
13th International Conference on
Knowledge Engineering and Knowledge Management

In Cooperation with AAAI

October 1-4, 2002 Sigüenza, Spain

EON2002
Evaluation of Ontology-based Tools

EKAW02 Workshop (WS1)
Sigüenza, Spain, September 30th 2002

Organizing Committee

Jürgen Angele

York Sure

 i

Organization Committee

Jürgen Angele (Co-Chair), Ontoprise GmbH (DE)
York Sure (Co-Chair), University of Karlsruhe (DE)

Program Committee

Richard Benjamins, iSOCO (ES)
Sean Bechhofer, University of Manchester (UK)
Jesus Contreras, iSOCO (ES)
Carole Goble, University of Manchester (UK)
Asunción Gómez-Pérez, Universidad Politecnica de Madrid (ES)
Atanas Kiryakov, OntoText Lab / Sirma AI, Ltd. (BG)
Robert Meersmann, StarLab Brussels (BE)
Henrik Oppermann, Ontoprise (DE)
Heiner Stuckenschmidt, Vrije Universiteit Amsterdam (NL)
Rudi Studer, University of Karlsruhe (DE)
Mike Uschold, Boeing (USA)

Additional Reviewers

Henrik Oppermann, Ontoprise GmbH (DE)

Sponsorship

This workshop is sponsored by the thematic network OntoWeb (EU IST-2000-29243).

Copyright remains with the authors, and permission to reprodoce material printed here should
be sought from them. Similarly, pursuing copyright infringements, plagiarism, etc. remains
the responsibility of authors.

 ii

Introduction

In the “Evaluation of Ontology-based Tools” workshop we intend to bring together
researchers and practitioners from the fastly developing research areas “ontologies” and
“Semantic Web”. Currently the semantic web attracts researchers from all around the world.
Numerous tools and applications of semantic web technologies are already available and the
number is growing fast. However, deploying large scale ontology solutions typically involves
several separate tasks and requires applying multiple tools. Therefore pragmatic issues such as
interoperability are key if industry is to be encouraged to take up ontology technology rapidly.

The main aim of this workshop is therefore to encourage and stimulate discussions about the
evaluation of ontology-based tools. For the future this effort might lead to benchmarks and
certifications.

The workshop is divided in two parts: (i) presentations of accepted papers and (ii) discussions
about the "EON2002 Experiment". The experiment was initiated during the OntWeb3
meeting by the participants of the Special Interest Group on Tools (SIG3)1. The general
question was how to evaluate ontology related technologies. To brake down this rather
complex task into a pragmatic one, the group decided to focus on ontology engineering
environments (OEE) as a starting point. These tools are rather common and widely used by
the Semantic Web Community and some of the participating members were even tool
provider themselves. Submissions to this experiment should answer the following items with
respect to the used OEE:

• What modeling decisions need to be considered during the design?
• What limitations occure? ... and why?
• What problems arise due to using different representation languages for export?
• What are the lessons learned from modelling this experiment?

The ontology should be exported into a common representation language. However, most
OEEs were designed having specific design rationals from representation formalisms in mind.
Therefore they typically have a strong support for their "home language". To make the results
more comparable we encouraged people to provide not only an "home language" export, but
also an RDF(S) export.

The results of the experiment (as well as further information about the workshop) can be
found at: http://km.aifb.uni-karlsruhe.de/eon2002/

We thank all members of the program committee, additional reviewers, authors, experiment
participants and local organizers for their efforts. This workshop is supported by OntoWeb
(EU IST-2000-29243).

We are looking forward to having fruitful discussions at the workshop!

Jürgen Angele & York Sure

1 Further information can be found in the OntoWeb deliverable 1.3 that is downloadable at
http://www.ontoweb.org/.

 iii

Table of Contents

Part I: Accepted Papers

Evaluating Ontology-Mapping Tools: Requirements and Experience
Natalya F. Noy and Mark A. Musen ……………………………………………………… 1-14

Using Protégé-2000 in Reuse Processes
H. Sofia Pinto, Duarte Nuno Peralta, and Nuno J. Mamede …………………………… 15-26

Integrating Ontology Storage and Ontology-based Applications Through
Client-side Query and Transformations
Peter Mika ………………………………………………………………………………. 27-37

The Integration of OntoClean in WebODE
Mariano Fernández-López and Asunción Gómez-Pérez ... 38-52

Ontology Evolution within Ontology Editors
Ljiliana Stojanovic and Boris Motik .. 53-62

Assessment of Ontology-based Tools: Systemizing the Scenario Approach
Alain Giboin, Fabien Gandon, Olivier Corby, and Rose Dieng 63-73

OntoManager: A Workbench Environment to facilitate
Ontology Management and Interoperability
Adil Hameed, Derek Sleeman, and Alun Preece ... 74-78

Part II: Experiment Contributions

Domain natural language description for the experiment
Taken from. OntoWeb deliverable 1.3……………………………………………………… 79

OilEd
Sean Bechhofer, University of Manchester ... 80-82

OntoEdit
York Sure, University of Karlsruhe .. 83-92

Loom
Aldo Gangemi, Institute of Cognitive Sciences and Technologies, C.N.R. …………..… 93-98

OpenKnoME
Jeremy Rogers, Manchester University ... 99-102

Protégé
Natasha F. Noy, Stanford University .. 103-107

 iv

SemTalk
Christian Fillies, Semtation …………………………………………………………... 108-111

Terminae
Nathalie Aussenac-Gilles, Universite P. Sabatier ……………………………………. 112-128

WebODE
Oscar Corcho, Universidad Politécnica de Madrid …………………………………. 129-134

Evaluating Ontology-Mapping Tools:
Requirements and Experience

Natalya F. Noy and Mark A. Musen

Stanford Medical Informatics, Stanford University
251 Campus Drive, Stanford, CA 94305, USA

{noy, musen}@smi.stanford.edu

Abstract. The appearance of a large number of ontology tools may
leave a user looking for an appropriate tool overwhelmed and uncertain
on which tool to choose. Thus evaluation and comparison of these tools
is important to help users determine which tool is best suited for their
tasks. However, there is no “one size fits all” comparison framework for
ontology tools: different classes of tools require very different comparison
frameworks. For example, ontology-development tools can easily be com-
pared to one another since they all serve the same task: define concepts,
instances, and relations in a domain. Tools for ontology merging, map-
ping, and alignment however are so different from one another that direct
comparison may not be possible. They differ in the type of input they
require (e.g., instance data or no instance data), the type of output they
produce (e.g., one merged ontology, pairs of related terms, articulation
rules), modes of interaction and so on. This diversity makes comparing
the performance of mapping tools to one another largely meaningless.
We present criteria that partition the set of such tools in smaller groups
allowing users to choose the set of tools that best fits their tasks. We
discuss what resources we as a community need to develop in order to
make performance comparisons within each group of merging and map-
ping tools useful and effective. These resources will most likely come as
results of evaluation experiments of stand-alone tools. As an example of
such an experiment, we discuss our experiences and results in evaluating
PROMPT, an interactive ontology-merging tool. Our experiment pro-
duced some of the resources that we can use in more general evaluation.
However, it has also shown that comparing the performance of different
tools can be difficult since human experts do not agree on how ontolo-
gies should be merged, and we do not yet have a good enough metric for
comparing ontologies.

