Extending the NFR Framework with M easurable Non-
Functional Requirements

Anton Yrjoénen and Janne Merilinna

VTT Technical Research Centre of Finland
P.O.Box 1100
FI-90571 Oulu, Finland
{anton.yrjonen, janne.merilinna} @tt.fi

Abstract. Accurate and correctly specified requirements are extremey
important in ensuring the production of feasible software products. To assure
that the requirements have actualy been implemented, there has to be a trace
link from requirements to implementation. Thus far requirement engineering
has been a rather separate task from software design and implementation from
the process point of view. This separation has a negative impact on
requirements traceability and further, to product quality. Tracing of non-
functional requirements (NFRs), such as performance, has been particularly
cumbersome. Thus, in this paper we apply and extend the NFR Framework to
bridge the gap between NFRs and implementation. We have implemented the
extended NFR Framework, which we call NFR+ Framework, as a modelling
language including a softgoa interdependency graph validation tool with a
MetaCase MetaEdit+ language workbench. We extended the NFR Framework
with a concept of measurable NFRs that enables to empirically verify the
realization of defined NFRs in a product. The usage of the extended NFR
Framework is demonstrated with alaboratory case.

K eywor ds: Domain-Specific Modelling, requirements engineering, tracing

1 I ntroduction

Traditionally requirements engineering (RE) and software engineering (SE) are seen
quite separate areas of research, profession and action [1]][2]. This has resulted in a
separation of the tools, processes and methods used in each of the tasks. For each
purpose, individual tools have been created but the information flow and integrity
from one task and toal to another has quite often lagged behind tool development and
has often been realized afterwards in an inconvenient way, if at al. Due to lack of
sufficient tool support and integrated processes, the same work may have been done
twice, overlapping and unsynchronized. Designers might have had challenges to
figure out what the requirements mean in terms of implementation and what actions
are needed to achieve the desired level of satisfaction. The challenge is highlighted
when concerning more ambiguous non-functional requirements (NFR) that concern
the non-functional, ak.a. quality attributes of the software. Itis often unclear what
side-effects there might be for choosing a certain solution to fulfil a requirement or

how important and for what reason a NFR really is. In the worst case, there may not
be concrete and accurate enough NFRs at all or the designers are not aware of them.

The interconnection of requirements and software design is more than the simplest
junction of requirements, that being the output of RE and input for SE. The
connection exists another way around in software testing and requirements
verification, when the evauation concerns the question whether the defined
requirements really are met by the software . Since requirements management
should be closdly bound to the verification, there is a missing link between
requirements and verification, which isalso closely related to the software design.

The NFR Framework is a systematic approach for producing and documenting
proper NFRs through graphica modelling @ However, there is a danger that
applying NFR Framework produces requirements which can be difficult to evaluate
being redlized. Yet, al requirements should be expressed in terms of measurable
properties to enable verification E In the case of NFRs these can be applicable
numeric measurements of performance, resource consumption, correctness, reliability,
security etc. Preferably there should be threshold values for success/failure evaluation
together with the measurement arrangements. This promotes the avoidance of
interpretation conflicts between stakeholders and promotes ingead the definition of
accurate, realistic and useful requirements in the place of overly optimistic or vague
requirements. A good requirement should be verifiable and unambiguous, quantifiable
and measurable. This closes the loop between RE, design and verification, which is
necessary to ensure the quality of the product.

Without a common, solid tool environment, the requirements may end up being
stored in separate documents that are not commonly referred to by designers and may
be outdated after a short while. For designers, the requirements should be
transparently traceable to the origind rationale as well as to other related design
entities.

