
Modular Hot Spots: A Pattern Language for
Developing High-Level Framework

Reuse Interfaces using Aspects

André L. Santos1 and Kai Koskimies2

1 Department of Informatics
Faculty of Sciences, University of Lisbon

Campo Grande, 1749-016 Lisboa
PORTUGAL

andre.santos@di.fc.ul.pt
2 Institute of Software Systems

Tampere University of Technology
P.O.BOX 553, FIN-33101 Tampere

FINLAND
kai.koskimies@tut.fi

Abstract. Applications based on an object-oriented framework can be
built by programming against the framework’s reuse interface. Mastering
a framework is typically a time-consuming and difficult task. This paper
presents a pattern language for developing higher level reuse interfaces
for an existing framework. When applying the patterns that constitute
the language it is implied that the framework becomes enhanced with
an additional layer of reusable modules that rely on aspect-oriented pro-
gramming. These modules are referred to as Modular Hot Spots. They
modularize existing hot spots, enabling a framework-based application
to be built in a stepwise way and at a higher abstraction level than if us-
ing the conventional reuse interface. By raising the abstraction level, it is
intended that the development of framework-based applications becomes
facilitated.

Proceedings of the 13th European Conference on Pattern Languages of Programs
(EuroPLoP 2008), edited by Till Schmmer and Allan Kelly, ISSN 1613-0073 <issn-
1613-0073.html>. Copyright c�2009 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes. Re-publication of material
from this volume requires permission by the copyright owners.

1

1 Introduction

An object-oriented framework [4] (hereinafter, simply framework) embod-
ies the abstract design and implementation of a family of related appli-
cations. Framework-based applications are developed against the frame-
work’s reuse interface, i.e. the classes, interfaces, and methods, which an
application developer has to deal with in order to build an application.
Depending on the framework nature, an application may be developed
by specialization (white-box reuse) or polymorphic composition (black-box
reuse). Most often, an application has to be developed using both means,
given that most frameworks have a gray-box nature.

A hot spot is a fragment of the reuse interface that enables the adap-
tation of a certain variation point in framework-based applications. A
hot spot typically involves more than one framework class, while on the
other hand, a same framework class may be involved in more than one
hot spot. Therefore, there is a many-to-many mapping between variation
points and framework classes that support them (illustrated in Figure 1).

variation
points

framework
class

hot spot

...

Fig. 1. Many-to-many mapping between variation points and framework classes.

The described many-to-many mapping implies that there are classes
of a framework-based application that will be tangled with respect to the
adaptation different variation points, while the adaptation of certain vari-
ation points is going to be scattered among more than one class of the
framework-based application. Tangling implies that modifying the adap-
tation of a variation point in a framework-based application requires to
cope with code statements that pertain to other variation points, whereas
scattering implies that the modification may involve more than one class.

The work in [8] proposes a technique based on aspect-oriented pro-
gramming (AOP) [5] for developing framework reuse interfaces using spe-

2

cialization aspects (see Figure 2). These are reusable modules that mod-
ularize hot spots and enable to build framework-based applications on a
higher abstraction level than if using a conventional reuse interface. A
framework-based application is implemented in application aspects which
inherit from the specialization aspects.

This paper presents design patterns for enhancing a conventional reuse
interface with specialization aspects, in the form of a pattern language
that we refer to as Modular Hot Spots. The patterns can be used
together for solving the problem of developing the several modules which
form the higher level reuse interface. By having Modular Hot Spots
it is intended that the new reuse interface has:

– Modular reuse interface. Framework-based applications can be devel-
oped in a stepwise way. Each application module is the adaptation
of a Modular Hot Spot and implements an increment that does
not require modifications or knowledge about the internals of existing
modules. The capability of developing application increments with-
out having to modify or understand existing code is beneficial with
respect to evolution.

– Less hook methods. Through the adaptation of Modular Hot Spots,
framework-based applications can be developed without dealing with
as many hook methods as in conventional solutions. This contributes
to have a narrow inheritance interface, a principle that states that
only a few hook methods should be required to be given per each ap-

Object-Oriented Framework

SA SA

SA

framework development

AA AA AA

application development

SA

SA

Fig. 2. Specialization aspects (SAs) and application aspects (AAs).

3

plication class [11].

– Less application-relevant methods. Framework-based applications are
able to be built without using as many framework methods as in
conventional solutions. This may imply that whole framework class-
es/interfaces will become irrelevant to applications when having the
Modular Hot Spots. Having a reduction in the number of frame-
work elements that an application developer has to deal with, reduces
the size of the reuse interface, and therefore, facilitates the task of
learning it.

Given the above points, the abstraction level is raised with respect to
the development of framework-based applications. Frameworks tend to
evolve from white-box to black-box [7]. When developing Modular Hot
Spots, a framework is transformed in this direction, too. However, the
framework reuse interface can become more high-level than the one of a
conventional black-box framework.

The knowledge embodied in the language results from developing
Modular Hot Spots using AspectJ [1], for the frameworks JHotDraw
[9] and Eclipse Rich Client Platform (RCP) [6]. The former is a frame-
work for building editors for structured graphics, while the latter is a
framework for building GUI applications based on the Eclipse’s dynamic
plugin model and UI facilities.

The target audience of this pattern language are framework developers
that seek for solutions to provide higher level reuse interfaces, enabling
framework-based applications to be built more easily.

Section 2 introduces a simple framework that is used as a running
example in the description of the patterns, and several scenarios where
specialization aspects can be beneficial. Section 3 presents an overview of
the pattern language. Section 4 presents an AspectJ idiom that is used
on the implementation of the patterns. Sections 5-10 present the pat-
terns that constitute the pattern language. Section 11 revisits the exam-
ple framework taking into account the new reuse interface that resulted
from all the examples given throughout the patterns. Finally, Section 12
concludes the paper.

2 Example Framework

This section introduces a simple example of a framework, which can be
used to build GUI applications. An GUI application has actions that can

4

be triggered by the UI elements. The action can be either application-
specific or provided by the framework. An application may have menus,
which may contain submenus. The menus may contain either items that
trigger application actions or other menus (i.e. the submenus). Implemen-
tation-wise there is no distinction between a menu and a submenu (i.e.
they are represented by the same class). Figure 3 contains an UML class
diagram depicting the classes of the framework’s reuse interface (in gray),
and an example application (in white) based on the given reuse interface.
Below we present Java code that implements the example framework-
based application.

createActions(ActionBar)
createMenus(MenuBar)
...