1

1 Ontology-Mapping Tools Versus Ontology-Development
Tools

Consider two types of ontology tools: (1) tools for developing ontologies and (2)
tools for mapping, aligning, or merging ontologies. By ontology-development
tools (which we will call development tools in the paper) we mean ontology
editors that allow users to define new concepts, relations, and instances. These
tools usually have capabilities for importing and extending existing ontologies.
Development tools may include graphical browsers, search capabilities, and con-
straint checking. Protégé-2000 [17], OntoEdit [19], OilEd [2], WebODE [1], and
Ontolingua [7] are some examples of development tools. Tools for mapping,
aligning, and merging ontologies (which we will call mapping tools) are the
tools that help users find similarities and differences between source ontologies.
Mapping tools either identify potential correspondences automatically or provide
the environment for the users to find and define these correspondences, or both.
Mapping tools are often extensions of development tools. Mapping tool and algo-
rithm examples include PROMPT[16], ONION [13], Chimaera [11], FCA-Merge
[18], GLUE [5], and OBSERVER [12].

Even though theories on how to evaluate either type of tools are not well artic-
ulated at this point, there are already several frameworks for evaluating ontology-
development tools. For example, Duineveld and colleagues [6] in their comparison
experiment used different development tools to represent the same domain on-
tology. Members of the Ontology-environments SIG in the OntoWeb initiative1

designed an extensive set of criteria for evaluating ontology-development tools
and applied these criteria to compare a number of projects. Some of the aspects
that these frameworks compare include:

– interoperability with other tools and the ability to import and export on-
tologies in different representation languages;

– expressiveness of the knowledge model;
– scalability and extensibility;
– availability and capabilities of inference services;
– usability of the tools.

Let us turn to the second class of ontology tools: tools for mapping, aligning,
or merging ontologies. It is tempting to reuse many of the criteria from evaluation
of development tools. For example, expressiveness of the underlying language is
important and so is scalability and extensibility. We need to know if a mapping
tool can work with ontologies from different languages. However, if we look at the
mapping tools more closely, we see that their comparison and evaluation must be
very different from the comparison and evaluation of development tools. All the
ontology-development tools have very similar inputs and the desired outputs: we
have a domain, possibly a set of ontologies to reuse, and a set of requirements
for the ontology, and we need to use a tool to produce an ontology of that
domain satisfying the requirements. Unlike the ontology-development tools, the
1 http://delicias.dia.fi.upm.es/ontoweb/sig-tools/

2

ontology-mapping tools vary with respect to the precise task that they perform,
the inputs on which they operate and the outputs that they produce.

First, the tasks for which the mapping tools are designed, differ greatly. On
the one hand, all the tools are designed to find similarities and differences be-
tween source ontologies in one way or another. In fact, researchers have suggested
a uniform framework for describing and analyzing this information regardless of
what the final task is [3, 10]. On the other hand, from the user’s point of view
the tools differ greatly in what tasks this analysis of similarities and differences
supports. For example, Chimaera and PROMPT allow users to merge source
ontologies into a new ontology that includes concepts from both sources. The
output of ONION is a set of articulation rules between two ontologies; these
rules define what the similarities and differences are. The articulation rules can
later be used for querying and other tasks. The task of GLUE, AnchorPROMPT
[14] and FCA-Merge is to provide a set of pairs of related concepts with some
certainty factor associated with each pair.

Second, different mapping tools rely on different inputs: Some tools deal
only with class hierarchies of the sources and are agnostic in their merging al-
gorithms about slots or instances (e.g., Chimaera). Other tools use not only
classes but also slots and value restrictions in their analysis (e.g., PROMPT).
Other tools rely in their algorithms on the existence of instances in each of the
source ontologies (e.g., GLUE). Yet another set of tools require not only that in-
stances are present, but also that source ontologies share a set of instances (e.g.,
FCA-Merge). Some tools work independently and produce suggestions to the
user at the end, allowing the user to analyze the suggestions (e.g., GLUE, FCA-
Merge). Some tools expect that the source ontologies follow a specific knowledge-
representation paradigm (e.g., Description Logic for OBSERVER). Other tools
rely heavily on interaction with the user and base their analysis not only on the
source ontologies themselves but also on the merging or alignment steps that the
user performs (e.g., PROMPT, Chimaera).

Third, since the tasks that the mapping tools support differ greatly, the
interaction between a user and a tool is very different from one tool to another.
Some tools provide a graphical interface which allows users to compare the source
ontologies visually, and accept or reject the results of the tool analysis (e.g.,
PROMPT, Chimaera, ONION), the goal of other tools is to run the algorithms
which find correlations between the source ontologies and output the results to
the user in a text file or on the terminal–the users must then use the results
outside the tool itself.

The goal of this paper is to start a discussion on a framework for evaluating
ontology-mapping tools that would account for this great variety in underlying
assumptions and requirements. We argue that many of the tools cannot be com-
pared directly with one another because they are so different in the tasks that
they support. We identify the criteria for determining the groups of tools that
can be compared directly, define what resources we need to develop to make such
comparison possible and discuss our experiences in evaluating our merging tool,
PROMPT, as well as the results of this evaluation.

3

2 Requirements for Evaluating Mapping Tools

Before we discuss the evaluation requirements for mapping tools, we must answer
the following question which will certainly affect the requirements: what is the
goal of such potential evaluation? It is tempting to say “find the best tool.”
However, as we have just discussed, given the diversity in the tasks that the tools
support, their modes of interaction, the input data they rely on, it is impossible
to compare the tools to one another and to find one or even several measures to
identify the “best” tool.

Therefore, we suggest that the questions driving such evaluation must be
user-oriented. A user may ask either what is the best tool for his task or whether
a particular tool is good enough for his task. Depending on what the user’s source
ontologies are, how much manual work he is willing to put in, how important
the precision of the results is, one or another tool will be more appropriate.
Therefore, the first set of evaluation criteria are pragmatic criteria. These
criteria include but are not limited to the following:2

Input requirements What elements from the source ontologies does the tool
use? Which of these elements does the tool require? This information may
include: concept names, class hierarchy, slot definitions, facet values, slot
values, instances. Does the tool require that source ontologies use a particular
knowledge-representation paradigm?

Level of user interaction Does the tool perform the comparison in a “batch
mode,” presenting the results at the end, or is it an interactive tool where
intermediate results are analyzed by the user, and the tool uses the feedback
for further analysis?

Type of output What is the result of working with the tool? Is it a set of
articulation rules? Is it a merged ontology? Is it an (instantiated) ontology
representing the mappings? Is it a list of pairs of related concepts (possibly
with a certainty factor associated with them)?

Content of output Which elements of the source ontologies are correlated in
the output? These elements can include relations between classes, slots, val-
ues, or instances.

There is no single “best” set of answers to these questions. If the user’s
ontologies include instance data, the tools that use this data in their analysis
will provide more precise suggestions. However, if the instance data is not avail-
able, these tools are inappropriate. Similarly, if the user needs only approximate
mappings between the sources, the tools that provide less precise mappings but
require less interaction may be what the user is looking for. In other words, if we
create a comparison matrix of tools and their features (as most current compar-
isons of the tools do), the best tool is not the tool that gets the largest number
of checkmarks in the matrix. Rather, the best tool is the tool whose set of check-
marks best matches the user’s conditions. From a practitioner’s point of view,
2 This list is a summary of many of the parameters used in the OntoWeb initiative
for comparing mapping tools.

4

existing comparison frameworks have perhaps over-emphasized the importance
of getting as many features in a single tool as possible (e.g., [9]).

These pragmatic criteria will help a user identify a group of tools that will
be useful to him. Within a group of tools that use the same type of input data
and produce similar types of outputs with similar level of interaction, which one
should the user choose? At this point the quality of comparison algorithms comes
into play. All other things being equal, it is the tool that produces “better” sug-
gestions that will be most beneficial to us. Therefore, we need to define what
“better” is in this context and how to find which tool is indeed better accord-
ing to this performance criterion. Defining what “better” is, is fairly easy:
the tool with better recall and precision wins. We can define recall as the frac-
tion of correct matches that the algorithm identifies. We can define precision
as the fraction of correct matches among the matches that the tool identifies.
These notions of recall and precision are similar to recall and precision used
in information retrieval: recall measures how much of the useful information
the tools finds; precision measures how much of the information that the tool
finds is useful. Therefore, we can perform experiments comparing the tools in
the same group directly to one another to determine the quality of the com-
parison algorithms. Ontology-mapping tools employ a variety of techniques to
compare source ontologies. Some tools use machine learning (e.g., GLUE and
FCA-Merge), others analyze graph structure (e.g., AnchorPROMPT, ONION),
yet other tools use heuristic-based analyzers (e.g., ONION, PROMPT).

