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Abstract. Morphological data on two classes of  superior colliculus (SC) neu-
rons have quantitatively been analyzed for dendritic shape parameters. Their 
frequency distributions were used to optimize the parameters of a dendritic 
growth model which describes dendritic morphology by a stochastic growth 
process of segment branching and elongation. Model-generated trees have 
shape properties closely matching the observed ones. The dendritic trees of 
each of the two classes of SC neurons are represented by a specific set of 
growth model parameters, thus achieving morphological data compression. 

1 Introduction 

The morphology of nerve cells is assumed to play a decisive role in information proc-
essing in the brain. Recent simulation studies with a stochastic model for dendritic 
growth have shown that the shape properties of various neuron types naturally may 
arise from peculiarities in neurite growth and branching during dendritic development 
[1-3]. In this study, morphological data on two classes of  neurons from cat superior 
colliculus (SC) previously published [4-6] have been used to quantify the dendritic 
anatomy in terms of the parameters of the dendritic  growth model. 

2 Material and Methods 

2.1 Superior colliculus neurons 

Detailed morphological reconstructions were used from neurons stained with HRP [4,  
5]. The sample of cells selected for analysis comprised a triplet of neurons each from 
superficial (SLNs) and deep (DLNs) SC layers (Fig. 1). Their morphology was ana-
lyzed quantitatively for a set of shape parameters including degree, centrifugal order 
of segments and tree-asymmetry index (as a measure of  topological tree type). Mean 
and SD values of the parameters are presented in Table 1. Their frequency distribu-
tions are shown in Fig. 2 (dashed histograms).  



2.2 Growth model  

The dendritic growth model has recently been presented in [1, 2]. It describes dendri-
tic growth by a stochastic, nonstationary process of segment branching and elongation. 
In short, the branching probability of a terminal segment per time-bin is given by 
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running over all ni terminal segments.  
The modular structure of  the model facilitates determining optimal parameter val-

ues as explained in detail in [2]. Briefly, parameter S is estimated from topological 
structure via the asymmetry-index, and parameters B and E  from the empirical distri-
bution of segment numbers. The segment length parameters (not shown) are optimized 
following the steps described in [2]. 

 
 
 

 

Fig. 1.  Projected image of two SC neurons. Left: SLN, right: DLN, each with dendrogram of 
one dendrite indicated by arrow (below). 

 



3 Results 

The frequency distributions of the shape parameters were used to optimize the pa-
rameters of the growth model. The parameters of SLNs (B=4.94, E=0.2, S=0.25) 
clearly differ from those of DLNs  (B=3.89, E=0.285, S=0.4). 

The model trees generated with these parameter values have shape properties cor-
responding closely to the observed ones, as demonstrated in Table 1. In Fig. 2, ob-
served (dashed histograms) and model generated (continuous lines) frequency distri-
butions of shape properties are contrasted.  

 
  

  

Fig. 2.  Frequency distributions of shape parameters of SC neurons (dashed histograms) and 
model-generated trees (continuous lines) using the optimized parameter values. 

4 Discussion 

The correspondence between frequency distributions of shape parameters derived 
from reconstructed SC neuron dendrites and model-generated trees indicates that the 
stochasticity assumptions employed in building the dendritic growth model are suc-
cessful in explaining the variability of neuronal dendrites. 

 



Shape variables Observations Model outcomes 

 SLNs Nobs Mean SD Mean SD 
Degree 
Tree asymmetry 
Centrifugal order 

26 
26 

628 

12.58 
0.41 
3.58 

7.46 
0.15 
1.74 

12.49 
0.41 
3.53 

7.39 
0.14 
1.70 

 DLNs Nobs Mean SD Mean SD 
Degree 
Tree asymmetry 
Centrifugal order 

12 
12 

659 

28.3 
0.39 
5.03 

18.1 
0.14 
2.06 

28.6 
0.42 
4.92 

17.7 
0.1 

2.04 

Table 1.  Shape properties of observed and modeled dendrites of SC neurons.  Nobs  denotes the 
number of experimental manifestations. 

 
Dendritic trees of each of the two classes of SC neurons have been effectively rep-

resented by a specific set of the model parameters B, E and S, as it has been achieved 
in previous studies on other neuron types, too [1-3]. Thus, the analysis and compari-
son of the dendritic shapes of neuron classes during development, maturity and dis-
ease become feasible. The growth model also provides a tool for generating sets of 
random dendritic trees which can be used to explore the functional implications of 
morphological variations [7].  
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