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A bstr act. provenir o-
ry of a data entity. Provenance is critical information in the sensors domain to identify a 
sensor and analyze the observation data over time and geographical space. In this paper, 
we present a framework to model and query the provenance information associated 
with the sensor data exposed as part of the Web of Data using the Linked Open Data 
conventions. This is accomplished by developing an ontology-driven provenance man-
agement infrastructure that includes a representation model and query infrastructure. 
This provenance infrastructure, called Sensor Provenance Management System (PMS), 
is underpinned by a domain specific provenance ontology called Sensor Provenance 
(SP) ontology. The SP ontology extends the Provenir upper level provenance ontology 
to model domain-specific provenance in the sensor domain. In this paper, we describe 
the implementation of the Sensor PMS for provenance tracking in the Linked Sensor 
Data. 

 
K eywords: Provenance Management Framework, provenir ontology, Provenance, Li-
neage, Linked Data, Semantic Sensor Web, Sensor Data, Sensor Web Enablement, Da-
taset Generation, Resource Description Framework (RDF) 
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The first North American blizzard of 2010 was tracked from the state of California to 
Arizona, through northern Mexico, and across the continental United States. The 
storm produced historic snowfall levels in the Mid-Atlantic States, as well as exten-
sive flooding and landslides in Mexico. During this time, a number of weather sta-
tions collected data from thousands of sensors deployed in the United States. Seman-
tic Sensor Web1 proposes to annotate this sensor data with semantic metadata to 
provide contextual information essential for situational awareness. Such semantic 
metadata data can be used to answer aggregate queries spanning both temporal and 
geographical areas. 
 
Let us consider the following scenario. We are interested in finding all the sensors 
which have observations related to a blizzard of interest. In order to accomplish this 
task, we would need to know the properties associated with a phenomenon to be clas-
sified as a blizzard, the time period for which the blizzard was active, the location 
where the blizzard occurred, and sensors deployed in this location during this time 
period.  

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
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This is an example of a sensor discovery query. Sensor discovery has been identified 
as a top-priority use case by the W3C Semantic Sensor Network Incubator Group2, 
which is tasked with development of sensor ontology. In the sensors domain, the 
capabilities of the sensor, observation location (spatial parameter), time of observa-
tion (temporal parameter), and phenomenon measurement (domain parameter) are 
important to answer discovery queries. This data related to the sensor is the prove-
nance metadata about the sensor. Provenance describes the history or the lineage of an 
entity and is provenir . 
Provenance informatio

entities. 
Provenance has been studied from multiple perspectives, including (a) workflow 
provenance and (b) database provenance as discussed in Tan [1]. Workflow prove-

 [1] a 
workflow. Davidson et al. [2] addresses issues related to provenance in workflow 
systems. In contrast, database provenance refers to the process of tracing and record-
ing the origins of data and its movement between databases [3]. In Sahoo et al. [4], we 
introduced the notion of semantic provenance to define provenance information that 
incorporates domain semantics to closely reflect the knowledge of an application 
domain. 
In this paper, we use the observations from the 20,000 sensors within the United 
States (Figure 1) in the context of a blizzard as a running example. 
 

 
F ig.1.The distribution of 20,000 Sensors constituting the Semantic Sensor Web (SensorMap 

Image [5]) 
 
We use the definition of a blizzard provided by the NOAA3, which describes it as: 
 

B L I Z Z A RD = High WindSpeed (exceeding 35 mph) AND Snow Precipita-
tion AND Low Visibility (less than ! mile), for at minimum 3 hours. 

F ig.2. Blizzard Composition 
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A blizzard exists if the above conditions hold true for at least 3 hours within some 
geospatial region. Hence, the provenance of sensor observations describing the geos-
patial information of the sensors that record the observations, the time stamp of the 
observations, and the attributes of the sensor itself (for example, a motion sensor is 
not useful in context of a blizzard) are important for a sensor discovery query.  
With a view of capturing the provenance information related to a sensor, the main 
objective of this paper is to implement a Sensor Provenance Management System 
(Sensor PMS). In this paper, we describe the creation of this infrastructure using the 
theoretical underpinning of the Provenance Management Framework (PMF) [4]. The 
key contributions of the paper are described below: 
1. Implementing Sensor PMS to track provenance in the linked sensor data 
2. Developing a domain specific ontology for Sensor PMS called Sensor Prove-

nance (SP) ontology. The SP ontology uses concepts within the Provenir upper 
level ontology defined in PMF [4] to add provenance information within the sen-
sors domain.  