<<abstract>>
AbstractApplication

add(IMenu)
MenuBar

addAction(IAction)
addSubMenu(IMenu)

MenuImpl

register(IAction)
ActionBar

run()
ExitAction

run()

<<interface>>
IAction

...

addAction(IAction)
addSubMenu(IMenu)

<<interface>>
IMenu

createActions(ActionBar)
createMenus(MenuBar)

ExampleApplication

run() : void

ExampleAction

Fig. 3. Reuse interface of the example framework (gray), example application (white).

pub l i c c l a s s Examp l eApp l i c a t i on extends Ab s t r a c tA pp l i c a t i o n {
p r i v a t e I A c t i o n myact ion ;

p r i v a t e I A c t i o n e x i t a c t i o n ;

pro tec ted vo id c r e a t eA c t i o n s (Act ionBar a ba r) {
myact ion = new ExampleAct ion () ;

a ba r . r e g i s t e r (myact ion) ;

e x i t a c t i o n = new Ex i tA c t i o n () ;

a ba r . r e g i s t e r (e x i t a c t i o n) ;

}

pro tec ted vo id createMenus (MenuBar m bar) {
IMenu menu1 = new MenuImpl (”Menu1”) ;

menu1 . addAct ion (e x i t a c t i o n) ;

IMenu menu2 = new MenuImpl (”Menu2”) ;

menu2 . addAct ion (myact ion) ;

menu1 . addSubMenu (menu2) ;

m bar . add (menu1) ;

}
}

5

pub l i c c l a s s ExampleAct ion implements I A c t i o n {
vo id run () {

// do something
}

}

The main class is a subclass of AbstractApplication. Application de-
velopers must be aware that createActions() is executed before create-

Menus(). The sample framework-based application has two actions, an
application-specific one, ExampleAction, and the framework-provided Ex-

itAction. It has a “Menu1”, which has the exit action and a submenu
“Menu2” that has the application-specific action.

Usage scenarios

The following list presents a set of scenarios where application developers
(i.e. the ones who use the framework) may be faced with difficulties. Each
of these scenarios is associated with a goal of application developers.

– Scenario 1, plugging menus. The application concept menu is repre-
sented directly by the interface IMenu, which MenuImpl implements.
Therefore, it should be easy for an application developer to locate it.
However, once the interface/class is known, it is necessary to find out
how to plug the menu in the application. Given that the application
concept is represented abstractly by the AbstractApplication class, one
would go to inspect that class, and then, to realize that there is a hook
method for the intended purpose (i.e. createMenus(...)). Plugging the
menu involves modifying the method body, which may have existing
statements. Therefore, in order to implement the goal of plugging a
menu, one has to “interfere” with statements pertaining to other goals
(i.e. other menus and their contents).

– Scenario 2, menu context. The application concept menu can be used
in two different contexts, either as an application menu or as sub-
menu of another menu. As explained in Scenario 1, by knowing IMenu

and MenuImpl one does not know where and how the menus can be
plugged. If one has an existing application menu m1 and wants that
menu to become a submenu of another menu m2, besides understand-
ing the subclass of AbstractApplication (Scenario 1) to remove the
statement that plugs the menu, there is need to locate where m2 is
instantiated and to know its interface to add m1 to it. Therefore,
changing the context of an existing menu requires changes both in

6

statements pertaining to the original context and in statements per-
taining to the new context.

– Scenario 3, associating actions. The application concept action is rep-
resented by the interface IAction. Actions may be associated to menus.
Suppose that there is an existing application with an action a and a
menu m, and that one wants to associate a to m. In order to do so,
one has to inspect the hook method createActions() of the subclass of
AbstractApplication to find out the instance of a, and then, to mod-
ify the hook method createMenus() by finding the instance of m and
adding a statement that associates a to it. Therefore, an association
between two application elements involves two parts of a module (the
subclass of AbstractApplication) which is not directly related to those
elements.

Each of the given scenarios can be improved by applying the Modu-
lar Hot Spots pattern language. When addressing a scenario by apply-
ing a pattern, it might happen that a scenario with a new problem arises.
In these cases, there are other patterns for overcoming the new problems.

3 Pattern Language Overview

Figure 4 gives an overview of Modular Hot Spots. The diagram con-
tains related patterns and idioms represented in white, while the actual
patterns/idioms of the language are represented in gray. Design patterns
are represented in ellipses, whereas AspectJ idioms are represented in
circles.

Hot spots based on Template Method [2] are typical starting points
for applying the pattern language. It is common that an application
framework applies at least one Template Method on the main class
that initializes the application. A Template Method has one or more
hook methods, which have to be overridden by application developers. A
Composition Hook Method (Section 5) is a hook method that exposes
an object instantiated by the framework as a parameter, with the purpose
of enabling applications to plug objects in the exposed object. While this
pattern is not related with the development of Modular Hot Spots
directly, it describes a common solution that hints where it is suitable
to have a Self-Pluggable Object (Section 6). As we will see, Com-
position Hook Methods are “predictable” and can be completed by
a Self-Pluggable Object, after which the application developer no

7

longer has to deal with those hook methods. In the context of the example
framework given in Section 2, this pattern is suitable for improving the
plugging menus scenario.

A Self-Pluggable Object is a hot spot that enables its adapta-
tions to localize both the creation of an object representing an application
element and its composition with another application element. It may be
plugged in another Self-Pluggable Object and it may have Compo-
sition Hook Methods itself. It can be implemented using a Template
Pointcut (Section 4). A Template Pointcut is an AspectJ idiom that
combines the idioms Abstract Pointcut and Composite Pointcut
[3].

A Multi-Context Self-Pluggable Object (Section 7) is a spe-
cial kind of Self-Pluggable Object that is suitable in cases when
the object can be plugged in different application contexts (elements).
The Multi-Context Self-Pluggable Object pattern is suitable for
improving the menu context scenario. An Abstract Self-Pluggable

 Association
Object

Self-Pluggable
Object

Self-Pluggable
Type

Hierarchy

Composition
Hook Method

may have

organized in

participant in

completed by

may have

Template
Pointcut

Idiom

implemented

implemented

Abstract
Self-Pluggable

Object

is a

applies

Composite
Pointcut

Idiom

Abstract
Pointcut

Idiom

applies

applies

Template
Advice
Idiom

implemented

Template
Method

Factory
Method

Multi-Context
Self-Pluggable

Object

is a

may plug in

may have

alternative

may be

Fig. 4. Modular Hot Spots pattern language (in gray). The elements depicted in
white are patterns or idioms previously described by other authors.