To compare the tools within one group, we as a community need to develop
the following resources:

Source ontologies We need (preferably several sets of) pairs of ontologies cov-
ering similar domains. We would like to have sets of ontologies of different
sizes, with different levels of overlap, some of them complicated and some of
them close to simple hierarchies.

Benchmark results For each pair of the source ontologies, we need human-
generated correspondences between them. Again, we would like to have these
correspondences at different levels and in different forms: pairs of related
concepts, logic rules showing more complex transformations, ontologies rep-
resenting the mappings.

Metrics for comparing the performance of the tools For the tools that
produce a list of correspondences between concepts in the source ontologies,
we can use the measures of recall and precision that we defined earlier. For
the tools that result in new merged ontologies, we must compare the result-
ing ontologies with the benchmark ones. Therefore, we need some precise
measure of the “distance” between ontologies. There are several proposals
on measuring distance between individual concepts. However, we need dis-
tance between ontologies as a whole. As an alternative to measuring distance
between ontologies, we can consider evaluating the ontologies resulting from
experiments based on analysis of taxonomic relationships proposed by Guar-
ino and Welty [8]. We can use the information on essence, rigidity, and other

5

properties defined in the benchmark results to determine whether these prop-
erties hold in the ontologies resulting from the experiments.

Last but not least, when we perform the comparison experiments, we must be
careful to maintain a set of experiment controls: level of the users’ expertise
with a particular tool and with the mapping process in general, the amount of
training the users get, the documentation that is available, and so on. The more
uniform these controls are, the more valid the experiments will be.

Ideally, researchers that do not have a vested interest in any of the tools
should create the resources that we have listed. Otherwise, the selection of re-
sources and the benchmarks will inevitably be skewed towards one or the other
tool. However, in practice, this approach may not be possible, unless there is
specific funding to create the resources. Therefore, realistically, these resources
are most likely to come initially as results of stand-alone evaluation experiments
of specific tools. These experiments evaluate whether a particular tool is “good
enough” for the user’s task. To perform these individual experiments, researchers
will need to find source ontologies covering the same domain. They will need
to create manually a gold-standard ontology to serve as a benchmark. Alterna-
tively, the merged ontologies that the experiment participants will produce could
also serve as benchmarks. In the experiment, the researchers will likely need to
compare the resulting ontologies, thus developing some metric of the distance.
Therefore, many of the resources for future comparative evaluation of different
tools can come as results of such stand-alone experiment. We performed such an
experiment evaluating PROMPT—an ontology-merging tool developed in our
laboratory [16]. We describe the experiment in the rest of this paper.

3 PROMPT Evaluation

PROMPT [16] is a tool for interactive ontology merging. It is a plugin for
Protégé-2000.3 PROMPT leads the user through the ontology-merging process,
identifying possible points of integration, and making suggestions for operations
that should be done next, what conflicts need to be resolved, and how to resolve
them. The tool compares names of concepts, relations among them, constraints
on slot values, and instances of concepts to make its suggestions.

We evaluated the quality of the suggestions that the tool provides by asking
several users to merge two source ontologies using PROMPT. We recorded their
steps, which suggestions they followed, which suggestions they did not follow,
and what the resulting ontology looked like.

3.1 Source ontologies

In order to evaluate the performance of the PROMPT merging tool, we chose
two ontologies that were developed independently by two teams in the DAML
project.4 We imported two ontologies from the DAML ontology library [4]:
3 http://protege.stanford.edu
4 http://www.daml.org

6

1. An ontology for describing individuals, computer-science academic depart-
ments, universities, and activities that occur at them developed at the Uni-
versity of Maryland (UMD), and

2. An ontology for describing employees in an academic institutions, publica-
tions, and relationships among research groups and projects developed at
Carnegie Mellon University (CMU).

These two ontologies constituted a good target for the merging experiment be-
cause on the one hand, they covered similar subject domains (research organi-
zations and projects, publications, etc.) and on the other hand, their developers
worked completely independent of one another and therefore there was no in-
tensional correlation among terms in the ontologies. In addition, the domain is
easy to understand for everyone.

Figure 1 presents snapshots of the two hierarchies. Note that many of the
concepts in the two ontologies are similar, but they are represented by different
terms: Industrial org versus CommercialOrganization,Governmental org ver-
sus GovernmentOrganization, Student versus Students, Organisation versus
Organization. The structure of the hierarchy is also different: In the CMU hier-
archy, for example, Students, Faculty, Management are subclasses of the class
Employment Categories, whereas in the UMD hierarchy these types of classes
are subclasses of Person. Even though the CMU hierarchy has a class Person,
its only subclass is Employee.

Given these differences in the sources, the merged ontologies produced by
different users will inevitably be different: There are many design decisions that
could go either way. For example, will the Organization class in the merged on-
tology be at the top level, as it is in the CMU hierarchy, or will it be a subclass of
SocialGroup, as it is in the UMD hierarchy? Are the classes Employment Catego-
ries from the CMU ontology and Employee from the UMD ontology essentially
the same classes? The easiest way to answer these questions is to have the de-
signers of the two original ontologies get together and merge them. However,
in practice this scenario is unrealistic. Therefore, if our task requires that we
merge the two ontologies producing one uniform ontology, the user perform-
ing the merge will have to make these decisions and different users may make
different decisions.

3.2 Experiment setup

We asked users to use the PROMPT tool to merge the two ontologies described
in the previous section. All the users were previously familiar with Protégé,
but have not tried to use PROMPT before. None of the users has addressed
the problem of merging ontologies prior to the experiment. There were four
participants in the experiment—all of them students at the Stanford Medical
Informatics who answered our call for participation. Each participant received a
package containing:

– the PROMPT software

7

Fig. 1. Snapshots of the class hierarchies in the two source ontologies for the experi-
ment.

8

– documentation of the tool
– a detailed tutorial
– a tutorial example
– materials for the evaluation

The users performed the evaluation at their convenience on their own computers.
We asked each participant to install the tool, to read the tutorial and to follow
the examples in the tutorial using the tutorial ontologies. We suggested that
they may then look through the documentation to get additional insights. After
that the participants were to perform the evaluation itself by merging the two
source ontologies. After they were done, they sent back the resulting ontology
and the log files for our analysis.

In order to minimize differences in the results, we arbitrarily set up the CMU
ontology to be the preferred one. That is, if the users were merging two classes
with different names, the name from the CMU ontology was used.

3.3 Using PROMPT: Experiment Results

The primary goal of our experiment was to evaluate the quality of PROMPT’s
suggestions. In addition, to experiment with metrics for finding a distance be-
tween ontologies, we compared the ontologies that the participants have pro-
duced.

Quality of PROMPT’s suggestions To evaluate the quality of PROMPT’s
suggestions, we evaluated the precision and recall measures that we have de-
scribed in Section 2: Precision is the fraction of the tool’s suggestions that the
users decided to follow. Recall is the fraction of the operations that the users
performed that were suggested by the tool. In our experiments, the average pre-
cision was 96.9% and the average recall was 88.6%. The precision was in fact
a lot higher than we expected. There are several possible explanations for this
remarkable result. First, the users were not experts in ontology merging and
did not have any particular task in mind when merging the ontologies. As a
result, they found it easier simply to follow the tools suggestions, as long as they
seemed reasonable rather than explore the ontologies deeper and come up with
their own operations. Second, there was a significant overlap in the content and
structure of the source ontologies, which made automatic generation of correct
suggestions easier.