To overcome these chalenges, our common goa is combining RE and SE
workspaces and information flow. Since the NFR Framework is essentially about
graphical moddling, it is convenient to use a graphical Mode -driven Development
(MDD) environment to implement the NFR Framework. MDD on the other hand is
based on the need to raise the design abstraction level closer to the problem domain.
Domain-Specific Modelling in particular (DSM) has a promising capahility for
adopting the problem relevant language constraints for describing the system under
development. Since SE with DSM dready use problem terminology (instead of
solution terminology, such as, classes and objects), the mapping from requirements to
solution seems possibly straightforward. Thus we utilize DSM for SE in this case.

this paper, not only do we present the implementation of the NFR Framework in
MetaCase MetaEdit+! language workbench, but we also extend the NFR Framework
Softgoal Interdependency Graph (SIG) with a concept of measurable NFRs to form a
NFR+ Framework. The measurable NFR provides evidence-based information for a
requirements engineer to determine if the defined NFRs are achieved. They also serve
as a connection point and guide to software designers by stating the desired outcome
in terms of NFRs. It is argued that the introduced link to measurable NFRs is an
important step to close the gap between RE and SE. The NFR+ Framework is

1 http://www.metacase.com

demonstrated in a laboratorial case study of stream-oriented image processing
applications.

The rest of the paper is structured as follows. In Section 2 the NFR Framework is
described to set the background and basdine for our work. In Section 3, an extension
for the NFR Framework is presented including the implementation details. The usage
of the extension is demongtrated with a laboratorial case example in Section 4. The
applicability of the developed solution is discussed in Section 5 and the paper is
concluded in Section 6.

2 The NFR Framewor k

The NFR Framework offers a systematic approach for defining NFRs for products. It
offers good visibility to al relevant NFRs and their interdependencies, and helps
designers to understand the necessary actions for ensuring proper quality. It also
captures and documents design decisions and rationales in addition to providing
traceability for derived specifications and requirements. @

2.1 Softgoal Interdependency Graph

The NFR Framework is mainly based on the SIG which is a graph of interconnected
softgoals where each represents an NFR for the system under development. During
requirements elicitation, abstract softgoals are decomposed to more detailed and
concrete child softgoals which contribute with positive or negative impact or
alternatively with logica AND/OR compositionsto the parent softgoal.

Each softgoal has a type and a topic. Decomposing a softgoal into subtopical and
more specific types of softgoals, leads ultimately to so called operationalizations at
the end nodes of the graph. Operationalizations are different kinds of implementation
and design techniques that can be selected to ensure a feasible outcome. The
operationalizations can be used as specifications for the system.

shows an example of a SIG as it appeared in the original book [6]. The
cloud symbols drawn with thin lines are abstract NFR softgoals and the thicker clouds
are concrete operationdizations. The relevant topic is annotated within square
brackets that follow the type declaration. Within the NFR Framework itself specific
catalogues for type and topic decompositions can exist, which state the common,
allowed or desired decompositions.

Good Performance Secure User-Friendly Access

[accounts] [accounts] [accounts]
¥ i | T .f“;““.
|- LS L=l
FT Integnity e e
/ \.‘ [accounts] > ‘ { 3 Availability
f“ \ S I_,‘-/J.—- ~ =" [accounts]
Space /[\ Response Time = Accuracy LY -'y['anﬁden:whr_\'
[acmumﬁ/]‘ Y [accounts] / accounts] P [accounts]
Cx r.ﬂ};-;} £ 3 £
- .o Py i Eﬁﬁi;ﬁen-s' g Authorize access Authenticate
al

\ s ~F to mformation user access
&\ ! % [accounts] | C/ [accounts]
| \ s C 3 o
\ \ g 5y) 5 _J/\\
\ S AN
[S\ [@D P
VNG
@ Use Indexing - M '_ Identify O ta
[accountz] v - X users |

Use uncompressed Use PIN Require

format [accounts] Claim é v }\'al;da:-: access additional
[Optimized validation will against eligibility Compare D
not hurt Respouse too much] rules signature
Softgoals Operationalizing ! Critical Interdependency ++ ;tmn_gl}'posl;n'c satisficing
. Method > Implicity ~+ Positive saisiicing
NFR. vy, ¥ Accepted A © - Negative satisficing
Softgoal {) Claim X Rejected > Explicity

- Strongly Negative satisficing

Figure 1. Softgoal I nter dependency Graph with a legend of symboals.