8

Object (Section 8) is a module suitable for structuring a set of related
Self-Pluggable Objects, so that the behavior that plugs those ob-
jects can be reused. It applies Factory Method [2] and can be im-
plemented using the Template Advice idiom [3]. An alternative to
structure a set of related Self-Pluggable Objects is to have a Self-
Pluggable Type Hierarchy (Section 9), which merges the imple-
mentation of types and the plugging of objects in the applications. The
patterns Abstract Self-Pluggable Object and Self-Pluggable
Type Hierarchy are two alternatives that are suitable for solving a
design problem that can emerge from applying either Self-Pluggable
Object or Multi-Context Self-Pluggable Object.

Finally, an Association Object (Section 10) enables to establish as-
sociations between Self-Pluggable Objects. This pattern is suitable
for improving the associating actions scenario.

The examples of applying the patterns are given in Java, using As-
pectJ as the AOP language. Although the patterns were only experienced
in AspectJ, they are not necessarily specific to it. An AOP language for a
base object-oriented language, that features method execution pointcuts,
abstract aspects, and abstract pointcuts, should be suitable for imple-
menting the patterns. For instance, the patterns should be applicable to
AspectC++ [10], AspectJ counterpart for C++.

In the figures that illustrate the solutions, the framework modules are
always represented in gray, whereas the white classes represent application
modules. Aspects are depicted with a class with stereotype �aspect�.
Pointcuts and advices are represented in the method’s placeholder us-
ing the stereotypes�pointcut� and�advice�, accordingly. Stereotyped
dependencies represent pointcut definitions, where the stereotype name
represents the pointcut name.

4 Template Pointcut: an AspectJ Idiom

This section presents an AspectJ idiom referred to as Template Point-
cut. Its name results from an analogy with the Template Method pat-
tern. In a Template Method we have a partially implemented method
which uses abstract methods that are given by subclasses. In the case of
a Template Pointcut, we have a partially defined pointcut within an
aspect module that uses abstract pointcuts that are given by the sub-
aspects.

9

Context

An aspect module transforms (by weaving) other modules, which can be
either classes or other aspect modules. A reusable abstract aspect is a
module from which other aspects inherit (the subaspects), reusing its
implementation. The scope of applicability of a reusable aspect may be
restricted to a certain kind of base modules. The advantage of doing
so is that the reusable aspect may assume certain characteristics of the
modules which are going to be transformed. For instance, the reusable
aspect may be applicable to all subclasses of a certain class, an therefore
the common inherited methods may be safely used by the aspect.

Problem

How to implement a reusable abstract aspect so that its advice can only
take effect in a partially defined set of join points, while being able to
generalize the commonalities between those join points?

Forces

– The information factored out to the reusable aspect should be maxi-
mized.

– The more “black-box” the reusable aspect is, the better.
– The simpler the pointcut definitions in the subaspects are, the better.
– The less one needs to know about the modules that an aspect trans-

forms, the better.

Solution

Implement an abstract aspect containing a Composite Pointcut (the
template) that is defined as the intersection of certain join points with
another Abstract Pointcut (the hook). The advice takes effect on the
Template Pointcut (Figure 5). Subaspects of the abstract aspect have
to define the hook pointcut.

Example

Consider a reusable aspect that can be used to transform classes that
inherit from the following abstract class.
pub l i c a b s t r a c t c l a s s Ab s t r a c tC l a s s {

/∗ . . . ∗/
pub l i c S t r i n g method () ;

}

10

<<pointcut>> template() : ... && hook()
<<pointcut>> hook() : ...
<<advice>> template()

<<aspect, abstract>>

AbstractAspect

ConcreteAspect

<<hook>>
...

Fig. 5. Template Pointcut idiom.

The following is a reusable aspect with a Template Pointcut defined
as the intersection between the execution of method() within subclasses
of AbstractAspect and a hook class, which is to be given by the abstract
pointcut hook(). The definition of hook() is intended to match a particular
subclass of AbstractAspect, which the aspect will transform.
pub l i c a b s t r a c t aspect Abs t r a c tAspec t {

p r i v a t e po i n t cu t t emp la t e () :

wi th i n (Ab s t r a c tC l a s s+) && hook () && execut i on (S t r i n g method ()) ;

pro tec ted ab s t r a c t po i n t cu t hook () ;

a f t e r () r e t u r n i n g (S t r i n g s) : t emp la t e () {
/∗ do something , e . g . ∗/
System . out . p r i n t l n (s) ;

}
}

Although the pointcut template() is declared separately, it could be in-
corporated directly in the advice. Assuming the existence of a subclass
of AbstractClass named SomeClass, the code below shows how the aspect
could be used for activating the transformation of SomeClass.
pub l i c aspect Conc re teAspec t extends Abs t r a c tAspec t {

pro tec ted po i n t cu t hook () : t a r g e t (SomeClass) ;

}

A Template Pointcut is particularly useful to relieve the one who
reuses the aspect from understanding details of the modules where the
aspect takes effect.

5 Composition Hook Method

Context

Template Method is an elementary and common pattern for enabling
framework specialization, where adaptation is achieved by subclassing.

11

The role of the hook methods that have to be overridden is often to plug
objects on the application.

Problem

How to define hook methods for the purpose of enabling object plugging,
so that they are intuitive to use?

Forces

– Reuse interfaces should be as simple as possible. By reading a hook
method signature, it should be intuitive what the method has to do
and how.

– The less framework methods that one has to know for building an
application, the better.

Solution

Define hook methods that expose in their parameters objects that are
instantiated by the framework. These exposed objects are accessed by
applications for composing other objects. The intent of a Composition
Hook Method (Figure 6) is intuitively given by the method signature,
while the way how to plug objects on the exposed object is given by its
interface.

compositionHookMethod(Obj)
templateMethod()

-object : Obj

<<abstract>>

AbstractClass

compositionHookMethod(Obj)

ConcreteClass

// ...
object = new Obj();
compositionHookMethod(object);
// ...

compositionHookMethod(Obj o) {
 o.add(new OtherObj());
 // ...
}

Fig. 6. Composition Hook Method pattern.

