; for every concept
inclusion C � D in O the table also contains the inclusion between the id for C
and the id for D. Similarly, table ax r incl contains inclusion between ids for
role inclusions r � s in O. Table ax conj is obtained from the rows of table conj
with negative flag. Likewise, tables ax exis pos and ax exis neg are obtained
from the rows of exis with respectively positive and negative flags.

Once the tables for normal form of the axioms are computed, it is possible to
apply inference rules in Fig. 1 using SQL joins to derive new subsumptions. In
the next sections we describe both steps of the classification procedure in detail.

3.2 Normalization

The first problem appears when trying to assign the same ids to the same concept
occurring in the ontology. Since our goal is to design a scalable procedure which
can deal with very large ontologies, we cannot load the whole ontology into the
main memory before assigning ids. Hence all tables in Fig. 2 should be constructed
“on the fly” while reading the ontology.

We have divided every table in Fig. 2 in two parts: the first is constructed
after reading axiom (2), the second is constructed after reading axiom (3), except
for table ax r incl which is constructed after reading axiom (4). Suppose we
have just processed axiom (2) and are now reading axiom (3). The concept Heart
did not occur before, so we need to assign it with a fresh id = 6 and add a row
into the table at conc. The concept Organ, however, has been added before and
we need to reuse the old id = 2. Thus table at conc acts as a lookup table for
atomic concepts: if a new atomic concept occurs in this table then we reuse its
id, otherwise, we introduce a fresh id and add a row into this table. This strategy
works quite well for in-memory lookup. However it is hopelessly slow for external
memory lookup due to the considerably slow disc access time. Moreover, since
executing a query in a database management system, such as MySQL, involves
an overhead on opening connection, performing transaction, and parsing the
query, executing a query one by one for every atomic concept is hardly practical.

In order to solve this problem, we use temporary in-memory tables to buffer
the newly added concepts. We assign fresh ids regardless of whether the concept
has been read before or not, and later restore uniqueness of the ids using a series
of SQL queries. The tables are similar to those used for storing original ids, except
that the tables for conjunctions and existential restrictions have an additional
column depth representing the nesting depth of the concepts. In addition, there
is a new table map which is used for resolving ids in case of duplicates. The sizes
of temporary tables can be tuned for best speed/memory performance.

Fig. 3 presents the contents of the temporary tables after reading axiom (3)
assuming that axiom (2) is already processed. In order to resolve ids for all buffered
atomic concept we perform the following SQL queries:
1: INSERT IGNORE INTO at conc SELECT * FROM tmp at conc;
2: INSERT INTO map SELECT tmp at conc.id, at conc.id

FROM tmp at conc JOIN at conc USING (name);

tmp at conc

name id

Heart 6
Organ 7
MuscularSystem 9
CirculatorySystem 10

tmp at role

name id

belongsTo 8

tmp conj

A � B pos neg id depth

9/4 10 � 11 1
7/2 12 � 13 2

tmp exis

∃ r. B pos neg id depth

8 11 � 12 1

map

tmp id orig id

7 2
9 4

Fig. 3. Temporary tables after reading axiom (3). The entries id1/id2 represent ids
before/after mapping temporary ids to original ids using table map.

The first query inserts all buffered atomic concepts into the main table; duplicate
insertions are ignored using a uniqueness constraint on the filed name in table
at conc. The second query creates a mapping between temporary ids and ogirinal
ids to be used for replacement of the ids in complex concepts containing atomic
ones. The query can be optimized to avoid trivial mappings.

Replacement of ids and resolving of duplicate ids in complex concepts is
done recursively over the depth d of concepts starting from d = 1. Processing
conjunctions of the depth d can be done as follows. First, for every row in table
tmp conj with the depth d the original ids of columns A and B are restored using
the table map. Second, the resulting rows are inserted into the main conjunction
table conj, or update the polarities in case the table has already entries with the
same values of A and B. Finally, new mapping between ids for corresponding rows
in conj and tmp conj are added to table map. The ids for existential restrictions
are resolved analogously. More details can be found in the technical report [3].

3.3 Completion under Rules CR1 and CR2

We apply the completion rules from Fig. 1 in the order of priority in which they
are listed. That is, we exhaustively apply rule CR1 before applying rule CR2, and
perform closure under the rules CR1 and CR2 before applying the remaining rules
CR3–CR5. This decision stems from an observation that closure under rules CR1 and
CR2 can be computed efficiently using a temporary in-memory table. Indeed, the
closure under rules CR1 and CR2 of the form A � X for a fixed A can be computed
independently of other subsumptions since the premises and the conclusions
of these rules share the same concept A. The main idea is to use a temporary
in-memory table to compute a closure for a bounded number of concepts A, and
then output the union of the results into the main on-disc table.

