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Abstract. There exists a wide gap between the information that people and 
computers respectively can operate with online. Because most of the web is in 
plain text and the Semantic Web requires structured information (RDF), 
bridging the two worlds is an important current research topic. Here we propose 
a web service that uses a Random Indexing (RI) semantic space trained on the 
plain text of the one million most central Wikipedia concepts. The space 
provides us with vectors for each of the equivalent DBpedia concepts and 
vectors for any text or webpage. It can also provide a hashed version of the RI 
vector that works as unique handler like URIs do, but with the additional 
advantage that it represents text meaning. As a result, any page (previously 
readable only for humans) is now integrated with the Semantic Web graph 
using links to one of its most central parts, DBpedia.
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1 Introduction

Most of the existing knowledge on the Web is in plain, unstructured text1. That is, 
most web pages contain data expressed in a way that is easily understandable for 
humans but hard to interpret for machines. The Semantic Web promises large 
interoperability gains, but it all depends on how well we can integrate two separate 
worlds. On the one hand we have rich structured datasets following linked data 
principles [1] with the ultimate goal of being able to use the Web like a single global 

                                                          
1 Governments, enterprises and almost any dynamic website all have large bodies of knowledge 

already in structured form (relational databases) but not following linked data principles. 
Converting it into RDF is an interesting problem, but not directly related to the problem we 
discuss here (how to find the closest DBpedia concepts to any text passage) so we will not 
elaborate further. 
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database. But while the Semantic Web graph is growing at a very healthy rate2, it is 
still a marginal part of the entire Web. On the other hand we have the flat, messy (but 
abundant) plain text Web pages. Traditional information retrieval and machine 
learning techniques that work on plain text have been making steady progress for 
some time now. Some of these techniques use structured data too [2].

The problem we aim to solve in this paper is simply converting literals into 
resources. This problem is trivial if the only requirement is a unique ID (a random one 
would suffice). But giving unique IDs is not a solution; to integrate the new resource 
we need to generate outwards links to the rest of the Semantic Web graph. That is, we 
enhance the meaning of the new node by generating new connections. We achieve 
this thanks to statistical semantics on a corpus that has parallel representations of both 
worlds: Wikipedia/DBpedia [3]. Random indexing (RI) [4] offers a highly scalable 
way of assigning semantic vectors to Wikipedia concepts. We then compress the 
vectors using MD5 hashing and use these hashes as meaningful identifiers that 
become part of the RDF graph.

For clarity, we will refer to the Semantic Web and linked data initiative as the data 
Web. The human Web is simply the current Web made of pages and unnamed links.

1.1 An overview of URIs, Resources and literals

We build on three basic notions: URI, resources, and literals. In summary, URIs 
are unique identifiers, and resources differ from literals in that they have URIs and 
can link to other nodes in the graph. We will describe these three concepts next.

1.1.1 Uniform Resource Identifier (URI)

A Uniform Resource Identifier (URI), according to the specification [5], is a 
compact sequence of characters that identifies an abstract or physical resource. Valid 
URIs take the following form: 

Scheme ":" ["//" authority "/"] [path] [ "?" query ] [ "#" fragment]
Uniform Resource Locators (URLs) are a subclass of URI, subject to the same 

grammar. The main difference is that a URL must point to specific information, 
usually a file that can be displayed on a browser or downloaded, whereas URIs do not 
need to3. People who have been on the internet for years now are completely used to 
this grammar. Note that none of the parts are particularly informative to describe the 
resource they point to. Authority is perhaps informative because it could carry the 
name of the entity (company, person, association, etc) that hosts the page. In recent 
years RESTful services [6] make Paths describe the actions they perform (e.g. read, 
delete, etc). The title of the page can also be part of Path, and some popular software 
such as WordPress implements this policy by default. However, these are all usage 

                                                          
2 New datasets are added constantly to the W3C site ‘Linking Open Data’ 

http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets and the 
existing ones keep growing.

3 But it is a good practice to make URIs point at some description of what they are.
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conventions, but not enforced by the URI design. There is nothing in the scheme that 
says URIs should be meaningful for humans or machines4. 

The main role of a URI (and only requirement) is to provide a unique identifier for 
a resource. In this paper we will propose that it is desirable to make identifiers 
meaningful for machines, in a way that uses human similarity judgments.