Example

Considering the example framework, the abstract class AbstractApplica-

tion could be something like shown below. The class constructor is the

12

template method, and there are two Composition Hook Methods for
plugging actions and menus.
pub l i c a b s t r a c t c l a s s Ab s t r a c tA pp l i c a t i o n {

p r i v a t e Act ionBar a ba r ;

p r i v a t e MenuBar m bar ;

pro tec ted Ab s t r a c tA pp l i c a t i o n () {
a ba r = new Act ionBar () ;

c r e a t eA c t i o n s (a ba r) ;

m bar = new MenuBar () ;

c reateMenus (m bar) ;

}

pro tec ted ab s t r a c t vo id c r e a t eA c t i o n s (Act ionBar a ba r) ;

pro tec ted ab s t r a c t vo id createMenus (MenuBar m bar) ;

/∗ . . . ∗/
}

Resulting Context

– There is no need for additional methods whose purpose is to do the
object compositions, which are done through the interface of the ex-
posed objects.

– The way how to use hook methods is intuitive by reading their signa-
ture.

Known Uses

The main class of a JHotDraw-based application has to override Com-
position Hook Methods for plugging menus and the tools that create
the figures. A viewpart of an application based on Eclipse RCP has a
Composition Hook Method for plugging GUI elements.

Related Patterns

The reader may indeed find a Template Method and this pattern very
alike. However, the purpose of a Template Method is more generic,
and the hook methods may have purposes other than enabling object
composition.

By overriding a Composition Hook Method the variation is achieved
through the exposed object. The type of objects that can be composed
in the exposed objects is known, and there are methods in the objects’
interface specifically for that purpose. Therefore, the body of an overrid-
den Composition Hook Method is predictable in what respects to the

13

method invocations on the exposed object. For instance, the only pur-
pose of the exposed object of type ActionBar in the given example is to
perform register() calls with objects of type Action as arguments. All the
implementations of this Composition Hook Method will be similar
across framework-based applications.

A Composition Hook Method may become hidden from applica-
tion developers, so that they will not need to deal with it when building
an application. In order to do so, a Self-Pluggable Object is capable
of dismissing the need of overriding the Composition Hook Method.

6 Self-Pluggable Object

Context

Framework classes have Composition Hook Methods.

Problem

How to hide a Composition Hook Method from the reuse interface,
so that there is one less framework element that application developers
have to know about?

Forces

– Usually the type of the objects we want to plug is easy to find. Finding
the way how to plug the objects is the most difficult part, since the
framework user has to understand the interface of the object where
plugging takes place.

– The less hook methods that have to be known and dealt by application
developers, the better.

– The lack of documentation may cause application developers to plug
objects in wrong locations, resulting in incorrect uses of the frame-
work.

Solution

Develop an abstract aspect that encapsulates the behavior that creates
and plugs the object in a Composition Hook Method. Use a Tem-
plate Pointcut where the fixed part defines the Composition Hook
Method and the variable part (hook) is intended to match a subclass
of the template class that owns that method. Application developers use
a Self-Pluggable Object (Figure 7) by extending the aspect and
defining the hook pointcut on the desired context.

14

<<pointcut>> context() : AbstractContext
<<advice>> AbstractContext.hookMethod() && context()

<<aspect, abstract>>

SelfPluggableObject

<<aspect>>

Object

~ <<final>> hookMethod()

<<class/aspect, abstract>>

AbstractContext

<<class/aspect>>

Context
<<context>>

Fig. 7. Self-Pluggable Object pattern.

Example

This pattern is illustrated by presenting a solution for improving the
plugging menus scenario given in Section 2. The Composition Hook
Method is AbstractApplication.createMenus(). Since this method will not
need to be overridden by applications, it may have reduced visibility and
be locked for overriding, as shown below.
pub l i c a b s t r a c t c l a s s Ab s t r a c tA pp l i c a t i o n {

/∗ . . . ∗/
f i n a l vo id createMenus (MenuBar m bar) { }

}

The following is a reusable aspect for plugging menus. The menu name is
given in the constructor, while the menu is created by createMenu() us-
ing that name. The hook pointcut is application(). The advice creates the
menu and plugs it on the MenuBar object parameter of createMenus(..).
Using an independent method for creating the menu facilitates the col-
laboration with other aspects.
pub l i c a b s t r a c t aspect Menu {

p r i v a t e S t r i n g name ;

pub l i c Menu(S t r i n g name) {
t h i s . name = name ;

}

pro tec ted ab s t r a c t po i n t cu t a p p l i c a t i o n () ;

a f t e r (MenuBar mb) :

wi th i n (A b s t r a c tApp l i c a t i o n +) && a p p l i c a t i o n () &&

execut i on (vo id createMenus (MenuBar)) && a rgs (mb) {
mb. add (createMenu ()) ;

}

IMenu createMenu () {
r e t u r n new MenuImpl (name) ;

}
}

15

The main class of an application (subclass of AbstractApplication) does
not need to override createMenus(..). ExampleApplication would be given
like shown below.

pub l i c c l a s s Examp l eApp l i c a t i on extends Ab s t r a c tA pp l i c a t i o n {

}

In order to plug a menu, a subaspect of Menu has to be defined. The
following is an example of how to plug a menu (“Menu1”) in ExampleAp-

plication.

pub l i c aspect Menu1 extends Menu {
pub l i c Menu1 () {

super (”Menu1”) ;

}

pro tec ted po i n t cu t a p p l i c a t i o n () : t a r g e t (Examp l eApp l i c a t i on) ;

}

In case the order of multiple Self-Pluggable Objects of the same
type is relevant, precedences have to be used to explicitly declare the order
in which the several objects are plugged. The following example shows
how it could be declared that Menu1 is to be plugged before MenuX.

pub l i c aspect MenuOrder {
d e c l a r e p r e c edence : MenuX , Menu1 ;

}

The precedence declaration may be given in an independent module as
shown, but it can also be given together with the other modules.

Resulting Context

– Application developers no longer have to deal with the Composi-
tion Hook Method. Instead, they implement an independent as-
pect, which defines the hook pointcut.

– Objects can be plugged in other objects incrementally, without the
need of modify, inspect, or understand, code related to the object
where composition takes place.