3. An evaluation of the Sensor PMS capabilities to answer provenance queries over 
the sensor datasets generated is provided. 

 
The rest of the paper is organized as follows: Section 2 discusses background con-
cepts. In section 3, we describe current infrastructure for generating sensor datasets 
and section 4 discusses the sensor datasets generated. Section 5 integrates the current 
infrastructure described in section 3 with the provenance management system and 
describes the architecture of Sensor PMS. Section 6 introduces the SP ontology and 
section 7 discusses the kind of queries that can be answered with the help of prove-
nance information. Section 8 gives related work and section 9 concludes with sum-
mary and future work. 
 
2. Background 

!
In this section, we describe the resources used in our work including the Sensor on-
tology and the Linked Open Data initiative. 
 
2.1 Ontology Model of Sensor Data  In computer science and information science, 
ontology is a formal representation of the knowledge by a set of concepts within a 
domain and the relationships between those concepts. It is used to reason about the 
properties of that domain, and may be used to describe the domain. [6] Our sensors 
ontology uses the concepts within the O&M standard to define sensor observations. 
Within the O&M standard, an observation (om:Observation) is defined as an act of 
observing a property or phenomenon, with the goal of producing an estimate of the 

value of the property, and a feature (om: F eature) is defined as an abstraction of real 

world phenomenon. (Note: om is used as a prefix for Observations and Measure-
ments). The major properties of an observation include feature of interest 
(om:featureO fInterest), observed property (om:observedProperty), sampling time 
(om:samplingTime), result (om:result), and procedure (om:procedure). Often these 
properties can be complex entities that may be defined in an external document. For 
example, om: F eatureO fInterest could refer to any real-world entity such as a cover-
age region, vehicle, or weather-storm, and om:Procedure often refers to a sensor or 



system of sensors defined within a SensorML4 document. Therefore, these properties 
are better described as relationships of an observation. Concepts described above and 
their relationships within the sensor ontology can be found in figure 2. The Sensor 
ontology can be found at [7]. Section 5 extends the Sensor Ontology with provenance 
related concepts found in the Provenir upper level ontology defined in the Provenance 
Management Framework (PMF) [4]. 
!

!
F ig.2. Concepts and their relationships within the Sensor Ontology 

 
2.2 Semantic W eb The Semantic Web is an evolving development of the World 
Wide Web5 derived from the World Wide Web consortium (W3C)6 in which the 
meaning of information and services on the web is defined, making it possible for the 
web to understand and satisfy the request of people and machines that use the web 
content. [8] Resource Description Framework (RDF)  is a publishing language within 
the Semantic Web, specially designed for data. RDF has now come to be used as a 
general method for conceptual description or modeling of information that is imple-
mented in web resources, using a variety of syntax formats. [9]. It is also a standard 
model for data interchange on the web. [10] SPARQL7 is a protocol and a query lan-
guage for semantic web data sources. [8] In its usage, SPARQL is a syntactically-
SQL-like language for querying RDF graphs. [11] Since Semantic Web is not just 
about putting data on the web but also linking the data, Linked Data is used to connect 
the Semantic Web8. Wikipedia defines Linked Data as "a term used to describe a 
recommended best practice for exposing, sharing, and connecting pieces of data, 
information, and knowledge on the Semantic Web using URIs and RD F ." [12] Linked 
Data is a large and growing collection of interlinked public datasets encoded in RDF 
spanning diverse areas such as: life sciences, nature, science, geography and enter-
tainment. 
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!
 
