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Abstract. The purpose of this work was to apply and test Haralick’s gray level
co-occurrence matrix (GLCM) technique for automatic calculation and seg-
mentation of the ischemic stroke volume from CT images. For this task, the 3-
nearest neighbors classifier was trained to perform stroke and non-stroke area
classification. The segmentation and classification results were compared ver-
sus a manual segmentation. Approximately half of the automatically computed
and segmented stroke volumes from CT images differed less than 15 % from
the corresponding manually segmented stroke volumes.

1 Introduction

Today, computer tomography (CT) is the modality of first choice for the examination
of patients with acute stroke. Within the first hours after onset of the stroke appear-
ance, the detection of ischemic regions in the brain using CT images is at the same
time a very critical and a very difficult task. Later ischemic edema can be recognized
as a hypodense area that is clearly visible. For scientific and medical studies dealing
with ischemic stroke it is necessary and useful to calculate the volume of the stroke,
since the patient status depends on the size and localization of the ischemic stroke.
The manual calculation of the location and the volume of the stroke is very tedious
and time consuming. In order to speed up possible early detection and diagnosis,
Haralick’s gray level co-occurrence matrix (GLCM) technique was applied and tested
for automatic calculating and segmentation of the volume of an ischemic stroke from
CT images.

2 Research

There exist several methods to describe image texture. They are based on application
of artificial neural networks, or 2D Fourier transformation, or histogram, or gray level
co-occurrence matrix (GLCM), etc. All these methods have their advantages and dis-
advantages. The Fourier transform of an image reveals the periodicity and directional-
ity of the texture [1]. Artificial neural networks are complicated to train [2]. One of
the most popular and powerful ways to describe texture is using of GLCM [3]. It rep-
resents an estimate of the probability that a pixel has a gray level intensity gi and a
neighboring pixel has an intensity gj, where gi, gj ∈[0; Ng–1], and Ng is the number of



available gray levels in the image. Using Haralick features, 14 parameters can be
extracted from the above-mentioned probability distribution [4]. It is presumed that
these parameters can characterize image texture.

2.1 Material

For a comparison of the automatic and the manual approach, the ischemic stroke vol-
umes of 50 patients were both hand and automatically segmented from CT scans. All
CT-scans were made on a SOMATOM Volume Zoom (SIEMENS) at the Department
of Neuroradiology at the University Hospital of the University of Erlangen. All re-
cordings were made in a time span of ten months. The data subset containing the
stroke volume consisted of approximately twenty slices per CT-scan. All images were
archived using DICOM standard, where each image header contained information
about slice thickness and pixel spacing for computing stroke volume

2.2 Parameter Extraction

The goal of this research was compute the vol-
ume of ischemic stroke automatically in each
head from CT-slices. Fig. 1 shows nine slices
with automatically detected stroke area (light
gray).

The first step, before applying the GLCM
technique to calculate the stroke volume from the
50 CT scans, is to decrease the number of avail-
able gray level values and therefore the bins in
the co-occurrence-matrix as well as the amount
of data to be processed. Experiments showed that
100 gray levels were enough to describe textural
information of the human brain instead of 4096
gray levels (12-bit) supported in DICOM stan-
dard (Fig.2a). We accepted gray levels in the
range from 1024 to 1123 only. Thus gray levels
below 1024 were set equal to zero and values of
above 1123 were set to 99 (Fig. 2 b). All values
between 1024 and 1123 were transformed to levels between 0 and 99:
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Using this mapping function we decreased the size of GLC-Matrix from 4096² to 100²
entries.

To reduce the computing time further each of the 14 Haralick features were calcu-
lated to understand which of these parameters is able to separate the stroke area in

Fig. 1. Automatically detected
stroke area (middle gray)



0                                                                         4095
(a)

0                            99                                           255
(b)

Fig. 2. Histogram of 12-bit DICOM image (a) and of preprocessed image converted to 8-bit (b)

each CT-slice from the remaining brain texture, bone and air. Combining one feature
with another, we discovered that six Haralick features (f2:Contrast; f4:variance; f6:Sum
average; f7:Sum variance; f8: Sum entropy; and f10:Difference variance ) are sufficient
to separate stroke and brain texture in the best way.

2.3 Classification

To classify the micro texture of the brain, a sliding window approach was utilized.
Experiments with different sliding window sizes showed an optimum classification
result with a window size of 31² pixel. Therefore each CT-slice with a spatial resolu-
tion of 512² pixels was subdivided into (232324 sliding-window positions per slice
where the GLCM and the corresponding 6 Haralick features were calculated.

As classifier a 3-nearest neighbor rule [5] was applied, which classified a vector x
to the class Cn, where xn is the nearest neighbor to x and xn belongs to class Cn. A
classification mistake is made if Cn is not the same category. If the number of pre-
classified points is large it makes sense to use n nearest neighbors, instead of one
single neighbor. Thus we chose the nearest 3 neighbors. The classifier must be trained
with known data (training pattern). For this purpose we randomly selected a CT slice
and defined two classes on it: C1 describing the part of non-stroke brain, and C2 de-
scribing the part of the brain with the stroke (Fig. 3a). Thus 35000 samples for class
C1 and 6000 samples for class C2 were calculated.

2.4 Feature optimization

For each sliding window, feature extraction for the training pattern set was performed,
yielding 35000 and 6000 feature vectors for classes C1 and C2, respectively. To in-
crease the classification speed, the training pattern set was optimized to eliminate
similar features. The criterion of elimination was the absolute difference between
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, where N denotes the total

number of features in each vector, and F1(i), F2(i) the feature vectors to be compared.
If the distance d between two feature vectors was equal or less than 0.0001, we pre-
sumed that these feature vectors were very similar or the same. As result of the opti-
mization step we reached a reduced training data set with 12000 and 3000 vectors for
classes C1 and C2 respectively.

After the learning process, we were able to classify unknown patterns using sliding
window. For each sliding window, the feature vector was calculated and compared
with each vector of classes C1 and C2 using the 3-nearest-neighbor and the Euclidean
distance between feature vectors.



2.5 Segmentation post processing

Morphology dilation operation was performed as the last operation of computing
stroke volume. As can be seen in Fig. 3b, the detected stroke area was less than ob-
served in the original image, so we added half of sliding window to each pixel from
class C2. Finally the stroke volume V can be calculated using V = VolVoxel × Σ Si, where
Si denotes the number of pixels in the stroke region of i-th slice.

3 Results and Conclusions

We computed and classified 1204 CT slices (302 MB) in 56 hours with PIII 450 MHz
computer. The classification of one slice took about 2-3 minutes, and the computation
of stroke volume of one patient took approximately one hour. About half of automati-
cally computed from CT images stroke volumes differed less than 15 % from manu-
ally calculated corresponding stroke volumes. Some of computed volumes differed
from defined and calculated manually up to 100 % and even more.
Since the automatic computation and segmentation of ischemic stroke volume showed
viability of utilization of GLCM technique, the next steps in searching of more precise
and more reliable results of computing using textural features will be:
• Testing different features to classify unknown brain areas,
• Improve the classifier training set,
• Propagation of stroke location from slice to slice.

(a) (b)

Fig. 3. CT slice with two classes (C1 – non-stroke, C2 – stroke) (a), and the same area after
segmentation (b)
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