– Changing the context where the object is composed can be done only
by changing the hook pointcut definition.

– Framework-based applications are adaptable without the need of un-
derstanding or modifying source code. Removing a Self-Pluggable
Object can simply be done by recompiling the application without
its module (e.g. deactivating Menu1 as a compilation unit).

16

Known Uses

Self-Pluggable Objects in JHotDraw can plug menus, tools, and
undo on tools. Self-Pluggable Objects in Eclipse RCP can plug the
toolbar, perspectives, and viewparts (an application can have several view-
parts, which are organized in different perspectives).

Related Patterns

The Decorator pattern [2] is related to Self-Pluggable Object,
in the sense that also allows to add behavior to a class modularly. A
Decorator adds behavior dynamically to an object by wrapping it. This
implies that when adding a Decorator one has to modify the module
that instantiates the wrapped object. A Self-Pluggable Object does
not require modifying nor inspecting the module where behavior will be
added.

A Self-Pluggable Object can be plugged in another
Self-Pluggable Object. This can be done by intercepting the cre-
ation of objects in order to plug other objects in them, or by completing
Composition Hook Methods, which Self-Pluggable Objects may
have. A Self-Pluggable Object may be a Multi-Context Self-
Pluggable Object if the object can be plugged in different application
contexts. A Self-Pluggable Object may be based on an Abstract
Self-Pluggable Object if there are multiple subtypes of the plug-
gable object. A Self-Pluggable Type Hierarchy merges the type
implementations with their abstract composition (i.e. plugging). An As-
sociation Object enables the establishment of associations between
Self-Pluggable Objects.

7 Multi-Context Self-Pluggable Object

Context

A Self-Pluggable Object is an object that plugs itself in a certain
application context. However, there are objects which can be plugged in
different application contexts.

Problem

How to develop a Self-Pluggable Object that can be plugged in more
than one application context?

17

Forces

– It is appealing to have everything what is possible to do with an object
represented in a single module. By knowing about that module, an
application developer knows all that can be done with the object.

– If we would have a Self-Pluggable Object for each application
context, there would be multiple modules for addressing a single con-
cept.

Solution

Develop an aspect similar to a Self-Pluggable Object, which has one
advice for each Composition Hook Method related with an applica-
tion context. The hook pointcut is used in the different advices. When
using the Multi-Context Self-Pluggable Object (Figure 8), the
context is given by the module that is matched by the hook pointcut, im-
plying that only the advice related to that application context will take
effect.

<<pointcut>> context() : AbstractContext1 || AbstractContext2
<<advice>> AbstractContext1.hookMethod1() && context()
<<advice>> AbstractContext2.hookMethod2() && context()

<<aspect, abstract>>

MultiContextSelfPluggableObject

<<aspect>>

ObjectOnContext2

~ <<final>> hookMethod2()

<<class/aspect, abstract>>

AbstractContext2

<<class/aspect>>

Context2

~ <<final>> hookMethod1()

<<class/aspect, abstract>>

AbstractContext1

<<aspect>>

ObjectOnContext1
<<class/aspect>>

Context1
<<context>><<context>>

Fig. 8. Multi-Context Self-Pluggable Object pattern.

Example

This pattern is illustrated by evolving the previous example, while ad-
dressing the improvement of the menu context scenario given in Section
2. Besides the application, a (sub-)menu can also be composed in another
menu. Therefore, a menu can be used in more than one application con-
text. The following is a new version of Menu, containing two advices. The
first is like in the previous example, while the second is for addressing the
composition of menus and sub-menus.

18

pub l i c a b s t r a c t aspect Menu {

/∗ to match an ex tens ion o f e i t h e r Abs t rac tApp l i ca t i on or Menu ∗/
pro tec ted po i n t cu t con t e x t () ;

a f t e r (MenuBar mb) :

wi th i n (A b s t r a c tApp l i c a t i o n +) && con t e x t () &&

execut i on (vo id createMenus (MenuBar)) && a rgs (mb) {
mb. add (createMenu ()) ;

}

a f t e r () r e t u r n i n g (IMenu m) :

wi th i n (Menu+) && con t e x t () &&

execut i on (IMenu createMenu ()) {
m. addSubMenu (createMenu ()) ;

}
/∗ . . . ∗/

}

The following module would plug the menu “Menu1” in ExampleApplica-

tion (very similar to the example given previously).
pub l i c aspect Menu1 extends Menu {

pub l i c Menu1 () {
super (”Menu1”) ;

}

pro tec ted po i n t cu t con t e x t () : t a r g e t (Examp l eApp l i c a t i on) ;

}

The following module would plug the menu “Menu2” in the “Menu1”.
pub l i c aspect Menu2 extends Menu {

pub l i c Menu2 () {
super (”Menu2”) ;

}

pro tec ted po i n t cu t con t e x t () : t a r g e t (Menu1) ;

}

Resulting Context

– Everything that can be done in an application with an object is
achieved through the same module.

– Changing the context where the object is composed, including differ-
ent context types, can be done just by changing the hook pointcut
definition in the object’s module.

Known Uses

A Multi-Context Self-Pluggable Object in Eclipse RCP can plug
menus, whose context may be (a) the application menu bar (conventional

19

menu), (b) a certain viewpart (only shown in there), and (c) a certain
viewer (appears as a pop-up menu).

Related Patterns

A Multi-Context Self-Pluggable Object is a special kind of Self-
Pluggable Object.

8 Abstract Self-Pluggable Object

Context

Objects are plugged using Self-Pluggable Objects. A common case
in frameworks is that objects of a certain type (e.g. represented by an in-
terface) may be plugged in an application, and therefore, several subtypes
of that type can be plugged in the same way.

Problem

When having a hierarchy of types whose objects can be plugged in an
application, if we would have a Self-Pluggable Object for each one,
there would exist duplicated code, given that all the objects are plugged
in the same way. How to generalize the common behavior that is necessary
to plug objects of a certain type?

Forces

– Code reuse should be maximized.
– A Self-Pluggable Type Hierarchy is also suitable to structure

Self-Pluggable Objects, but this option is not always viable.