As the softgoals are decomposed during the NFR dicitation, the decomposition
relationships connecting the softgoals and operationalizations state the
interdependencies between the softgoals and operationalizations. When there is an
arrow or aline, this means that the connected symbols have an interdependency the
direction of which istowardsthetip of an arrow; from the more concrete and specific,
to the more generic and abstract softgoal. Instead of bilateral (connecting only two
symbols) interdependency, there can aso be logical AND/OR interdependencies that
have exactly one higher level softgoal symbal attached to two or more subgoals. In
addition to interdependencies between softgoals, Claims can be inserted to justify
certain decisons of labels. In figure 1, for example, thereisa Claim that the negative
contribution of “Validate access’ does not harm “Response time’ significantly.

Softgoals may be annotated with a label. The labels (see [Table 1) are used to
inform the status of softgoals and operationalizations. The label typically denotes a
decision to select a certain method or technique for operationalizing a softgoal. For
the more abstract softgoals, the label describes the status of al the other NFRs
logically underneath it, since the children’s effect propagates upwards in the SIG
through interdependencies.

Table 1. Softgoal labels

Symbol Name Explanation
\ Satisfied The softgoal is fulfilled or chosen to be implemented.
w+ Weakly satisfied |There is some positive support to the softgoal.
u Undecided Realization of the softgoal neither confirmed nor denied.
wW- Weakly denied [There are some indicators against fulfilling the softgoal.
. Softgoal can not be realized or is chosen not to be
X Denied .
implemented.
Lightning Conflict There a're conflicting c.ontributions to this softgoal. Some
supporting, some against.

The bilateral interdependencies are attached with information about the
contribution of the subgoal to the parent goal. They are annotated next to the
contribution arrow symbol. The contributions are explained in [Table 3. When
evaluating the SIG, the contributions together with the labels of the child softgoals
determine the parent softgoals label. The contribution acts as a multiplier where a
negative sign reverses the multiplied value of alabel.

Table 2. SIG contributions

Symbol|Contribution Explanation
++ MAKE |Child label is strongly propagated to parent.
+ HELP |Child label is somewhat propagating to parent.

= EQUAL |The two softgoals share the same label.
HURT |Negated child label somewhat propagating to parent.
BREAK |Child label strongly is negated and propagated to parent.

? UNKNOW N]Interdependency unknown, child does not affect to paren

2.2 Toolsfor the NFR Framework

There is very little tool support for the NFR Framework in RE. Utilizing the NFR
Framework has mostly been reliant upon drawing SIGs manually and further utilizing
the resulting NFRs and operationdization decisons separately. However, there is
some tool support. The NFR-Assi stant @ is a stand-aone tool that can be utilized to
draw SIGs and to derive softgoal |abels based on the interdependencies, contributions
and operationadization labels. The Softgoal Extension for StarUML provides
drawing and evaluating capabilities for SIGs within the open source UML/MDA
Platform StarUML . The StartUML extension includes the regular SIG graph
features of NFR Framework. Due to its integration to an UML/MDA tool, the NFR
outcome can be utilized in software modelling processes.

3 NFR+ Framework

We propose extensions to the NFR Framework in order to improve requirements
traceability, to encourage the setting of more accurate and beneficial requirementsand
to enable early and up-to-date verification of requirements. We address specifically

MDD by connecting requirements modelling to software modelling. We call this
extended NFR Framework, NFR+ Framework.

3.1 Measurable Non-Functional Requirements

To enable verification of NFRs, specific pass/failure criteria in terms of numeric
values, metrics and measurement arrangements must be included. We call these
measurable NFRs. We utilize a template adapted from to describe measurable
NFRs. In it is shown how measurable NFRs can be added to design models in
order to define the part of a design model which is responsible of fulfilling a certain
individual NFR. In [14], there is a run-time measurement technique described for
collecting data and evaluating the performance characteristics of such partial design
model. The mechanism utilizes code generation to inject probes into the source code
to be tested, which also reports its observations back to the design tool. The run-time
measurements can thus notify whether an individual NFR has been fulfilled or not.
Such mechanism can be utilized to verify run-time NFRs such as those related to
performance issues Eor evolution-time non-functiond features, e.g., extensihility,
methods such as ATAM can be utilized for evaluation. In the case of impartial,
unrunnable code or the need for externa off-line testing, the measured values can be
manually inputted to measurable NFRs after tests have been conducted or when
estimates have otherwise been formed. Regardless of the source of information the
NFR is evaluated against, it isimportant to be able to connect this information to the
rest of the modelsin order to be able to trace the impact to the whole system. Thisis
done through meterization which extends the existing NFR framework to take into
account the collected empirica verification data.