1.1.2 Resource  

The first explicit definition of resource is found in RFC 2396 [7] and states that A 
resource can be anything that has identity. Familiar examples include an electronic 
document, an image, a service (e.g., "today's weather report for Los Angeles"), and a 
collection of other resources. Not all resources are network "retrievable"; e.g., 
human beings, corporations, and bound books in a library can also be considered 
resources.

The concept of resource is primitive in the Web architecture, and is used in the 
definition of its fundamental elements. The term was first introduced to refer to 
targets of URLs, but its definition has been further extended to include the referent of 
any Uniform Resource Identifier in RFC 3986 [5]. That is, the concept started in the 
human Web, and grew to be used in the data Web. A resource is simply anything that 
can be identified with a URI. Note that the concept of URI contains the URL as a 
special case. 

Resources can have properties. For example, the resource ‘FidoTheDog’ may have
the Name property ‘Fido’. That is, resources can link to other resources and to literals. 

1.1.3 Literals

Literals are values that do not have a unique identifier. They are usually a string 
that contains some human-readable text, for example names, dates and other types of 
values about a subject. In the previous example, the string ‘Fido’ is a literal. They 
optionally have a language (e.g., English, Japanese) or a type (e.g., integer, Boolean, 
string), but this is about all that can be said about literals. They cannot have properties 
like resources. Unlike resources, literals cannot link to the rest of the graph. They are 
second-class citizens on the Semantic Web. In terms of graphs, literals are one-way 
streets: since they cannot be the subject of a triple, there can be no outgoing links to 
other nodes. 

                                                          
4 In practice, URLs do have some meaning for humans, but mostly due to cues acquired 

after years of using them. Short, meaningful names are better, and of course more expensive, so 
they hint that the owner must have made a serious investment and thus be committed to the 
content.
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1.2 Why turning literals into resources is useful

Consider that human Web nodes (pages) are literals once they merge with the data 
Web. The number of literals in the joint graph will be enormous, considering that the 
human Web is several orders of magnitude larger than the current data Web. But the 
number of new nodes is not necessarily just the number of webpages: a selection of 
text, say a paragraph, can also become a literal.

We offer a method to transform literals into resources. This solution we propose 
here is one of many possible: for example, there are efficient tools, such as 
openCalais, that link entities to semantic Web concepts using named-entity 
recognition.  The key difference is that named-entity recognition links individual 
words to existing resources, where as we create a URI for larger chunks of text, such 
as a sentence, a paragraph or entire webpage. Like openCalais, we link the resulting 
URI’s to DBpedia [3], one of the most central datasets in the Semantic Web.

In the next subsections, we show advantages to turning literals into resources from 
a graph machine learning point of view.

1.2.1 Increased integration of the human and data Webs

The current state is that even though the two Webs are essentially separated, there 
is some integration in at least two fronts. First, semantic Web URIs resolve into 
something a human with a browser can see (e.g., plain text description of an object). 
This is a good practice, but not enforced. Second, recently more and more parts of the 
human Web carry snippets of structured information (RDFa). Only recently have 
webmasters started using RDFa. Search engines such as Yahoo and Google are 
indexing RDFa too.

Integration is challenging because the two webs are structurally very different. The 
semantic Web is a directed labeled graph, whereas the ‘human’ Web is a directed 
unlabeled graph5. To merge them, we would need to produce labels for unlabeled 
links. But this is a problem because links in the human Web, by design, do not have 
labels. We could use a homogeneous label name (something like ‘links-to’) but then 
‘links-to’ would become the most frequent label, eclipsing every other one and 
making the resulting graph harder to do reasoning with. An example of this generalist 
label is the ‘wikilink’ predicate in DBpedia. Wikilinks are the simplest links from one 
Wikipedia article to another. They are parsed from Wikipedia articles bodies for 
DBpedia as simple “source page” and “destination page” pairs. Compared to the other 
kinds of RDF triples in DBpedia, they are the most general, in the sense that they 
cover the most kind of relations, yet are the least precise, because they don’t have a 
relation property, only using a generic “wikilink” relation type. There are 70 millions 
Wikilink triples, compared to 30 million Infobox dataset triples or only 7 millions 
Wikipedia Categories dataset triples. In such a large proportion, unnamed links would 

                                                          
5 Directed labeled graphs are a lot harder to work with than unlabeled graphs, and the
algorithms that work on directed labeled graphs are but a portion of all graph algorithms.
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overpower the named ones for some tasks (e. g. [8]) and their addition would be 
detrimental.