Some of the lower recall figures (it was 49% for merge operations in one
of the experiments) result from questionable choices that the users made. For
example, one user merged Publication and DocumentRepresentation classes,
EMail and ElectronicDocument, ProjectScientist and Research Assistant;
slots publisher and publishDate. PROMPT also did not identify such pairs of
related classes as Academic org and EducationOrganization or Industrial org
and CommercialOrganization.

Even though we did not formally evaluate usability, the fact that all the users
were able to use the tool and completely merge the source ontologies after a brief

9

handout tutorial, indicates that the tool is fairly easy to use. Even though we
told the participants that while they were still going through the tutorial, they
could ask questions about the tool and about the process, only one of them
ended up asking a question.

Resulting ontologies In addition to comparing the recall and precision of
PROMPT’s suggestions, we looked at the resulting ontologies. Since we did not
have a benchmark ontology (we pulled both ontologies from the Internet from an
ontology library), we could compare the ontologies resulting from the experiment
only to one another.

We have noted in Section 2 that we need a distance measure between on-
tologies. We can treat the ontologies resulting from the experiment as versions
of the same ontology—after all, they all result from merging the same ontolo-
gies. Therefore, we can use the notion of diff between versions to find a distance
between two ontologies. In our earlier work [15], we defined the notion of a
structural diff between two versions of the same ontology.

Definition 1 (Structural diff). Given two versions of an ontology O, V1 and
V2, a structural diff between V1 and V2, D(V1, V2), is a set of frame pairs 〈F1,
F2〉 where:
– F1 ∈ V1 or F1 = null; F2 ∈ V2 or F2 = null
– F2 is an image of F1 (matches F1), that is, F1 became F2. If F1 or F2 is

null, then we say that F2 or F1 respectively does not have a match.
– Each frame from V1 and V2 appears in at least one pair.
– For any frame F1, if there is at least one pair containing F1, where F2 �= null,
then there is no pair containing F1 where F2 = null (if we found at least one
match for F1, we do not have a pair that says that F1 is unmatched). The
same is true for F2.

Note that the definition implies that for any pair of frames F1 and F2, there is
at most one entry 〈F1, F2〉.

The structural diff describes which frames have changed from one version
to another. However, for a diff to be more useful to the user, it should include
not only what has changed but also some information on how the frames have
changed. A PromptDiff table provides this more detailed information [15].

Definition 2 (PromptDiff table). Given two versions of an ontology O,
V1 and V2, the PromptDiff table is a set of tuples 〈F1, F2, rename value,
operation value, mapping level〉 where:
– There is a tuple 〈F1, F2, rename value, operation value, mapping level〉
in the table iff there is a pair 〈F1, F2〉 in the structural diff D(V1, V2).

– rename value is true if frame names for F1 and F2 are the same; rename value
is false otherwise.

– operation value ∈ OpS, where OpS = {add, delete, split, merge, map}
– mapping level ∈ MapS, whereMapS = {unchanged, isomorphic, changed}.

10

u1-u2 u1-u3 u1-u4 u2-u3 u2-u4 u3-u4

Frames in ontology 1 251 251 251 253 253 216
Frames in ontology 2 253 216 232 216 232 232
Unmatched entries from ontology 1: 3 37 19 39 22 11
Unmatched entries from ontology 2: 5 2 0 2 1 27
Changed rows in the table: 30 50 46 48 54 45
Difference (in number of frames) 38 89 65 89 77 83

Difference (in %) 14.8% 35.2% 25.9% 34.9% 30.3% 34.2%

Table 1. The difference between pairs of ontologies in the experiment. There were four
users, u1, u2, u3, and u4. Each column represents a comparison of ontologies that each
pair of users produced.

The operations in the operation set OpS indicate to the user how a frame has
changed from one version to the other: whether it was added or deleted, whether
it was split in two frames, or whether two frames were merged. We assign a
map operation to a pair of frames if none of the other operations applies. The
mapping level indicates how different the two frames are from each other. If
the mapping level is unchanged, then the user can safely ignore the frames—
nothing has changed in their definitions. If two frames are isomorphic, then their
corresponding slots and facet values are images of each other, but not necessarily
identical images. The mapping level is changed if the frames have slots or facet
values that are not images of each other.

Therefore, we can measure the distance between two ontologies by considering
the number of frames in each ontology and the number of rows in the Prompt-
Diff table that have add, delete, or changed in their operation or mapping-level
column. In other words, the “difference” between two ontologies is comprised by
the frames that either do not have matches or have changed significantly: classes
have different superclasses, metaclasses, or slots; slots are attached to different
classes or have different facet values. Table 1 presents the results of this compar-
ison. For the four users in the experiment, there are six pairs of ontologies. It is
interesting that even with the tool that may have been “steering” the users in
a certain direction, the resulting ontologies differed by about 30%. This result
indicates that even when human experts are merging ontologies, there is very
little agreement and users make very different design decisions. This observation
has serious implication for the possibility of even having a benchmark ontology
(something that we said is needed to compare merging tools fairly). Consider the
Employment Categories and Employee classes from Figure 1. Some users de-
cided to merge the class Employment Categories with the Employee classes in
both ontologies, creating one class out of three. Others kept the distinction that
was present in the CMU hierarchy. In one ontology, Proceedings is a subclass of
Book and in the other it is a subclass of Publication. Even though most users
merged the two Publication classes, the two Proceedings classes, and the two
Book classes, they made different decisions on where to place the Proceedings
class in the merged ontology.

Our approach to measuring the distance may also be inflating the actual
distance. For example, if two users both merged the classes GraduateStudent

11

and UndergraduateStudent but did not merge their superclasses, then both
GraduateStudent and UndergraduateStudent will appear as “changed” when
we compare the merged ontologies: their superclasses are different. Therefore, a
better measure may be some sort of weighted measure reflecting how much the
concepts have changed.

4 Concluding Remarks

Our evaluation experiment was not ideal. We were limited by available resources
and, in some cases, by circumstances. We had four participants in the exper-
iment. The number of users was still too small and the variability in user’s
expertise with Protégé too large to get meaningful estimates on whether the
tool really saves time. If we had more users performing the experiment, the time
data would have been one of the interesting points to compare.

Such an experiment however would still have answered only one of the pos-
sible user’s questions that we discussed in Section 2: is the PROMPT tool good
enough. And even that answer assumes that recall and precision figures taken
in isolation from other tools, are meaningful. What we really need is a larger-
scale experiment that compares tools with similar sets of pragmatic criteria. For
example, we would then compare PROMPT with other tools that use classes,
slots, facets, and instances in their analysis and that produce suggestions about
merging all these knowledge-base elements. In general, it is pointless to compare
performance of PROMPT and FCA-Merge for example: FCA-Merge requires
that source ontologies not only have instance data but also share the instances.
PROMPT does not have such a requirement. Therefore, if a user’s ontology does
not have instance data, FCA-Merge will be unusable.

In order to help users sort through existing tools and find the right ones for
his task, we as a community need to develop the resources that would allow us
to perform meaningful experiments comparing different tools:

– Create a library of ontologies covering similar domains. Many ontologies in
the DAML ontology library can serve this purpose.

– Manually define mapping between concepts in these ontologies to create
consensus benchmark ontologies. Ideally, get the authors of the original on-
tologies involved in the process of creating mappings.

– Define formal metrics for comparing the distance between ontologies, allow-
ing experimenters to compare the ontologies produced by participants to one
another and to the benchmark ontology.

– Define experimental protocols with fixed controls that will make the results
of different evaluations comparable.