Solution

Develop an aspect similar to a Self-Pluggable Object, but with
a Template Advice where the creation of the object to be plugged
is done by a Factory Method (abstract method). This Abstract
Self-Pluggable Object (Figure 9) should not be visible to applica-
tions. Develop one abstract aspect inheriting from it for each type to be
plugged, where the implementation of the Factory Method returns the
proper object. If application-specific objects of that type are allowed to
be plugged, develop also an abstract aspect that implements the type but

20

which does not implement the methods of the type, so that they can be
given in application modules. An application developer may use one of
the visible aspects by extending it and defining the hook pointcut. In case
the application-specific type is intended to be implemented, the applica-
tion developer extends the aspect for that purpose, and in addition to the
hook pointcut definition, the type’s methods have to be implemented.

factoryMethod() : SubType1

<<aspect, abstract>>

SelfPluggagleSubType1

<<pointcut>> context() : AbstractContext
 <<advice>> : ... && context()
factoryMethod() : Type

<<aspect, abstract>>

AbstractSelfPluggableObject

factoryMethod() : SubType2

<<aspect, abstract>>

SelfPluggableSubType2

<<aspect>>

ObjectOfSubType1

method() : ...

<<interface>>

Type

method() : ...
SubType1

method() : ...
SubType2

 factoryMethod() : Type
method() : ...

<<aspect, abstract>>

SelfPluggableType

...

method() : ...

<<aspect>>

ObjectOfType

<<class/aspect>>

Context

...

factoryMethod() {
 return this;
}

Type object = factoryMethod();
/* plug object */

<<context>>
<<context>>

Fig. 9. Abstract Self-Pluggable Object pattern.

Example

This pattern is illustrated with the plugging of actions in the example
framework. The case of actions is very similar to the plugging menus sce-
nario described in Section 2. Applications may include actions by plugging
objects of type IAction. The following is an Abstract Self-Pluggable
Object for this purpose. Except for the Template Advice, the solution
is analogous to a Self-Pluggable Object.
ab s t r a c t aspect Abs t r a c tAc t i o n {

pro tec ted ab s t r a c t po i n t cu t a p p l i c a t i o n () ;

a f t e r (Act ionBar ab) :

wi th i n (A b s t r a c tApp l i c a t i o n +) && a p p l i c a t i o n () &&

execut i on (vo id c r e a t eA c t i o n s (Act ionBar)) && a rgs (ab) {

21

ab . r e g i s t e r (c r e a t eA c t i o n ()) ;

}

pro tec ted ab s t r a c t I A c t i o n c r e a t eA c t i o n () ;

}

The above aspect can be extended by Self-Pluggable Objects, which
can be used by application developers. The following is an example Self-
Pluggable Object, based on the Abstract Self-Pluggable Ob-
ject, for addressing the exit action. The aspect overrides createAction()

for returning an instance of the framework class ExitAction.

pub l i c a b s t r a c t aspect Ex i t extends Abs t r a c tAc t i o n {
pro tec ted I A c t i o n c r e a t eA c t i o n () {

r e t u r n new Ex i tA c t i o n () ;

}
}

The following module illustrates how Exit could be used, by plugging
the exit action in ExampleApplication.

pub l i c aspect ExitOnExample extends Ex i t {
pro tec ted po i n t cu t a p p l i c a t i o n () : t a r g e t (Examp l eApp l i c a t i on) ;

}

The aspect that allows the plugging of application-specific actions could
be implemented like shown below. The aspect implements IAction, but it
is up to applications to implement the interface methods (run() in this
case).

pub l i c a b s t r a c t aspect Act ion extends Abs t r a c tAc t i o n

implements I A c t i o n {

pub l i c a b s t r a c t run () ;

pro tec ted I A c t i o n c r e a t eA c t i o n () {
r e t u r n t h i s ;

}
}

The following module illustrates how Action could be used. In addition
to the hook pointcut definition, the method implementation is given.

pub l i c aspect ExampleAct ion extends Act ion {
pub l i c vo id run () {

/∗ app l i ca t i on−s p e c i f i c ac t ion implementation ∗/
}

pro tec ted po i n t cu t a p p l i c a t i o n () : t a r g e t (Examp l eApp l i c a t i on) ;

}

22

Resulting Context

– The plugging of objects of a certain type is generalized. Support for
new types can be added simply by developing an aspect module that
overrides the Factory Method (e.g. as in Exit).

– The code of the modules that extend the Abstract Self-Pluggable
Object still has some redundancy given that the implementation of
the Factory Methods across the several modules is very similar
(only the name of the class changes).

– The number of subaspects grows along with the number of framework-
provided type implementations, implying one more framework module
for each one (i.e. the aspect).

Known Uses

In Eclipse RCP, an Abstract Self-Pluggable Object can gener-
alize the plugging of actions, which may be either chosen from a set
of framework-provided actions or implemented by applications. In JHot-
Draw there is an analogous case for plugging commands.

Related Patterns

An Abstract Self-Pluggable Object serves the purpose of struc-
turing a set of related Self-Pluggable Objects, and consists of an
alternative to a Self-Pluggable Type Hierarchy.

9 Self-Pluggable Type Hierarchy

Context

An Abstract Self-Pluggable Object is capable of generalizing the
plugging of objects of a certain type, implying that there will exist an
aspect for each type. All these subaspects are similar and only differ in
the object instance returned by the Factory Method.

Problem

How to avoid the existence of all the similar subaspects, and therefore,
to reduce the number of framework modules?

23

Forces

– In solutions based on an Abstract Self-Pluggable Object, the
number of subaspects grows along with the number of framework-
provided type implementations. The disadvantage is that the solution
implies one Self-Pluggable Object for each pluggable type.

Solution

Merge the implementation of a type hierarchy of default components with
the Self-Pluggable Objects that implement the composition of ob-
jects of that type. In order to do so, develop an aspect similar to a Self-
Pluggable Object that is of the top-most type of the hierarchy (i.e.
it declares that it implements that type), while it does not implement
the type’s methods. Develop a subaspect for each subtype, where the
type methods are implemented. These aspects may represent partial type
implementations by implementing a subset of the type methods, while
leaving the remaining methods to applications. Application developers
can use the appropriate member of the Self-Pluggable Type Hier-
archy (Figure 10) that implements the type they wish to use. If an
application has to include its own implementation of the type, it extends
the top-most aspect.

Example

This pattern is illustrated with the same case of the actions in the example
framework, as it consists of an alternative solution to the one given in
Section 8.