3.2 Meterization

Meterization is a specia relationship that connects measurable NFRs to SIG
softgoals. Its symbol resembles a gauge that displays the current status of the
connected measurable NFR in graphical terms. shows the three different
meterization symbols which are fail (left), pass (right) and undefined (centre).
Corresponding colour codes are red for fail, green for pass and yellow for undefined.
The undefined date exigts if the connected measurable NFR has not yet been
evaluated within any of the design modds.

Figure 2. Meterization relationship symbols.

Contribution of the meterization symbol to the SIG softgoals is smilar to the
contributions of softgoals amongst each others with the exception that the EQUAL
(=) contribution always overrides any other SIG contributions affecting any other
connected softgoal. This emphasizes the empirical verification of defined measurable
NFRs so that new tests can automaticaly alter the SIG state to correctly reflect the
observed status of the implementation.

3.3 Implementation of NFR+ Framework

The NFR+ Framework was implemented usng MetaEdit+ (ME+), which is a
commercial DSM tool created by MetaCase. ME+ includes tools to define Domain-
Specific Moddling Languages (DSMLs) with GOPPRR (Graphs, Objects, Ports,
Roles, Relationships) a metamodeling language and generators with MERL scripting
language in addition to providing basic modelling facilities. ME+ also provides an
Application Programming Interface (API) which is accessible by al SOAP-enabled
(Simple Object Access Protocal) programming languages.

The measurable NFR modd entity is defined in the NFR+ metamodd structurally
in a requirements model entity which can be connected to SIG graphs with a
meterization relationship that also describes the status of the measurable NFR with
the meterization symbol. The requirements model entity itself does not contain any
measured or otherwise evaluated values because the evaluation and measurement of
each requirement type is dependent on the requirement type and application domain.
Therefore, the requirement model entity finds special model entities called monitoring
mechanisms that should be attached to the application models and finds the test and
evaluation results from there. If no monitoring mechanisms are found, the
meterization symbol is automatically set at “undecided”. Otherwise, the meterization
symbol automatically indicates pass or failure depending on the test or evaluation
result. Describing the other SIG concepts of the NFR Framework with ME+
metamodd is straightforward and thus deserves no detailed analysis here.

The SIG evauation generator was implemented using MERL scripting language.
The evaluation generator when initiated traverses the SIG graphs starting from the
topmost softgoals. The evaluation is conducted in a recursive manner evaluating the
subordinates of each softgoal first and propagating their labels through the
interdependency contributions to the parent to eventually determineits new label. The
evaluation is based on a predefined, but modifiable, contribution catal ogue.

The contribution catalogue is a special SIG graph that defines the outcome of pairs
of child labels and contributions. The SIG evaluation generator tries to find this
unigue graph from the currently active project in the ME+ tooling environment and
checks the resulting parent label from the diagram if such is defined. Otherwise,
defaults are used according to the original NFR Framework. The contribution
catalogue can be modified to influence the evaluation. For example, normaly asignal
of an Accepted label propagated through HEL P contribution results an Accepted |abel
within the parent node. An dternative logic might be that such combination results
only a Weak positive, instead of Accepted. If such change is needed, this could be
achieved smply by changing one label within the contribution catalogue, the one
describing this combination’ sresult

The SIG graph is updated after the model evaluation with an external application
which is generated by the evaluation generator. An external application must be
generated since ME+ currently does not allow the alteration of properties of objects
within the graphs directly from the MERL scripts. The generated externa application
consists of Python script that manipulates the SIG graph viathe ME+ APIL. In the end,
the script is executed via external command to the Python interpreter and the modd is
accordingly updated.

4 Demonstration of NFR+ Framework in a Laboratory Case

In this section, the usage of NFR+ Framework is demonstrated in a laboratory case of
image processing applications. The demonstration illustrates some of the possibilities
the NFR+ Framework providesin order to promote requirements traceability.