3. Cur rent Infrastructure 
!
The lifespan of sensor data starts as observable properties of objects and events in the 
real-world which are detected by sensors through observation. These observation 
values are then encoded in several formats of varying degrees of expressivity, as 
needed by applications that may utilize the data. The data generation workflow is 
comprised of four main parts, as shown in figure 3. The workflow begins with sensors 
deployed across the United States measuring environmental phenomena. Observations 
generated from these sensors are aggregated at MesoWest [13] which provides access 
to past sensor observations encoded as comma separated numerical values. These 
sensor observations are then converted to Observations and Measurements (O&M). 
O&M is an encoding standard and a technical framework that defines an abstract 
model and an XML schema encoding for sensor descriptions and observations. It is 
one of OGC9  Sensor Web Enablement (SWE)10  suite of standards that is widely 
accepted within the sensors community for encoding sensor observations. [14] In 
order to add semantics to the sensor descriptions and observations the O&M is con-
verted to RDF. O&M is converted to RDF using the O &M2RD F-Converter API de-
scribed in [15]. Two RDF datasets, !"#$%&'%#()*+,-,. "#$!!"#$%&/0(%*1,-")#+,-,.
%&#'"(#(#)! &*+,! "! -(..(&#! ',(/.+0.1+,+! )+#+,"'+$2! 34+! $"'"0+'0! ",+! $+0%,(-+$! (#! '4+!
0+%'(&#!52 The RDF generated is then stored in a Virtuoso RDF knowledgebase [16]. 
The RDF datasets are made available on the Linked Open Data Cloud to provide 
public access. The data generation workflow is the main component of the Prove-
nance Capture phase discussed in Section 5. 

!
F ig.3. Data Generation Workflow. The O&M to RDF conversion (dotted portion) forms the 
main part of the workflow that uses the O&M2RD F-CONVERTER API. 
 
3.1 Phase 1  The first phase is comprised of querying MesoWest [13] for observa-
tional data and parsing the result. MesoWest provides a service to access past sensor 
data and returns an HTML page with the observational values encoded within a com-
ma-separated list. The resulting HTML page is then parsed to extract the sensor ob-
servations. 
 
3.2 Phase 2  The second phase consists of converting the raw textual data retrieved 
from MesoWest into O&M. The sensor observations parsed from the HTML page in 
phase 1 are fed to an XML parser. We used the SAX (Simple API for XML) parser11 
to generate the O&M. Here we also query GeoNames [17] with the sensor coordinates 
to get GeoNames location that is closest to the sensor. The O&M generated in this 
phase is the input for the O &M2RD F-Converter API. 
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3.3 Phase 3  The third phase consists of converting sensor observations encoded in 
O&M to RDF. Since both O&M and RDF have XML syntax, XSLT is used to con-
vert O&M to RDF. XSLT is a language for transforming XML documents into other 
XML documents [18]. The XSLT performs the conversion for our O &M2RD F -

Converter API. 
 
3.4 Phase 4 - The fourth phase consists of storing the RDF in Virtuoso RDF store.  
Virtuoso RDF is a native triple store available in both open source and commercial 
licenses. It provides command line loaders, a connection API, support for SPARQL 
and web server to perform SPARQL queries and uploading of data over HTTP. It has 
been tested to scale up to a billion triple.  A more detailed description of the data 
generation workflow can be found in [15].  
!
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5. Sensor Provenance Management System 

!
The Sensor PMS infrastructure uses the data generation workflow described above 
(section 3) and addresses three aspects of provenance management as identified by 
[20]. See Figure 4 for an architecture of Sensor PMS. 
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1. Provenance Capture  The provenance information associated with the 
sensor is captured within the data workflow as described in section 3. The 
time related information (temporal parameter) is obtained from MesoWest 
[13] and location related information (spatial parameter) is obtained by que-
rying GeoNames [17] with the sensor coordinates. 

2. Provenance Representation  The Sensor Provenance ontology (SP) is 
used to model the provenance information related to the sensor. The SP on-
tology extends the Provenir upper level provenance ontology defined in PMF 
[4] to support interoperability with provenance ontology in different do-
mains.  