Our evaluation of PROMPT produced one pair of ontologies that could be
used in the library of ontologies for other experiments. Also, since PROMPT is
an interactive tool and human experts validate the merged ontologies, we have a
set of benchmark ontologies that result from merging the two source ontologies.
However, these ontologies differ significantly, which means that there may not be

12

a single “correct” merged ontology. Our evaluation has also produced an initial
metric for comparing ontologies resulting from different experiments. All these
resources will be useful in a more general evaluation comparing the performance
of different ontology-mapping tools.

In addition to developing these resources, we need to answer many research
questions. These questions include but are not limited to the following questions:

– Which pragmatic criteria are most helpful to users in finding the best tool
for their task?

– For the ontologies in the repository, how to we develop a benchmark ontol-
ogy? Does this ”gold standard” mapping even exist for many of the ontolo-
gies?

– How do we measure how close to the gold standard is the analysis that the
tools produce?

– Can we use some of the metric and analysis approaches that are being de-
veloped for evaluating ontologies themselves in our evaluation of ontologies
resulting from the tool’s analyses?

5 Acknowledgments

We would like to thank Monica Crubézy for her thoughtful comments on the
paper. We are very grateful to the students at Stanford Medical Informatics
who participated in the experiment. The National Cancer Institute provided the
funding for our work on ontology merging and management.

References

1. J.C. Arṕırez, O. Corcho, M. Fernández-López, and A. Gómez-Pérez. WebODE:
a scalable workbench for ontological engineering. In KCAP-01, Victoria, Canada,
2001.

2. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OILEd: a reason-able ontol-
ogy editor for the semantic web. In KI2001, Joint German/Austrian conference
on Artificial Intelligence, volume LNAI Vol. 2174, pages 396–408, Vienna, 2001.
Springer-Verlag LNAI Vol. 2174.

3. P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. Model management: Managing
complex information structures. SIGMOD Record, 29(4):55–63, 2000.

4. DAML. DAML ontology library, 2001.
5. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between

ontologies on the semantic web. In The Eleventh International WWW Conference,
Hawaii, US, 2002.

6. A. J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa, and V. R. Benjamins. Won-
dertools? a comparative study of ontological engineering tools. International Jour-
nal of Human-Computer Studies, 52(6):1111–1133, 2000.

7. A. Farquhar, R. Fikes, and J. Rice. The Ontolingua server: a tool for collabora-
tive ontology construction. In Tenth Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Canada, 1996.

13

8. N. Guarino and C. Welty. Ontological analysis of taxonomic relationships. In
A. Laender and V. Storey, editors, ER-2000: The 19th International Conference
on Conceptual Modeling. Springer-Verlag, 2000.

9. M. Klein. Combining and relating ontologies: an analysis of problems and solutions.
In IJCAI-2001 Workshop on Ontologies and Information Sharing, pages 53–62,
Seattle, WA, 2001.

10. J. Madhavan, P. A. Bernstein, P. Domingos, and A. Halevy. Representing and
reasoning about mappings between domain models. In Eighteenth National Con-
ference on Artificial Intelligence (AAAI’2002), Edmonton, Canada., 2002.

11. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh
International Conference (KR2000). Morgan Kaufmann Publishers, San Francisco,
CA, 2000.

12. E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER: An ap-
proach for query processing in global information systems based on interoperation
across pre-existing ontologies. Distributed and Parallel Databases—An Interna-
tional Journal, 8(2), 2000.

13. P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented model for articulation
of ontology interdependencies. In Proceedings Conference on Extending Database
Technology 2000 (EDBT’2000), Konstanz, Germany, 2000.

14. N. F. Noy and M. A. Musen. Anchor-PROMPT: Using non-local context for se-
mantic matching. In Workshop on Ontologies and Information Sharing at the Sev-
enteenth International Joint Conference on Artificial Intelligence (IJCAI-2001),
Seattle, WA, 2001.

15. N. F. Noy and M. A. Musen. PromptDiff: A fixed-point algorithm for comparing
ontology versions. In Eighteenth National Conference on Artificial Intelligence
(AAAI-2002), Edmonton, Alberta, 2002.

16. N.F. Noy and M.A. Musen. PROMPT: Algorithm and tool for automated on-
tology merging and alignment. In Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), Austin, TX, 2000.

17. Protege. The Protégé project, http://protege.stanford.edu, 2002.
18. G. Stumme and A. Mädche. FCA-Merge: Bottom-up merging of ontologies. In

7th Intl. Conf. on Artificial Intelligence (IJCAI ’01), pages 225–230, Seattle, WA,
2001.

19. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
Collaborative ontology engineering for the semantic web. In International Semantic
Web Conference 2002 (ISWC 2002), Sardinia, Italia, 2002.

14

� � � � � 	 �
 � �� � �� � � � � � � � � � � � � 	 �
 � � � � �

" # % ') + - / 1 3 ' 6 8 : < + ? 3 @ A < 1 ' - @ ? + F 3 + 6 8 + 1 I A < 1 ' K # L + M @ I @ N

O P Q S U W X Y Z \ ^ Y ` a c eY \ f a g h Q ^ a k f a g ` m o Y U g Q ^ g q Y \ ^ W X Y s \ c u Z \ w W Q q yg ^ a f g
Z \ | ^ a ^ S ^ W ~ S U Y Q a W Q � yY f \ a f W

h � u � W � a | f W � g a | m � � � � � � � � � a | � W g m � W Q ^ S c g `
� �

¢ � ¢ £ Z ¤ s ~ ¥ � Z o § Z ~ � � ~ U W ª Y \ � g \ c S g c Y ~ ¬ | ^ Y q | � g � W Q g ^ W Q ¬
� S g h ` � Y | � Y X W ` � m � � � � � � ® � � a | � W g m � W Q ^ S c g `

� ¯ � ° � � ± � ² � � � � � � ° � � ³ ´ � � � �

µ ¶ · ¸ ¹ º » ¸ ¼ � ½ Y Q Y a | g ` Q Y g X ¬ g f W \ | a X Y Q g � ` Y \ S q � Y Q W w W \ ^ W ` W c ¬ � � g | Y X
^ W W ` | u Z \ W Q X Y Q ^ W � Y ^ ^ Y Q f ½ W W | Y ^ ½ Y g U U Q W U Q a g ^ Y ^ W W ` g \ X ^ W � Y ^ ^ Y Q S | Y
a ^ | f g U g � a ` a ^ a Y | m ^ W W ` | \ Y Y X ^ W � Y f W q U g Q Y X g \ X ^ ½ Y Y Á U Y Q a Y \ f Y | a \ S | a \ c
^ ½ Y q | ½ W S ` X � Y | ½ g Q Y X u Ã Y ½ g � Y � Y Y \ S | a \ c � Q W ^ yY c yY � ® � � � a \ g \ W \ ^ W ` W c ¬
Q Y S | Y Y Á U Y Q a Y \ f Y u Z \ ^ ½ a | f g | Y m Å Y Q Y S | Y X g \ W \ ^ W ` W c ¬ ª Y U ^ a \ ^ ½ Y Ç \ �
^ W ` a \ c S g ~ Y Q � Y Q ` a � Q g Q ¬ u Z \ ^ ½ a | g Q ^ a f ` Y m Å Y Q Y U W Q ^ W S Q Y Á U Y Q a Y \ f Y a \ S | a \ c
^ ½ Y a q U W Q ^ ^ Q g \ | ` g ^ W Q | w W Q Ç È É ¥ g \ X ^ ½ Y | S U U W Q ^ U Q W � a X Y X � ¬ ^ ½ Y ^ W W `
a \ Q Y � a | a W \ § Y Á ^ Y \ | a W \ U Q W f Y | | Y | u � ½ Y g \ g ` ¬ | a | U Q W � a X Y X a \ ^ ½ a | g Q ^ a f ` Y a |
w Q W q g \ S | Y Q U W a \ ^ W w � a Y Å u