4.1 Functional and Non-Functional Requirements for an Example Image
Processing Application

Stream-oriented computing systems are characterized by paralld computing
components that process potentially infinite sequences of data [16]. Such systems are
common e.g., in embedded systems, digita signal processing, image and video
processing and cellular base stations. The primary purpose of such systemsis to read
data from an input stream, manipulate the data with a filter chain, and forward the
manipulated data to a sink. Briefly, the system can be considered to be based on the
Pipess and Filters architecture pattern which consists of a st of data
manipulation filters which are connected together with pipes. The filters do not share
the state thus the filters can be connected together in arbitrary order as long as the
semantics are correct.

As a laboratorial case of stream-oriented computing systems, a subsystem of an
image processing application, i.e. video camera, is utilized. The main responsbility of
the example subsystem is to flip incoming 1Mpixel images 90 degrees to the right to
match the tilt of a display which is utilized for displaying input images. The input
images are aso required to have sepia toning. The sepia-converted images must aso
be compressed to JPG format and saved to temporal data storage from where the
images are forwarded to the next subsystem. NFRs for the subsystem are asfollows:

Average frame rate of the display should be 25fps with good video quality.
Average throughput of the subsystem should be more than 10fpsin average.
Images produced by the subsystem should be of adequate quality.

4.2 NFR+ Softgoal Interdependency Graphs

The functionalities can be divided into four task specific functional blocks, i.e.
RotationFilter, SepiaConverter, Display and Temporal Sorage which is responsible
for JPG conversion and saving the manipulated images to data storage. There are also
Resize filters available for altering the resolution. The functional blocks form topics
for the SIG.

According to the preceding functional requirements and NFRs, the SIG presented
in[Figure 3 can be drawn. Overall subsystem satisfaction depends on the video quality
the Display should provide, subsystem throughput and the image qudity the
subsystem forwards. The Display image quality depends on throughput of
SepiaConversion, Rotation, and resolution of the viewed images where the priority is
on frame rate. As presented, throughput of the filters, image compression and saving
of the images into TemporalSorage are heavily affected by the image resolution.
However, the image resolution affects the overall system satisfaction positively in

addition to Display quality, therefore there is a distinct trade-off between throughput
and image qudlity.

Satizfaction
[Re_q] Performance Satisfactor Susystem]
[Priarity]: 1 subsystem
[Messurable targets]: Average [Redq]. Performance

throughput of the system must be more

I 11
than 10fps r ‘ [Messurshle ets]: Viewer framerate must be more
[Related quality and release criteria]: i Performance | than 25fps in aver:
i

Image guality Subsystemn] [Relsted quality and reles riteriz]: Image quality
[Metrics applicable for tracing] [Metrics applicable for tracing] i
Throughput, image resolution resolution

[Measurable targets valuel 10 [Measurable targets value] 25

Performance
Perlnrmance
High oo Sbopsten] Tyl
permrmanc - m
-/ Performance -1
High saving Output Stream] Performance T
spesd High framerate Display] ¥
Ferfarmance L N I
quality
High JPGH Output Stream;
+ cOmpression
speed Pertarmance
Performance on
epiaConversion] fhroy,
@Paral 10 processing thec hp“‘ M
Genulna paralel
processing

Figure 3. SIG for the example application.

performance

Image resolution

High resolution
images

As presented in the SIG, throughput of the overall subsystem can be improved by
enabling a parald image saving process as well as by enabling genuine parallel
processing of the filtersand compression. Since Python 2.5 does not currently support
genuine parallel processing with standard threads, paralld processing of multiple
images cannot be applied. However, threads can be applied to enhance | O processing.

The SIG is dlso accompanied by specific measurable NFRs as depicted i |n
The subsystem output performance subgoal is accompanied by an NFR that explicitly
states that the throughput should be more than 10fps on average. Similarly, the frame
rate of the Display is explicitly defined with the measurable NFR model entity. The
connecting meterization symbals indicate the current status of measurable NFRs.
With the SIG being constructed, it can be evaluated to specify labels of the softgoals.
The evaluated SIG in b reveals that the subsystem does not satisfy its NFRs.
The major problem W|th throughput of the filters seems to be caused by the lack of
possibility for genuine parallel processing. However, it may be possible that the filters
in seria processing mode might satisfy the requirements, thus the subsystem needs to
be tested.