3. Provenance Storage  The provenance information is stored in the Virtuoso 
RDF store. Virtuoso RDF is an open source triple store provided by Open-
Link Software.[16] The Virtuoso RDF store currently contains over a billion 
triples of sensor observational data. Virtuoso RDF provides a SPARQL end-
point to query these dataset discussed in section 4, which can be found at 
[21]. More information about querying the dataset can be found at [19]. 
 

6. Sensor Provenance Ontology 

!
In this section we discuss the Sensor Provenance Ontology that forms the key compo-
nent of the Sensor PMS. As discussed above, provenance information includes the 
location of the sensor, the time when the observations were taken by the sensor and 



the sensor observation values. Since SP ontology extends the provenir ontology, we 
discuss the provenir ontology in section 6.1 followed by SP ontology in section 6.2 
 
6.1   Provenir Ontology - Provenir ontology is a common provenance model which 
forms the core component of the provenance management framework. [4] This mod-
ular framework forms a scalable and flexible approach to provenance modeling that 
can be adapted to the specific requirement of different domains. Use of Provenir on-
tology as the reference model to built domain-specific provenance ontologies ensures 
(a) common modeling approach, (b) conceptual clarity of provenance terms, and (c) 
use of design patterns for consistent provenance modeling 
 

 
F ig.5. Provenir Upper Level Ontology [4] 

 
The ontology defines three base classes data, agent and process using the well de-
fined, primitive concepts of occurent and continuant. [22] Continuant is defined as 

22] while Occurrent is defined as 
i . [22]. The two base 

classes, data and agent are defined as specialization (sub-class) of continuant class 
while the third base class process is a synonym of occurent. The data class has two 
sub-classes, data_collection -- that represents the datasets that undergo modification 
during an experiment -- and parameter -- that influences the execution of an experi-
ment. The parameter class has three sub-classes representing the spatial, temporal, 
and thematic (domain-specific) dimensions, namely spatial_parameter, tempor-

al_parameter, and domain_parameter. Instead of defining a new set of properties, the 
ontology reuses and adapts properties defined in the Relation ontology (RO)12 from 
the Open Biomedical Ontologies (OBO) Foundry13 such as part_of, contained_in, 
preceded_by, and has_participant. The Provenir ontology is defined using OWL-
DL14 that is complaint with the DL profile of OWL215, with an expressivity of!
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!"#$!" further details of the ontology can be found at [23]. Figure 5 shows the 
Provenir ontology schema obtained from [4]. 
 

5.2 Sensor Ontology - Extending Provenir Ontology 

The Provenir ontology has been extended to create the Sensor ontology that models 
the domain-specific provenance information for the sensor domain. The Sensor ontol-
ogy extends the relevant Provenir ontology terms using the rdfs:subClassO f and 
rdfs:subPropertyO f relationships to create appropriate classes and properties. For 
example, the sensor:ResultData (representing the observation value) is a subclass of 
provenir:data_collection, the sensor:Location class (representing the geographical 
location) is defined as a subclass of provenir:spatial_parameter. Similarly, sen-

sor:samplingTime is defined as a subproperty of provenir:has_temporal_value.  
The sensor ontology has been defined in OWL-DL and consists of 89 classes, 53 
properties with a DL expressivity of"!"%$&'()*+#"By extending the Provenir 
ontology, the sensor ontology ensures coherent modeling of concepts, consistent use 
of provenance terminology, and compatibility with other existing domain-specific 
provenance ontologies. For example, the Trident ontology extends the Provenir ontol-
ogy to model provenance information in the Neptune oceanography project [24]. In 
the next section, we describe the queries that utilize the provenance information mod-
eled in the sensor ontology. 
!
7. Provenance Queries 

 
Two classes of Provenance queries have been categorized by PMF [4]. Corresponding 
queries in the sensors domain that could not be answered without provenance infor-
mation have been provided. 
 