Ì Í Î Ï Ð Ñ Ò Ó Ô Ï Õ Ñ Î Ö Î Ò Ø Ñ Ï Õ Û Ö Ï Õ Ñ Î

Ü Ý @ ? @ / Þ + F ? @ + I à + á ' 1 Þ / I @ ? + â F @ 1 < M â @ ? ' ã ' 1 3 ' F ' ä à å â + Þ @ I 3 ' ' F Þ # æ 3 3 Ý / Þ M ' M @ 1 3
3 Ý @ Þ @ 3 ' ' F Þ + ? @ + 3 3 ? + á 3 / 1 ä + 1 / 1 á ? @ + Þ / 1 ä 1 < M â @ ? ' ã 1 @ ç < Þ @ ? Þ ' ã + F F è / 1 I Þ 8 ã ? ' M
1 + / é @ < Þ @ ? Þ 3 ' ê ' ç @ ? < Þ @ ? Þ # æ Þ M ' ? @ 3 ' ' F Þ â @ á ' M @ + é + / F + â F @ 8 3 Ý @ ê ? ' â F @ M ' ã / 1 3 @ ? å
' ê @ ? + â / F / 3 à â @ 3 ç @ @ 1 I / ì @ ? @ 1 3 3 ' ' F Þ â @ á ' M @ Þ M ' ? @ / M ê ' ? 3 + 1 3 # : / ì @ ? @ 1 3 3 ' ' F Þ ç / F F
â @ á ' M â / 1 @ I / 1 I / ì @ ? @ 1 3 ç + à Þ 3 ' Þ < ê ê ' ? 3 é + ? / @ I + 1 I / 1 á ? @ + Þ / 1 ä F à M ' ? @ á ' M ê F @ í
' 1 3 ' F ' ä à ? @ F + 3 @ I ê ? ' á @ Þ Þ @ Þ # î ' ? / 1 Þ 3 + 1 á @ 8 ' 1 @ M + à / M ê ' ? 3 + 1 ' 1 3 ' F ' ä à + é + / F + â F @ / 1
3 Ý @ F / â ? + ? à ' ã + ê + ? 3 / á < F + ? ' 1 3 ' F ' ä à â < / F I / 1 ä @ 1 é / ? ' 1 M @ 1 3 / 1 3 ' + 1 ' 3 Ý @ ? ' 1 3 ' F ' ä à
â < / F I / 1 ä @ 1 é / ? ' 1 M @ 1 3 + 1 I @ í 3 @ 1 I 3 Ý @ / M ê ' ? 3 @ I ' 1 3 ' F ' ä à ç / 3 Ý M ' ? @ è 1 ' ç F @ I ä @ #
Ü Ý @ ? @ Þ < F 3 / 1 ä ' 1 3 ' F ' ä à M + à 3 Ý @ 1 â @ 3 ? + 1 Þ F + 3 @ I / 1 3 ' + 1 ' 3 Ý @ ? è 1 ' ç F @ I ä @ ? @ ê ? @ Þ @ 1 å

3 + 3 / ' 1 F + 1 ä < + ä @ + 1 I / 1 3 ? ' I < á @ I / 1 + 1 @ é + F < + 3 / ' 1 3 ' ' F #
ï 1 ' ? I @ ? 3 ' â @ 3 3 @ ? á Ý ' ' Þ @ 3 Ý @ + ê ê ? ' ê ? / + 3 @ 3 ' ' F + 1 I 3 ' â @ 3 3 @ ? < Þ @ / 3 Þ á + ê + å

â / F / 3 / @ Þ 8 3 ' ' F Þ 1 @ @ I 3 ' â @ á ' M ê + ? @ I + 1 I 3 Ý @ @ í ê @ ? / @ 1 á @ Þ / 1 < Þ / 1 ä 3 Ý @ M Þ Ý ' < F I
â @ Þ Ý + ? @ I # Ü Ý / Þ + 1 + F à Þ / Þ Ý + Þ ä ' 3 3 ' â @ ê @ ? ã ' ? M @ I / 1 M < á Ý M ' ? @ I @ 3 + / F 3 Ý + 1 +
â ? ' á Ý < ? @ å F / è @ á ' F F @ á 3 / ' 1 ' ã ã @ + 3 < ? @ Þ 8 Þ ê @ á / + F F à ã ' ? ê ' ç @ ? < Þ @ ? Þ # Ü Ý + 3 / Þ 8 ç @ M < Þ 3
è 1 ' ç 3 Ý @ F / M / 3 Þ ' ã + é + / F + â F @ 3 @ á Ý 1 ' F ' ä à #

ó @ Ý + é @ â @ @ 1 < Þ / 1 ä - ? ' 3 ô@ ä ô@ å õ ö ö ö ÷ ø ù 3 ' â < / F I + 1 ' 1 3 ' F ' ä à # ï 1 3 Ý / Þ á + Þ @ 8 3 Ý @
' 1 3 ' F ' ä à ç + Þ â < / F 3 3 Ý ? ' < ä Ý + ? @ < Þ @ ê ? ' á @ Þ Þ # ó @ ? @ < Þ @ I + 1 ' 1 3 ' F ' ä à è @ ê 3 / 1 3 Ý @

ú 1 3 ' F / 1 ä < + % @ ? é @ ? F / â ? + ? à ÷ û ù # ï 1 3 Ý / Þ + ? 3 / á F @ 8 ç @ ? @ ê ' ? 3 ' < ? @ í ê @ ? / @ 1 á @ / 1 < Þ / 1 ä
3 Ý @ / M ê ' ? 3 3 ? + 1 Þ F + 3 ' ? Þ ã ' ? ú ü ý þ ÷ õ ù ' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö + 1 I 3 Ý @ Þ < ê ê ' ? 3 ê ? ' é / I @ I
â à 3 Ý / Þ 3 ' ' F / 1 ? @ < Þ @ ê ? ' á @ Þ Þ @ Þ #

15

ï 1 3 Ý / Þ + ? 3 / á F @ 8 ç @ â @ ä / 1 â à ? @ ã @ ? ? / 1 ä @ í / Þ 3 / 1 ä @ é + F < + 3 / ' 1 Þ 3 < I / @ Þ + â ' < 3 ' 1 3 ' F ' ä à å

â + Þ @ I 3 ' ' F Þ + 1 I 3 Ý @ / ? Þ Ý ' ? 3 á ' M / 1 ä Þ # Ü Ý @ 1 ç @ I @ Þ á ? / â @ 3 Ý @ á ' 1 3 @ í 3 ' ã ' < ? @ í ê @ å

? / @ 1 á @ + 1 I 3 Ý @ + á 3 < + F ? @ < Þ @ ê ? ' á @ Þ Þ 3 Ý + 3 ç + Þ ê @ ? ã ' ? M @ I < Þ / 1 ä - ? ' 3 ô@ ä ô@ å õ ö ö ö # ó @

I @ Þ á ? / â @ 3 Ý @ ê ? ' â F @ M Þ + 1 I Þ 3 ? ' 1 ä ê ' / 1 3 Þ ' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö / 1 ' < ? á + Þ @ å Þ 3 < I à # î / å

1 + F F à 8 ç @ @ í ê F + / 1 3 Ý @ ? @ + Þ ' 1 Þ < 1 I @ ? F à / 1 ä 3 Ý @ Þ @ ê ? ' â F @ M Þ + 1 I + 1 + F à � @ ? @ F + 3 @ I

ç ' ? è #

� � Û Ö � Ó Ö Ï Õ Ñ Î Ñ � � Î Ï Ñ � Ñ � � � � Ö � � Ò � Ñ Ñ � �

Ü Ý @ ? @ + ? @ + F ? @ + I à Þ ' M @ Þ 3 < I / @ Þ @ é + F < + 3 / 1 ä ' 1 3 ' F ' ä à å â + Þ @ I 3 ' ' F Þ / 1 3 Ý @ F / 3 @ ? + 3 < ? @ 8