4.3 Application Modelled with Extended M-Net

431 TheModelling Facilities
In this paper, we use a refined version of the earlier developed M-Net modelling
language which enables modelling of simulations of paralle computing filter

chains in the domain of stream-oriented computing systems. We have extended the
M-Net with the capability for modelling image processing systems. The extended M-
Net uses real image processing filters insead of simulations used in previous version.
Otherwise the languages are the same. For M-Net, complete Python source code
generation from models was devel oped including support for image processing. As a
graphic library, the Python Imaging Library [18] was used.

Considering the testing of NFRs, the application models can be included with
NFRs and monitoring mechanisms . The monitoring mechanisms can be
connected to those parts of interest in the application models to enable the monitoring
of throughput of imagesi.e. the amount of images handled per second. The generated
code is embedded with monitoring mechanisms that enabl e run-time reporting back to
the application modd via ME+ API.

4.32 TheApplication M odel

An application model that satisfies the functional requirements is presented in
H. InputSream functions as a data source of bitmap images which are forwarded to
PreResize filter. PreResize drops the image resolution by haf thus causing a
significant impact on image and video quality. This implements not using high
resol ution operationalization.

Resized images are forwarded from PreResize to SepiaConversion. Then the
stream divides into two paths. The path to Display (the topmost path) leads to
Rotation which rotates the images 90 degrees to the right and forwards the image to
DisplayRes ze to decrease the image resol ution even more to maximize the frame rate.

After sepia conversion in the lower part of the subsystem, the images are resized
back to the required 1Mpixe by PostResize. The images are further forwarded to a
switch which forwards the first input image to the first TemporalSorageA which
immediately starts processing the data. The second image is forwarded to the
Temporal StorageB which starts computing the image pardlel to the previous data
storage. This way the data storages receive every other image and therefore halve the
amount of images to be handled per data storage. This solution is an implementation
of paralled 10 processing operationalization defined in the SIG. After image
compression and saving, Temporal Sorages forward the data to the Snk.

The measurable NFRs are presented al'so in the finalized application mode
H) and connected to the corresponding parts in the model to maintain a trace link
between the NFRs presented in Section 4.1 and the application modd. The
application model is also accompanied by appropriate monitoring mechanisms
connected to the measurable NFRs. After generating an executable and executing it,
the application reports the measured values back to the application model. As shown,
the frame rate of the Display is 26.7fps (see the dark rectangle on the top) and the
throughput of the overall system is 15.4fps. It seems that the application now satisfies
these requirements.

[Req]: Performance:

[Priority]: 1

[Measurable targets]: Yiewer framerate must be mare than
2&fps in average

[Related quality and release criteria]: Image quality

[Metrics applicable for tracing]: Framerate, image resolution

[Measurable targets valuel: 25 2
l@DiSplalEyResize-: ’ >3 DisplavMeasuringPoirﬁ_E

Sink

CTTTET
TH]
=
4

rbE eEiaC ﬁ DE‘ PostResize [

Onversion

5367937774 I

[Req]: Petformance
[Priority]: 1
[Messurable targetz] Average throughput of the system must be more than 10fps R
[Related quality and release criteria]: Image quality

[Metrics applicable for tracing]: Throughput, image resolution
[Measurable taroets valual: 10

Figure 4. Image processing application modelled with M -Net.

4.4 The Analysisof NFR+ Softgoal | nterdependency Graphs

After the application has been modelled, generated and executed, anadysis of the test
results to the overall subsystem can be performed by scrutinizing the automatically
updated SIG (see . As the overall subsystem throughput and Display frame
rate are satisfactory, these are represented as “pass’ meterization symbols. The impact
of the measured performance values to the overall subsystem can be discovered by
evaluating the SIG.

The measured values override previous conflicts but still there is a conflict in the
“Good video quality” softgoal whose label is also propagated to overall subsystem
satisfaction. This conflict is clearly caused by using low-resolution images as input to
the Display. At this stage the requirements engineer and the application modeller
should try to find a solution for the problem. The SIG clearly reveals that the only
way to satisfy the overall subsystem satisfaction requirements is using higher
resolution images. As discussed above, this on the other hand has a drastic impact on
overall throughput. Thus, performance of the filters should be increased when using
high-resolution images. If no solution can be found, the impact of the failure should
now be traced to the other SIGs and the overall impact at the system level should be
eval uated.