1.2.2 Dangling nodes

One important feature of RDF is that a literal may be the object of an RDF 
statement, but not the subject or the predicate. Because a resource offers richer 
possibilities to Semantic Web practitioners compared to a literal, the joint graph 
would be better served having as many resource nodes as possible. From the point of 
view of graph theory, literals are ‘one-way street’ nodes that can be problematic. A 
node that receives connections but never links outwards is called a ‘dangling node’. 
So literals are dangling nodes. Operating on a graph with a high proportion of 
dangling nodes makes some useful algorithms slower (e.g., finding shortest paths), 
and some other harder to use or impractical. For example, straight pagerank has 
problems with dangling nodes, even though in practice they can be solved [9], but 
other algorithms such as singular value decomposition require a matrix with no all-
zero rows (a dangling node produces an all-zero row). 

One alternative is to remove dangling nodes. Some studies that look for shortest 
paths remove literals because dangling nodes would add one-way-streets and search 
would take longer [10]. But this has unintended secondary effects. Removing the 
dangling nodes somewhat skews the results on the non-dangling nodes since the 
outdegrees from the non-dangling nodes are adjusted to reflect the lack of links to 
dangling nodes.

The Semantic Web graph has a large proportion of dangling nodes. According to 
data reported in the landing page of the Linked-Data Semantic Repository (LDSR, 
[11] including DBpedia, Freebase, Geonames, UMBEL, Wordnet, CIA World 
Factbook, Lingvoj, MusicBrainz and others), 39% of the nodes are literals (see table 
1). This is the proportion of literals over the total number of entities. LDSR is not the 
Semantic Web’s entire graph, but we would expect to find a similar distribution of 
URIs vs. literals if we could access equivalent statistics for every subcomponent. 

Table 1. Statistics from the linked-data semantic repository (LDSR, [11], retrieved 3-4-2010) 

Number of URI: 126,875,974
Number of Literals: 227,758,535
Total number of entities: 354,635,159

Reducing the proportion of literals compared to resources on the Semantic Web 
graph may open the door to better machine learning algorithms. We will explore this 
idea in the next section.
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2 How to create Identifiers that are not only unique, but 
meaningful 

Here we use statistical semantics to create meaningful identifiers for literals. We 
term these meaningful unique identifier (MUID, pronounced “mood”). We propose 
that algorithm for generating MUID’s should have the following properties:
1. A MUID should have some (primitive) form of compositionality.  If we generate a 

MUID for part of a page, the part’s MUID should be similar to that of the full 
page.  

2. If two pages get similar MUIDs, they should be perceived as similar by human 
observers.

3. Changes that are perceived as incremental by people (e.g., a blog post getting 
comments), should result in incremental changes to the corresponding MUID’s 
corresponding to before and after the changes. 

To understand how our proposal implements these requirements, we next describe
statistical semantics, focusing on Random Indexing (RI) [15].

2.1 Statistical semantics

Statistical semantics is a general category of machine learning algorithms that 
exploits statistical patterns of human word usage to figure out word meaning. These 
algorithms come from cognitive science and information retrieval. A typical task for 
statistical semantics is to measure the semantic similarity of two passages. The answer 
is given as a number, usually the cosine between the vectors that represent the 
passages in some high dimensional space. The vector for a passage is usually the 
average of the vectors for all the words in it. The vectors for each passage, when 
averaged together, form the document vector. This implements compositionality 
(property 1 above) and addresses incremental changes (property 3), because 
recomputing a vector when the text is only slightly different will produce only a 
slightly different vector.  

Most statistical semantics methods start with a frequency matrix of word by 
documents [12], and many apply different transformations to these matrix (example, 
truncated singular value decomposition). The vector space model [12] was the first of 
these methods. It improves over Boolean information retrieval (IR) in that it allows 
computing a continuous degree of similarity between queries and documents, and this 
makes ranking possible. It also moved IR from set theory to linear algebra, which 
facilitated the explosion of newer models. These newer models such as LSA and 
random indexing extend the approach by adding generalization, that is, these models 
are able to tell when two words are synonyms. Table 2 shows an example. For an 
exact matching algorithm based on a Boolean vector space, the similarity between 
pairs of words is all-or-nothing. In contrast, newer models such as LSA and RI 
capture the similarity of doctor to physician and surgeon.
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Table 2. Generalization. How LSA solves synonymy. Cosine values from lsa.colorado.edu