F / è @ ó ' 1 I @ ? Ü ' ' F Þ ÷ � ù + 1 I 3 Ý @ Þ < ? é @ à ' 1 ' 1 3 ' F ' ä à å â + Þ @ I 3 ' ' F Þ ' ã ú 1 3 ' ó @ â ÷ � ù #

ï 1 ÷ � ù + 1 @ é + F < + 3 / ' 1 ã ? + M @ ç ' ? è / Þ ê ? ' ê ' Þ @ I + 1 I + á ' M ê + ? + 3 / é @ Þ 3 < I à ' ã

Þ @ é @ ? + F ' 1 3 ' F ' ä à å â < / F I / 1 ä 3 ' ' F Þ ç + Þ M + I @ # Ü Ý / Þ ç + Þ 3 Ý @) ? Þ 3 Þ à Þ 3 @ M + 3 / á @ é + F å

< + 3 / ' 1 � á ' M ê + ? / Þ ' 1 Þ 3 < I à ' ã ' 1 3 ' F ' ä à å â + Þ @ I 3 ' ' F Þ 8 M ' ? @ ê ? @ á / Þ @ F à ' ã ' 1 3 ' F ' ä à

â < / F I / 1 ä 3 ' ' F Þ # " ' ç @ é @ ? 8 ' 1 @ / M ê ' ? 3 + 1 3 I / M @ 1 Þ / ' 1 3 Ý + 3 / Þ 1 ' 3 + 1 + F à � @ I â à 3 Ý / Þ

ã ? + M @ ç ' ? è / Þ 3 Ý @ Þ 3 < I à ' ã 3 Ý @ / 1 3 @ ? ' ê @ ? + â / F / 3 à â @ 3 ç @ @ 1 3 Ý @ I / ì @ ? @ 1 3 3 ' ' F Þ # î ' ?

/ 1 Þ 3 + 1 á @ 8 3 Ý @ @ í / Þ 3 @ 1 á @ ' ã / M ê ' ? 3 � @ í ê ' ? 3 3 ? + 1 Þ F + 3 ' ? Þ / Þ 1 ' 3 + 1 + F à � @ I #

ï 1 ÷ � ù + ä @ 1 @ ? + F Þ < ? é @ à ' ã ' 1 3 ' F ' ä à å â + Þ @ I 3 ' ' F Þ / Þ ê ? @ Þ @ 1 3 @ I 8 1 + M @ F à ã ' ? ' 1 3 ' F å

' ä à â < / F I / 1 ä 8 M @ ? ä @ 8 @ é + F < + 3 / ' 1 8 + 1 1 ' 3 + 3 / ' 1 8 + 1 I Þ 3 ' ? + ä @ + 1 I � < @ ? à 3 ' ' F Þ # Ü Ý / Þ

Þ < ? é @ à ê ? ' ê ' Þ @ Þ + 1 @ é + F < + 3 / ' 1 ã ? + M @ ç ' ? è ã ' ? @ + á Ý è / 1 I ' ã 3 ' ' F 8 + 1 I á ' M ê + ? @ Þ

@ + á Ý 3 ' ' F + ä + / 1 Þ 3 3 Ý @ á ' ? ? @ Þ ê ' 1 I / 1 ä ã ? + M @ ç ' ? è # æ F 3 Ý ' < ä Ý 3 Ý / Þ Þ < ? é @ à ê ? ' é / I @ Þ

+ 1 @ é + F < + 3 / ' 1 ' ã @ + á Ý è / 1 I ' ã 3 ' ' F 8 3 Ý @ / 1 3 @ ? ' ê @ ? + â / F / 3 à â @ 3 ç @ @ 1 I / ì @ ? @ 1 3 3 ' ' F Þ

/ Þ 1 ' 3 + 1 + F à � @ I / 1 I @ 3 + / F # î ' ? / 1 Þ 3 + 1 á @ 8 3 Ý @ F / M / 3 + 3 / ' 1 Þ ' ã á < ? ? @ 1 3 3 ? + 1 Þ F + 3 ' ? Þ + ? @

1 ' 3 + 1 + F à � @ I #

� � Ñ Î Ï � ! Ï Ñ � Ï # � � ! (� Ð Õ + � Î Ï

ó @ + ? @ / 1 é ' F é @ I / 1 3 Ý @ I @ é @ F ' ê M @ 1 3 ' ã ' 1 3 ' F ' ä / @ Þ 3 ' â @ < Þ @ I / 1 + A + 3 < ? + F - + 1 å

ä < + ä @ I / + F ' ä < @ Þ à Þ 3 @ M # Ü Ý / Þ I / + F ' ä < @ Þ à Þ 3 @ M / Þ 3 ' â @ ê F + á @ I / 1 + â < Þ 3 @ ? M / 1 + F 8 + Þ

+ 3 / á è @ 3 å é @ 1 I / 1 ä � / 1 ã ' ? M + 3 / ' 1 M + á Ý / 1 @ # æ 1 / M ê ' ? 3 + 1 3 ? @ � < / ? @ M @ 1 3 ' ã 3 Ý / Þ + ê ê F / á + å

3 / ' 1 / Þ 3 Ý + 3 3 Ý @ F + 1 ä < + ä @ M < Þ 3 â @ - ' ? 3 < ä < @ Þ @ 1 + F 3 Ý ' < ä Ý 3 Ý @ á ' 1 á @ ê 3 Þ ? @ ê ? @ Þ @ 1 3 @ I

/ 1 + 1 ' 1 3 ' F ' ä à + ? @ 8 / 1 ä @ 1 @ ? + F 8 F + 1 ä < + ä @ / 1 I @ ê @ 1 I @ 1 3 8 3 3 Ý @ 3 @ ? M Þ < Þ @ I 3 ' ? @ ã @ ?

3 ' 3 Ý ' Þ @ á ' 1 á @ ê 3 Þ + ? @ 1 ' 3 4 # Ü Ý @ á ' 1 Þ 3 ? < á 3 / ' 1 ' ã 3 Ý / Þ ' 1 3 ' F ' ä à ç / F F / 1 é ' F é @ Þ @ é @ ? + F

Þ < â ' 1 3 ' F ' ä / @ Þ / 1 I / ì @ ? @ 1 3 I ' M + / 1 Þ ? @ F + 3 @ I 3 ' 3 ? + é @ F / 1 ä 8 ã ' ? / 1 Þ 3 + 1 á @ á ' M M @ ? á / + F

3 ? + 1 Þ + á 3 / ' 1 Þ 1 â < à / 1 ä + 1 I Þ @ F F / 1 ä 4 8 ä @ ' ä ? + ê Ý / á + F / 1 ã ' ? M + 3 / ' 1 + 1 I 3 / M @ #

ó @ â @ ä + 1 3 Ý @ I @ é @ F ' ê M @ 1 3 ' ã 3 Ý / Þ ' 1 3 ' F ' ä à ç / 3 Ý 3 Ý @ Þ < â ' 1 3 ' F ' ä à ' ã 3 / M @ # ú 1 @

' ã 3 Ý @ ? @ � < / ? @ M @ 1 3 Þ 3 Ý + 3 ç + Þ + å ê ? / ' ? / / M ê ' Þ @ I ç + Þ 3 Ý + 3 3 Ý @ ' 1 3 ' F ' ä / @ Þ Þ Ý ' < F I â @

I @ é @ F ' ê @ I / 1 + F ' á + F F à / 1 Þ 3 + F F @ I 3 ' ' F # Ü Ý @ ? @ ã ' ? @ 8 3 Ý @ 3 ' ' F 3 Ý + 3 ç + Þ á Ý ' Þ @ 1 ç + Þ