Satizfaction
[Red]: Performance Satisfactor Susystem]
[Pricity]: 1 subsystem b
[Messurable targets]: Average [Redq]. Performance
throughput of the system must be more o Il ot
than 10fps r ‘ [Messurshle ets]: Viewer framerate must be more
[Related quality and release criteria]: ‘ Performance | than 25fps in aver:
Image quality o . Hig \ Subsyster] | [Relsted quality and relesite griterial: Image quality
[Metrics applicable for tracing] ReLiHmEnce [Metrics applicable for tracing] i
Throughput, image resolution resolution
Measurable targets value] 10 Measurable targets value] 25

+
Performance
Performance
" zood video
High outp V s bt ity Display]
performancs

PErformance s

High saving V (utput Stream] FErformance g
spesd High framerate Display] ¥
Ferfarmance L I
quality
High JPGH Output Stream;
+ cOmpression

speed
Performance

Performance
s ion
t epiaConversion] {hrou
ﬁﬁ Parallg 10 processing Tatootped R/‘f/@
Genulna paralel
processing

Figure5. SIG with test results.

Image resolution

High resolution
images

5 Discussion

The presented NFR+ Framework addresses the challenges of bridging the gap
between RE and verification in a transparent fashion observable also through the SE
phases. The original NFR Framework provides a solid and expressive framework for
eiciting NFRs and binding them to functional requirements. However, the NFR
Framework is mostly utilized only the dicitation process of the NFRs. To bridge the
gap between requirements engineering and software engineering it isrequired that the
SIGs in the NFR Framework are continuously taken into account in SE but that also
the outcomes of SE should be utilized in RE. Our extension to the NFR Framework
strives for just that.

As presented, during SE, the dicited NFRs and operationalizations offer
information about the design rationale. The measurable NFRs define a concrete
instantiation for an abstract softgoal definition that cannot be, as such, usable for
design input nor for verification purposes. The measurable NFRs represent additional
and optional concretization in paralle with operationdizations. However, the
direction of information is two-way. Whereas operationdizations are design
specifications, measurable NFRs relay information to both directions to and from RE
workspace. Measurable NFRs include concrete verification criteria, but also reflect
the status of their realization in the SIGs representing al of the NFRs. As the
dimenson of adding concretization and information is orthogona with
operationaizations and functiona requirements, we believe that this is an important
step forward to closing the gap between RE and SE.

The next step towards completely unified MDD-environment should include
importing existing requirements from other tools into the SIGs and SW modelling
environments automatically in order to avoid redundant work and management
overheads. While the NFR+ Framework offers full tooling for starting a new project
from scratch, there might be a vast requirements database in many realistic cases that
are inherited from earlier products or versions. For practical reasons synchronizing
with them would provide a great benefit. We plan to study thisin the future.

Further studies are yet needed to find out the applicability of our approach in large-
scale real cases. For example managing the complexity of multiple, large design
models and vast SIGs should be practically evaluated.

6 Conclusion

In this paper an extended version of the NFR Framework, which we call the NFR+
Framework, was presented. In addition, tooling with MetaEdit+ language workbench
for the framework was also presented. We have extended the NFR Framework by
adding a concept of measurable NFR. Measurable NFRs can provide evidence-based
information about achieving the preset or currently chosen NFR goals. They aso
serve as a connecting point and guide to software designers by stating the desired
outcome.

Thislinkage between requirements and design provides an approach for joining the
separate areas of requirements engineering and software engineering. The solution
serves as a communication tool between stakeholders by offering a forma common
language and documentation. The NFR Framework also per se promotes the
refinement of the requirements needed during elicitation into such a form that the
design can be directly justified by them. In addition, the measurable NFRs guide the
requirements engineersin their aim to create measurable requirements which will also
serve as verification and thus provide overall quality monitoring view to the system
under development. The traceability of requirements becomes transparently visible all
the way from code-implementing design modes to the highest level NFRs and vice
versa.