Boolean/vector space LSA
doctor – doctor 1 1

doctor – physician 0 .8
doctor – surgeon 0 .7

Statistical semantic models are trained on a large corpus of text that is 
representative of the domain of interest. Once this space has been created, it can be 
used to compare not only passages from the training corpus, but novel passages as 
well. For general knowledge, the corpus used to be an encyclopedia or a sample of 
textbooks representative of what a college student would have read [13]. A corpus 
composed of  traditional encyclopedias or textbooks have significant limitations. First 
many recently-coined terms common on the web, such as iPad, are not in those 
datasets. And second, there’s no direct mapping between these corpora and resources 
in the semantic web. These limitations lead us to use Wikipedia as a training corpus.
In the combination of Wikipedia and DBpedia we have exactly what we need, a 
parallel corpus that exists in both the human and data Webs. 

Starting with the full text of a recent (March 2008) Wikipedia dump, we selected 
the most central concepts by dropping those with fewer than five in links or fewer 
than five out links.  We applied other basic preprocessing steps described in [14]. The 
initial parsing produced close to a million types; as expected from natural, unedited 
text, most of these were typos. We then dropped types that occurred less than 10 
times, and those that appeared in less than 10 documents. Approximately half of the 
types went away. After parsing the Wikipedia XML dump, we obtained 2.7 Gb of text 
in 1,279,989 articles.

3 Random indexing

Our application of Random Indexing [4] starts with the same words by documents
matrix described above, taking a document to be a Wikipedia article. Then each word 
and each context is first assigned a random high-dimensional sparse vector: they are 
seeded with a small proportion of ones and negative ones with all other elements set 
to zero. 

Once the sparse binary index vectors are constructed, a word’s vector becomes the 
sum of the vectors for the contexts in which it appears throughout the text corpus. 
Conversely, a document space can also be constructed as the sum of the index vectors 
for words appearing in each document. Random Indexing depends on the term-
document matrix computed from a corpus being sufficiently sparse that vector 
representations can be projected onto a basis comprising a smaller number of 
randomly allocated vectors. Due to the sparseness condition, the basis of random 
vectors has, in general, a high probability of being orthonormal. That is, every random 
vector will be orthogonal to any other random vector. The most exhaustive 
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description of RI is [15]. The main advantage of RI compared to LSA [16]  is its 
scalability. The SVD is a computationally expensive operation. It needs to place large 
matrices in memory, and it may take days to compute for a dataset the size of LDSR, 
if at all possible. RI does not have large memory requirements and the linear algebra 
operations are simpler and faster. 

We used the semantic vectors library [17]. This library has been proved to scale well: 
Cohen et al. [18] use it in an experiment with 15M documents from MedLine.

We manipulated the following parameters (see first two rows in table 3): (1) Number 
of dimensions. This is simply the size of the random vector that represents a word. It 
has the largest influence on how long it takes to compile a space, and how much 
storage it needs. Surprisingly, there is little published on how to select the optimal 
dimensionality. We manipulated dimensions from 800 to 1200. (2) Nonzero seed 
values. This parameter is not commonly reported in the literature. However, we found 
that it does change results, so we manipulate it here systematically. 

Our assumption is that the parameters that work best on traditional psychological 
tasks will also work well for our current task of getting the most meaningful 
neighbors on a Wikipedia space. In the next section we try to obtain the best 
parameters for our web service using four well-known human similarity datasets.

3.1 Results

We used the following datasets for word pair similarity judgments: Rubenstein and 
Goodenough (1965) [19], Miller and Charles (1991) [20], Resnik [21] (1995; this is a 
replication of Miller and Charles) and Finkelstein et al. (2002) [22]. An example of 
the materials on these tasks would be ‘How similar are gem and jewel?’ Participants 
produce ratings going from zero (not related at all) to four (perfect synonymy).

Table 3 shows how models, based on different parameterizations of RI, correlate 
with the human judgments in these four datasets for word-word comparisons.

Since average human agreement in tasks like these is around .6, our results are 
acceptable, even though they are below some other published results [23]. For the 
web service, we kept the space with 1000 dimensions and 700 seed values, which 
seems to do well across datasets.