The following is a new version of Action that can be used in the same
way by application developers (exemplified in Section 8). The aspect is
of type IAction, and registers itself as an action.
pub l i c a b s t r a c t aspect Act ion implements I A c t i o n {

pro tec ted ab s t r a c t po i n t cu t a p p l i c a t i o n () ;

a f t e r (Act ionBar ab) :

wi th i n (A b s t r a c tApp l i c a t i o n +) && a p p l i c a t i o n () &&

execut i on (vo id c r e a t eA c t i o n s (Act ionBar)) && a rgs (ab) {
ab . r e g i s t e r (t h i s) ;

}

pub l i c a b s t r a c t vo id run () ;

}

The following is a new version of Exit that can be used in the same way
by application developers (as given in Section 8).

24

<<pointcut>> context() : AbstractContext
<<advice>> ... && context()

<<aspect, abstract>>

SelfPluggableAbstractType

method1() : ...
method2() : ...

<<interface>>

Type

method1() : ...
method2() : ...

<<aspect, abstract>>

SelfPluggagleSubType1

method1() : ...
method2() : ...

<<aspect, abstract>>

SelfPluggableAbstractSubType2

<<aspect>>

ObjectOfSubType1

...

method2() : ...

<<aspect, abstract>>

SelfPluggagleSubType3

method2() : ...

<<aspect>>

ObjectOfSubType2

<<class/aspect>>

Context

...

method1() : ...
method2() : ...

<<aspect>>

ObjectOfType

Type object = this;
/* plug object */

<<context>>

<<context>>

<<context>>

Fig. 10. Self-Pluggable Type Hierarchy pattern.

pub l i c a b s t r a c t aspect Ex i t extends Act ion {
pub l i c vo id run () {

/∗ the e x i t ac t ion implementation ∗/
}

}

Resulting Context

– Less framework modules when comparing with a solution based on an
Abstract Self-Pluggable Object, and more elegant given the
nonexistence of all the similar subaspects for each pluggable type.

– The types addressed by the Self-Pluggable Type Hierarchy
cannot be instantiated independently.

Known Uses

In JHotDraw, a Self-Pluggable Type Hierarchy is capable of or-
ganizing the framework-provided figures and connection figures. In order
to use an application-specific figure, application developers may extend a
member of the hierarchy, which may be the top element for implementing

25

a completely new figure, or a lower one in case if the figure is intended to
be based on an existing one.

Related Patterns

If merging the implementation of the types with Self-Pluggable Ob-
jects is not possible due to some constraint, a solution based on an
Abstract Self-Pluggable Object can be used instead.

10 Association Object

Context

Objects are plugged in an application using Self-Pluggable Objects
or Multi-Context Self-Pluggable Objects. The objects plugged
in an application may need to have other associations between them.

Problem

The plugged objects are not visible to application developers, so that they
can define the associations. How to establish an association between two
Self-Pluggable Objects?

Forces

– Having the possibility of managing object associations independently
is advantageous because application features relying on associations
may be plugged and unplugged without modifying other modules.

– Given that the objects are handled by Self-Pluggable Objects,
it makes sense to define associations in terms of these modules.

Solution

Develop an abstract aspect, which when made concrete encapsulates an
association between two objects — an Association Object (Figure 11).
Use two Template Pointcuts to capture the creation of the objects,
each one with its own advice. One advice captures and stores a refer-
ence to one of the objects, while the other advice uses that reference to
establish the association with its captured object. Application develop-
ers can establish an association by defining the hook pointcuts on the
modules representing the two objects to be associated. An Association

26

Object can be defined in terms of an Abstract Self-Pluggable Ob-
ject or the top-level aspect of a Self-Pluggable Type Hierarchy.
This enables that the association can be established between any object
whose type is a subtype of the type addressed by either the Abstract
Self-Pluggable Object or the Self-Pluggable Type Hierarchy.

<<pointcut>> object1() : SelfPluggableObject1
<<advice>> SelfPluggableObject1.constructor() && object1()

<<pointcut>> object2() : SelfPluggableObject2
<<advice>> SelfPluggableObject2.constructor() && object2()

-obj1 : Type1

<<aspect, abstract>>

AssociationObject

...
constructor() : Type1

<<aspect, abstract>>

SelfPluggableObject1

...
constructor() : Type2

<<aspect, abstract>>

SelfPluggableObject2

...

<<aspect>>

Object1

...

<<aspect>>

Object2

<<aspect>>

Association

/* store returned object */
obj1 = ...

/* get returned object */
Type2 obj2 = ...
obj2.compose(obj1);

<<object1>>

<<object2>>

compose(Type1) : void
...

<<interface>>

Type2

Fig. 11. Association Object pattern.

Example

This pattern is illustrated by presenting a solution for improving the as-
sociating actions scenario given in Section 2. Below we present the aspect
that enables the encapsulation of such associations, assuming the special-
ization aspect Action from Section 9 and the specialization aspect Menu

from Section 7. The first advice captures the instantiation of a subaspect
of Action, which is itself an object of type IAction, while the second advice
includes the captured action in a menu captured from the execution of
createMenu() within a subaspect of Menu.
pub l i c a b s t r a c t aspect MenuAction {

pro tec ted ab s t r a c t po i n t cu t a c t i o n () ;

pro tec ted ab s t r a c t po i n t cu t menu () ;

p r i v a t e I A c t i o n a ;

a f t e r (IA c t i o n a) :

wi th i n (Act i on+) && ac t i o n () &&

execut i on (Act i on . new (. .)) && t h i s (a) {
t h i s . a = a ;

27

}

a f t e r () r e t u r n i n g (IMenu m) :

wi th i n (Menu+) && menu () &&

execut i on (IMenu createMenu ()) {
m. addAct ion (a) ;

}
}

Assuming the Self-Pluggable Objects Menu1 and ExitOnExample

given previously, the following aspect implements the association that
places the exit action on “Menu1”.
pub l i c aspect ExitOnMenu1 extends MenuAction {

pro tec ted po i n t cu t a c t i o n () : t a r g e t (ExitOnExample) ;

pro tec ted po i n t cu t menu () : t a r g e t (Menu1) ;

}

Resulting Context

– Associations can be encapsulated and managed independently.
– In order to establish an association there is no need to understand

the context where the objects are plugged nor any details about their
type implementation.