We demonstrated our approach with a laboratory case and illustrated how the
NFR+ can help in detecting problematic designs. We also showed how the
interlinkage helps in verification of the NFRs during the whole time span of software
development; from forming first SIGs to finally testing related implementations. This
verification is based on connecting measurable NFRs to SIG through the
meterizations.

ACKNOWLEDGMENTS

The work presented here has been developed within the MoSIS project ITEA 2 —
ip06035. MoSiSisa project within the ITEA 2 —Eureka framework.

References

[1] Cheng, B. and Atlee, J.: Research directions in requirements engineering. In FOSE ’'07:
2007 Future of Software Engineering, Washington, DC, USA, 2007. IEEE Computer
Society, pp. 285-303

[2] Baudry, C., Nebut, C. and Traon, Y. L.: Model-Driven Engineering for Requirements
Analysis. In Proceedings of the 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC), 2007, pp 459-459.

[3] Matinlass, M. and Niemelg, E.: The Impact of Maintainability on Component-based
Software Systems. In 29th Euromicro Conference (EUROMICRO’ 03), Turkey, 2003, pp.
25-32.

[4] En-Nouaary, A., Khendek, F. and Dssouli, R.: Fault Coverage in Testing Real-Time
Systems. In Sixth International Conference on Real-Time Computing Systems and
Applications (RTCSA "99), Hong Kong, 1999, pp. 150-157.

[5] Graham, D.: Requirements and testing: seven missing-link myths. In IEEE Software,
19(5), 2002, pp. 15-17.

[6] Chung L., Nixon, J M. B. and Yu, A.. Non-functiona Requirements in Software
Engineering. Springer, Reading, M assachusetts, 2000.

[7] Robertson, S.: An Early Start to Testing: How to Test Requirements. In EuroSTAR ' 96,
Amsterdam, December 2-6, 1996.

[8] Kélly, S. and Tolvanen, J-P.: Domain-Specific Modeling — Enabling full code generation.
John Wiley & Sons, New Jersey, 2008, 427p., ISBN: 978-0-470-03666-2.

[9] Tran, Q. and Chung, L.: NFR Assistant: Tool Support for Achieving Quality. In ASSET
'99, 1999, pp. 284-289.

[10] Supakkul, S.: The Softgopal UML Profilee An NFRs Modeling Tool. URL:
http://www.utdal las.edu/~supakkul /tool s/softgoal -profil e/softgoal -profile.ntm| [Visted
July 2009].

[11] StaeUML, StasUML - The Open Source UML/MDA Platform. URL:
http://staruml.sourceforge.net/en/ [Visited June 2009)].

[12] Ebert, C.: Putting requirement management into praxis. dealing with nonfunctional
requirements. Information & Software Technology 40(3): 175-185, 1998.

[13] Merilinna, J. and Réty, T.: A Tooling Environment for Quality-Driven Model-Based
Software Development. In 9th OOPSLA Workshop on Domain-Specific Modeling,
Orlando, Florida, USA, 2009.

[14] Merilinna, J. and Réty, T.. Bridging the Gap between Qudity Requirements and
Implementation. In The Fourth International Conference on Software Engineering
Advances (ICSEA 2009), September 20-25, 2009 - Porto, Portugal.

[15] Kazman, R., Klein, M. and Clements, P.. ATAM: Method for architecture evauation.
Carnegie Méellon University, Software Engineering Institute, Tech. Rep. CMU/SEI-2000-
TR-004 ESC-TR-2000-004, 2000, 83 p.

[16] Streamlt, Research overview page, URL:
http://www.cag.|cs.mit.edu/streamit/shtml/research.shtml [Visited July 2009]

[17] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.: Pattern-oriented
software architecture — asystem of patterns. Chichester, New Y ork: Wiley, 1996, 457 p.

[18] PythonWare, Python Imaging Library: URL: |http://www.pythonware.com/products/pil |
[Visited July 2009]

http://www.utdallas.edu/~supakkul/tools/softgoal-profile/softgoal-profile.html
http://www.pythonware.com/products/pil/

	Extending the NFR Framework with Measurable Non-Functional Requirements