4 The Web service

The interface to the Web service is described using WSDL [24]. The Web service 
takes either a URL or plain text. When taking a URL, it parses the page and extracts 
the plain text. The text is then transformed into a RI vector by retrieving vectors for 
all its terms and averaging these together. What we provide here is a prototype that 
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takes about 2 min to process a request. Fortunately, the algorithm is parallelizable. An 
interface for testing can be reached at: http://mpi-ldsr.ontotext.com/webservice6.

Table 3. RI correlation to the human gold standard in four datasets for word-word 
comparisons. The average human agreement is around .6. Best results are bold.

dims seed Miller Resnik Rubenstein wordsim
800 500 0.39 0.46 0.42 0.35

600 0.61 0.54 0.52 0.4
700 0.57 0.56 0.48 0.35
750 0.37 0.44 0.39 0.34

1000 300 0.5 0.46 0.42 0.4
700 0.55 0.6 0.5 0.39
800 0.42 0.47 0.46 0.36
900 0.48 0.5 0.42 0.37
950 0.6 0.55 0.53 0.37
980 0.49 0.43 0.4 0.36

1200 500 0.53 0.55 0.53 0.38
900 0.5 0.56 0.47 0.36
1000 0.47 0.51 0.46 0.36
1050 0.34 0.5 0.41 0.37
1100 0.42 0.45 0.38 0.37

1800 1500 0.43 0.43 0.5 0.37
2000 1900 0.57

The web service returns both a list of nearest neighbors in the space and a unique, 
meaningful ID (MUID). Table 4 shows an example of the concepts that the Web 
service produces for an interview with Shane Simonsen8, a UK computer science 
professor who abandoned the University system. The ten closest neighbors are related 
to education in different parts of the world, which reflects the gist of the text.

What follows is the N3-formatted RDF that this text would return for the first item 
in the example. The kind of links we generate are essentially unlabeled (as discussed 
in the introduction), but right now we use skos:related to express the fact that 
the input text is related to the DBpedia concept listed. 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix mpib <http://mpi-ldsr.ontotext.com/mpib#'> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix DBpedia: <http://en.wikipedia.org/wiki#> .
mpib:39f2ea57cf982d7eedccf28f92ebf13f skos:related 

dbpebia:Education_in_the_People's_Republic_of_China> .

                                                          
6 Alternatively http://93.123.21.85:8087/ri-webservice/
8 http://www.lambdassociates.org/blog/interview.htm
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Since 1000-dimensional vectors are too long to be used as metadata, we return a
hashed version of the vector compacted with the hashing function MD5 digest. 

Table 4.  A sample paragraph from submitted text (left) and top 10 DBpedia concepts that the 
web service produced.

Your article "Why I am not a Professor", outlining 

your departure from academia in 1999 over declining 

standards and conditions, was written in 2007. Can 

you shed light on any further changes of the state of 

the tertiary education system since then?

There is a recognition at government level that the 

standards have dropped at university and that degree 

inflation is rife.   The UK government has abandoned 

its target of 50% of the population in higher education.   

The public sector deficit has caused the university 

budget to be cut by £500 million in 2010 and we shall 

see further cuts.  However all the mechanisms of 

assessment discussed in that essay are still in place.   

Education in the People's 
Republic of China

Education in the United States

Community college

Tertiary education in Australia

Education in South Korea

Business-education partnerships

Unemployment

Secondary education in Japan

Education in Thailand

Education in England

5 Discussion and conclusions

We have presented a method, reachable as a web service, to attach meaning to a
resource that locates it in a semantic space. Using statistical semantics we integrate
any plain text literal (a paragraph or an entire page) with DBpedia, one of the central 
components of the Semantic Web. When literals are passed to our web service they 
receive a Random Indexing vector and a list of links to the 10 closest DBpedia
concepts. This Random indexing vector is taken as a meaningful, unique ID (MUID) 
that can be used to refer to this newly-created resource. These MUIDs serve not only 
as unique identifiers, but as well add functionality. In the same way that in the 
physical world coordinates enabled location-aware applications, the semantic 
annotation of literals enables new functionality, such as defining the similarity of 
pairs of objects, and finding the most similar resources. But there is a critical 
difference between semantic and physical spaces. Whereas the physical world has 3 
dimensions, the semantic world, as we have proposed here, may have thousands.
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