1. Query for provenance metadata: Given a data entity, this category of queries 

returns the complete set of provenance information associated with a data entity. 
Example: Given an observation value, give me the provenance information 

about the all the sensors that recorded this observation  
 

SELECT ?sensor ?ID ?geonamesLocation ?geonamesDistance  
                 ?geonamesDistanceMeasure ?latitude ?longitude  
                 ?observedProperty ?XSDTime 
WHERE 
    {?sensor om-owl:generatedObservation ?generatedObservation . 
      ?generatedObservation om-owl:observedProperty ?observedProperty . 
      ?generatedObservation om-owl:result ?measureData . 
      ?measureData om-owl:floatValue ?value . 
      FILTER(?value = "78.0"^^xsd:float) . 
      ?generatedObservation om-owl:samplingTime ?timeInstant . 
      ?timeInstant owl-time:inXSDDateTime ?XSDTime . 
      ?sensor om-owl:ID ?ID . 
      ?sensor om-owl:hasLocatedNearRel ?locatedNear . 
      ?locatedNear om-owl:hasLocation ?geonamesLocation . 
      ?locatedNear om-owl:distance ?geonamesDistance . 
      ?locatedNear om-owl:distanceUOM ?geonamesDistanceMeasure . 
      ?sensor om-owl:processLocation ?sensorLocation . 
      ?sensorLocation wgs84:lat ?latitude . 
      ?sensorLocation wgs84:long ?longitude . 
      } 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
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2. Query for data using provenance information: An opposite perspective to the 
first category of query is, given a set of constraints defined over provenance in-
formation retrieve a set of data entities satisfying some set of constraints. Exam-
ple: F ind all the sensors which have observations related to a blizzard occur-
ring in Nevada on 24th August 2005 at 11 AM   
To solve this sensor discover query, provenance information describing the spa-
tio-temporal and thematic aspects of sensor observations and sensors can be ana-
lyzed. Figure 6 describes the multiple steps followed in identifying the appropri-

identified (from 
a pool of 20,000 sensors located across the United State). In Step 2, the sensors 
that were active during the blizzard are identified, and finally in Step 3 prove-
nance information describing the capabilities of a sensor help identify the obser-
vations that are relevant for the blizzard under study (for example, a wind speed 
sensor is considered relevant while a motion sensor is not considered relevant.)    

 

!
F ig.6. Answering a sensor-discovery query using spatio-temporal, and thematic prov-

enance information!
!
 
 
 



8. Related Work 
 
Although this is the first attempt to develop an infrastructure for Sensor Provenance 
Management, there have been successful attempts to do the same in the domain of e-
science. Within the sensors domain, provenance has been addressed from the storage 
point of view. 
 
Provenance management within the eScience community has primarily been ad-
dressed in the context of workflow engines [25] while provenance management issues 
have been surveyed by Simmhan et al. [26]. The database community has also ad-
dressed the issue of provenance and defined various types of provenance, for example 

7] an 7]. A detailed comparison of PMF 
(that underpins the Sensor PMS) with both workflow and database provenance is 
presented in [4]. 
 
The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) [28] is an exam-
ple of eScience project with dedicated infrastructure for provenance management. In 
contrast to the Sensor PMS, the SPCDIS project uses the proof markup language 
(PML) [29] to capture provenance information. The Inference Web toolkit [29] fea-
tures a set of tools to generate, register and search proofs encoded in PML. Both Sen-
sor PMS and the SPCDIS have common objectives but use different approaches to 
achieve them, specifically the Sensor PMS uses an ontology-driven approach with 
robust query infrastructure for provenance management. 
 
In the Sensors community, Ledlie et al. [30] show how provenance addresses the 
naming and indexing issues related to sensor data storage. Park et al. [31] explore the 
need for data provenance in Sensornet Republishing, a process of transforming on-
line sensor data and sharing the filtered, aggregated, or improved data with others.  
 
9. Conclusion 
 
This paper introduces an in-use ontology-driven provenance management infrastruc-
ture for Sensor data called Sensor PMS. We have developed a domain specific sensor 
provenance ontology by extending the provenir ontology. Due to this extension, SP 
ontology can interoperate with other domain-specific provenance ontologies to facili-
tate sharing and integration of provenance information from different domains and 
projects. We also show how provenance information can help answer complex que-
ries within the sensors domain. 
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