Let tmp subs be a temporary in-memory table with columns A, B representing
subsumptions between A and B, and a column step representing the step at
which each subsumption has been added. We use a global variable step to
indicate that rule CR1 has been already applied for all subsumptions in tmp subs
with smaller values of tmp subs.step. Then the closure of tmp subs under CR1

can be computed using the following procedure:

1: REPEAT
2: SET @size = (SELECT COUNT(*) FROM tmp subs);
3: INSERT IGNORE INTO tmp subs

SELECT tmp subs.A, ax c incl.B, (step + 1)
FROM tmp subs JOIN ax c incl ON tmp subs.B = ax c incl.A
WHERE tmp subs.step = step;

4: SET step = step + 1;
5: UNTIL @size = (SELECT COUNT(*) FROM tmp subs) -- nothing has changed
6: END REPEAT;

The procedure repeatedly performs joins of the temporary table tmp subs with
the table containing concept inclusions ac c incl and inserts the result back into
tmp subs with the increased step. We assume that tmp subs has a uniqueness
constraint on the pair (A, B), so that duplicate subsumptions are ignored.

The same idea can be used to perform closure under rule CR2 with the only
difference that CR2 has two premises and therefore requires a more complex join.
Please refer to the technical report [3] for more details.

3.4 Completion under Rules CR3–CR5

Direct execution of rules CR3–CR5 requires performing many complicated joins.
We combine these rules into one inference rule with multiple side conditions:

A � B

∃r.A � ∃s.B : r � s ∈ O, ∃r.A ∈ sub+(O), ∃s.B ∈ sub−(O) (5)

Rule (5) derives new inclusions between (ids of) existentially restricted concepts
occurring in the ontology using previously derived subsumptions. The main idea
is to repeatedly derive these new inclusions, adding them into table ax c incl,
and performing incremental closure of the letter under rules CR1 and CR2. The
interested reader can find more details in the technical report [3].

3.5 Transitive Reduction

The output of the classification algorithm is not the set of all subsumptions
between sub-concepts of an ontology, but a taxonomy which contains only direct
subsumptions between atomic concepts. In order to compute the taxonomy, the
set of all subsumptions between atomic concepts should be transitively reduced.
Transitive reduction of a transitive subsumption relation can be done by applying
one step of transitive closure and marking the resulting relations as “not-direct”,
thus finding the remaining set of “direct” subsumptions. Although this can be
easily implemented in databases with just one join, we found that this approach
has a poor performance because it requires to make a large number of on-disc
updates, namely, marking subsumptions as non-direct. In contrast, the number of
direct subsumptions is usually much smaller. A solution to this problem involves
the usage of a temporary in-memory table. We repeatedly fetch into the table
all subsumption relations A � X for a bounded number of atomic concepts
A, perform transitive reduction according to the method described above, and

Table 2. Comparison with other reasoners. Time is in seconds.

Reasoner NCI GO Galen− Snomed

DB 35.51 20.36 100.86 1183.80
CB 7.64 1.23 3.36 45.17
CEL v.1.0 3.60 1.02 169.23 1302.18
FaCT++ v.1.3.0 4.60 10.50 — 965.84
HermiT v.0.9.3 70.23 92.76 — —

output the direct subsumptions into the on-disk taxonomy. This algorithm can
be also extended to handle equivalence classes of atomic concepts.

4 Experimental Evaluation

We have implemented a prototype reasoner DB3 in MySQL according to the
procedure described in Section 3 (with some small additional optimizations).

In order to evaluate the performance of the reasoner and compare it with
existing ontology reasoners, we have performed a series of experiments with four
large bio-medical ontologies of various sizes and complexity. The Gene Ontology
(GO) (www.geneontology.org) and National Cancer Institute (NCI) ontology
(www.cancer.gov) are quite big ontologies containing respectively 20,465 and
27,652 classes. Galen− containing 23,136 classes is obtain from a version of the
OpenGalen ontology (www.co-ode.org/galen) by removing role functionalities,
transitivities, and inverses. The largest tested ontology Snomed based on Snomed
CT (www.ihtsdo.org) contains 315,489 classes. We ran the experiments on a
PC with a 2GHz Intel� CoreTM 2 Duo processor, a 5400 RPM 2.5" hard drive,
and 4GB RAM operated by Ubuntu Linux v.9.04 with MySQL v.5.1.31.

In Table 2, we compare the performance of our reasoner with existing in-
memory ontology reasoners CB (cb-reasoner.googlecode.com), CEL (lat.
inf.tu-dresden.de/systems/cel), FaCT++ (owl.man.ac.uk/factplusplus),
and Hermit (hermit-reasoner.com). We can see that the performance of DB is
on par with the in-memory reasoners and, in particular, that DB outperforms CEL
on Galen− and SNOMED, FaCT++ on Galen−, and HermiT on all ontologies.
More experimental results are presented in the technical report [3].

References

1. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: IJCAI, AAAI Press (2009)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI, Professional
Book Center (2005) 364–369

3. Delaitre, V., Kazakov, Y.: Classifying ELH ontologies in SQL databases. Technical
report, The University of Oxford (2009)

3 The reasoner is available open source from db-reasoner.googlecode.com