Known Uses

In JHotDraw an Association Object can define the valid source and
target figures which a connection figure may connect. However, the solu-
tion is a bit different than the one in the example, since the valid con-
nections are given by overriding a hook method of the connection figure.
In Eclipse RCP, Association Objects may link the actions and the
toolbar, the actions and the menus, or the viewparts and the perspectives.

Related Patterns

An Association Object may be adaptable by having Composition
Hook Methods, which in turn can be completed by Self-Pluggable
Objects.

11 Example Framework Revisited

This section revisits the example framework, taking into account the
Modular Hot Spots pattern language given throughout sections 6-10.

28

Figure 12 depicts the new reuse interface after applying the patterns. We
can see the several abstract modules (gray) and their abstract pointcuts.
Regarding the menus, the example of Section 7 is considered (Multi-
Context Self-Pluggable Object), instead of the one given in Sec-
tion 6. Regarding the actions, the examples of Section 9 are considered
(Self-Pluggable Type Hierarchy), instead of the ones of Section 8.

<<abstract>>
AbstractApplication

<<poincut>> context() : AbstractApplication || Menu

<<aspect, abstract>>
Menu

<<poincut>> action() : Action

run() : void

<<aspect, abstract>>
Action

<<aspect, abstract>>
Exit

<<poincut>> menu() : Menu
<<poincut>> action() : Action

<<aspect, abstract>>
MenuAction

<<aspect>>
Menu1

Example
Application

<<aspect>>
Menu2

<<context>>

<<aspect>>
ExitOnExample

<<application>>

run() : void

<<aspect>>
ExampleAction

<<application>>

<<aspect>>
ExitOnMenu1

<<menu>>

<<action>>

<<context>>

Fig. 12. Modular Hot Spots for the example framework (in gray) and example
application (in white).

Figure 12 also depicts the framework-based application based on Mod-
ular Hot Spots that was given throughout the patterns. We can see
the several application aspects (inheriting from the specialization aspects)
and their pointcut definitions. The following topics briefly compare this
solution with the conventional one given in Section 2.

1. Each of the application concepts (i.e. application, menu, action, exit,
and menu action) can be used incrementally, where each concept in-
stance is implemented in an independent module. Throughout the
pattern examples a framework-based application was given in the
modules ExampleApplication (Section 6), Menu1 and Menu2 (Section
7), ExitOnExample and ExampleAction (Section 8), and ExitOnMenu1

(Section 10).
2. Without source code modification, the application may be compiled

with subsets of the modules enumerated in (1), obtaining variants of

29

the application. This issue is particularly important in the context of
software product-lines. For instance, one could have a variant of the
application without the “Menu2”, just by not including that module
in the compilation.

3. Application features can be removed without understanding source
code, as far as one knows which application elements the modules
are representing (a fairly basic information that is easy to maintain).
This issue facilitates the maintenance and reengineering of framework-
based applications. For instance, suppose that the application imple-
mented by the modules enumerated in (1) needs to be changed for
a new version without the ExampleAction. If the task is given to a
programmer that was not the one who developed the application in
first place, his or her task becomes facilitated, given that only that
module has to be identified and removed, while no understanding of
the existing code is necessary.

4. The associations between menus and actions can be independently
and non-invasively defined.

5. The two hook methods of AbstractApplication, plus the two methods
of Menu, of the conventional reuse interface, no longer have to be dealt
with by applications. Instead, there are pointcuts that assume their
role. The advantages of the latter is that compositions can take place
without modifications and inspection of the target modules.

6. The two classes MenuBar and ActionBar are no longer relevant for the
application developer.

The items (1), (2), and (3) are related with the improvement of the
plugging menus and menu context scenarios given in Section 2. Item (4)
is related with the improvement of the associating actions scenario also
given in Section 2.

12 Conclusion

This paper presented Modular Hot Spots, a pattern language for help-
ing on the task of developing framework reuse interfaces with a higher
abstraction level concerning the development of framework-based appli-
cations. The application of the given patterns relies on aspect-oriented
programming primitives. However, the required knowledge of this pro-
gramming paradigm is small, if we consider the whole set of primitives
that these languages offer.

Modular Hot Spots can form a black-box reuse interface with a
higher level of abstraction than conventional black-box reuse interfaces.

30

Black-box frameworks are pointed out as adequate for having an accompa-
nying Visual Builder [7] for generating framework-based applications
from high-level domain-specific descriptions. We argue that such Visual
Builders can be developed more easily if Modular Hot Spots are
adopted, given that the code of the applications is able to resemble more
closely the concepts and relationships of a given domain.

Acknowledgements

We would like to thank our EuroPLOP’08 shepherd Uirá Kulesza, and
the Writer’s Workshop participants Paul G. Austrem, Dietmar Schütz,
Diethelm Bienhaus, and Jürgen Salecker, for the valuable suggestions for
improving this paper.

References

1. Eclipse Foundation. AspectJ programming language.
http://www.eclipse.org/aspectj, 2007.

2. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
1995.

3. S. Hanenberg, A. Schmidmeier, and R. Unland. Aspectj idioms for aspect-oriented
software construction. In 8th European Conference on Pattern Languages of Pro-

grams (EuroPLoP), 2003.
4. R. E. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented

Programming, 1:22–35, 1988.
5. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-Oriented Programming. In Proceedings European Conference

on Object-Oriented Programming, 1997.
6. J. McAffer and J.-M. Lemieux. Eclipse Rich Client Platform: Designing, Coding,

and Packaging Java(TM) Applications. Addison-Wesley Professional, 2005.
7. D. Roberts and R. E. Johnson. Evolving frameworks: A pattern language for

developing object-oriented frameworks. In Pattern Languages of Program Design

3. Addison Wesley, 1997.
8. A. L. Santos, A. Lopes, and K. Koskimies. Framework specialization aspects. In

AOSD ’07: Proceedings of the 6th International Conference on Aspect-Oriented

Software Development, 2007.
9. SourceForge. JHotDraw framework. http://www.jhotdraw.org, 2006.

10. O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An aspect-oriented
extension to C++. In Proceeding of the 40th International Conference on Tech-

nology of Object-Oriented Languages and Systems (TOOLS Pacific 2002), 2002.
11. A. Weinand, E. Gamma, and R. Marty. Design and implementation of ET++, a

seamless object-oriented application framework. Structured Programming, 1989.

31