- ? ' 3 ô@ ä ô@ å õ ö ö ö #

6 Z \ � W Q ^ S c S Y | Y ^ ½ Y Q Y a | g f W \ f Y U ^ ^ ½ g ^ k \ X | \ W U g Q g ` ` Y ` a \ W ^ ½ Y Q ` g \ c S g c Y | 7 9 ~ g S X g X Y ; m

Å ½ a f ½ a | g ª a \ X W w \ W | ^ g ` c a g m ½ W q Y | a f ª m a | g c Y \ S a \ Y � W Q ^ S c S Y | Y f W \ f Y U ^ u

16

� � � � Ó � � � Ð Ñ Ô � � � Õ Î � Ð Ñ Ï �� � �� � �

Ü Ý @ â < / F I / 1 ä ê ? ' á @ Þ Þ ' ã 3 Ý @ ' 1 3 ' F ' ä à ' ã 3 / M @ Ý + Þ + F ? @ + I à ç @ 1 3 3 Ý ? ' < ä Ý Þ @ é @ ? + F

Þ 3 + ä @ Þ # ï 1 î / ä # � ç @ ? @ ê ? @ Þ @ 1 3 ê + ? 3 ' ã 3 Ý / Þ ê ? ' á @ Þ Þ # Ü Ý @ + á 3 / é / 3 / @ Þ ê @ ? ã ' ? M @ I ç / 3 Ý

- ? ' 3 ô@ ä ô@ å õ ö ö ö + ? @ Þ Ý + I ' ç @ I #

� � � � � � � � � � � ! � � $ % ! (* , Ü ' â < / F I ' < ? ' 1 3 ' F ' ä à 8 ç @ ? @ < Þ @ I 3 Ý @ % / M ê F @ å Ü / M @

' 1 3 ' F ' ä à . ã ? ' M 3 Ý @ ú 1 3 ' F / 1 ä < + % @ ? é @ ? # ó @ < Þ @ I 3 Ý @ ú ü ý þ 3 + â ê F < ä å / 1 0 3 '

/ M ê ' ? 3 3 Ý @ ' 1 3 ' F ' ä à / 1 3 ' - ? ' 3 ô@ ä ô@ å õ ö ö ö #

1 ! , $ 3 5 % 5 7 % : ; ! � % = > , � % � ! � � � % 5 5 % ! (, ! : � % 5 � $, > ; : G ! � I $; : (; ý @ ã ' ? @ ê @ ? å

ã ' ? M / 1 ä 3 Ý @ + 1 + F à Þ / Þ 8 ç @ Ý + I + F ? @ + I à + ê ê F / @ I + M + 1 < + F ? @ @ 1 ä / 1 @ @ ? / 1 ä ÷ � ù

ê ? ' á @ Þ Þ 3 ' 3 Ý @ Þ ' < ? á @ á ' I @ # Ü Ý @ ? @ Þ < F 3 ' ã 3 Ý / Þ ê ? ' á @ Þ Þ ç + Þ ' 1 @ ê ' Þ Þ / â F @

á ' 1 á @ ê 3 < + F M ' I @ F ã ' ? ú 1 3 ' F / 1 ä < + K Þ % / M ê F @ å Ü / M @ ' 1 3 ' F ' ä à # æ 3 3 Ý / Þ Þ 3 + ä @ 8 ç @

á ' M ê + ? @ I 3 Ý / Þ M ' I @ F ç / 3 Ý 3 Ý @ 3 ? + 1 Þ F + 3 @ I é @ ? Þ / ' 1 ' ã 3 Ý @ ' 1 3 ' F ' ä à # ó @ ã ' < 1 I

3 Ý + 3 3 Ý @ 3 ? + 1 Þ F + 3 / ' 1 ê ? ' á @ Þ Þ ê ? ' é / I @ I 3 Ý @ 3 + í ' 1 ' M / á Ý / @ ? + ? á Ý à ' ã á ' 1 á @ ê 3 Þ

1 á F + Þ Þ @ Þ L / 1 Þ 3 + 1 á @ Þ 4 # " ' ç @ é @ ? 8 / 3 I / I 1 ' 3 3 ? + 1 Þ F + 3 @ + F F ú 1 3 ' F / 1 ä < + ã < 1 á 3 / ' 1 Þ

+ 1 I / 3 I / I 1 ' 3 3 ? + 1 Þ F + 3 @ + 1 à ? @ F + 3 / ' 1 ' ? + í / ' M + 3 / á I @) 1 / 3 / ' 1 # L ' ? @ ' é @ ? 8 Þ ' M @

ã < 1 á 3 / ' 1 Þ ç @ ? @ M / Þ ê F + á @ I #

N ; P % 5 % � ! 7 � ; , � � , ! (; � ; ! � , ! : ; U � ; ! 5 % � ! � � G ! � I $; : (; Ü Ý @ è 1 ' ç F @ I ä @ ç @

ã ' < 1 I M / Þ ê F + á @ I / 1 3 Ý @ ' 1 3 ' F ' ä à ç + Þ ? @ F ' á + 3 @ I # ï 1 ç Ý + 3 á ' 1 á @ ? 1 Þ M / Þ Þ / 1 ä

è 1 ' ç F @ I ä @ 8 ç @ / 1 3 ? ' I < á @ I 3 Ý @ ? @ F + 3 / ' 1 Þ + 1 I ã < 1 á 3 / ' 1 Þ # î ' F F ' ç / 1 ä 3 Ý @ ä < / I @ å

F / 1 @ Þ ê ? ' é / I @ I / 1 3 Ý @ I ' á < M @ 1 3 + 3 / ' 1 ' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö 8 ç @ F @ ã 3 3 Ý @ / 1 3 ? ' I < á 3 / ' 1

' ã + í / ' M Þ ã ' ? + F + 3 @ ? Þ 3 + ä @ #

1 ! , $ 3 5 % 5 7 � ; > Y ! % > , $; P , $ * , � % � ! � � 5 � * � > ; � ! � � $ � (3 " + é / 1 ä 3 Ý @ 3 + í ' 1 ' M à 8

? @ F + 3 / ' 1 Þ + 1 I ã < 1 á 3 / ' 1 Þ 8 ç @ @ é + F < + 3 @ I 3 Ý @ % / M ê F @ å Ü / M @ ' 1 3 ' F ' ä à / 1 3 Ý @ ú 1 å

3 ' F / 1 ä < + % @ ? é @ ? + á á ' ? I / 1 ä 3 ' 3 Ý @ á ? / 3 @ ? / + ê ? ' ê ' Þ @ I / 1 ÷] ù # î ' ? 3 Ý + 3 ç @ < Þ @ I

â ' 3 Ý 3 Ý @ Þ ' < ? á @ á ' I @ + 1 I 3 Ý @ á ' 1 á @ ê 3 < + F M ' I @ F # Ü Ý @ ? @ + Þ ' 1 Þ ç Ý à ç @ < Þ @ I

â ' 3 Ý ç @ ? @ ^ 1 � 4 / ã ç @ ' 1 F à < Þ @ 3 Ý @ á ' 1 á @ ê 3 < + F M ' I @ F ç @ + ? @ 1 ' 3 + â F @ 3 ' + 1 + å

F à � @ 3 Ý @ Þ à 1 3 + á 3 / á + F @ ? ? ' ? Þ ` 1 F + 1 ä < + ä @ á ' 1 ã ' ? M / 3 à 4 + 1 I 1 õ 4 / ã ç @ ' 1 F à < Þ @ 3 Ý @

Þ ' < ? á @ á ' I @ ç @ F ' ' Þ @ 3 Ý @ ' é @ ? + F F ê @ ? Þ ê @ á 3 / é @ ' ã 3 Ý @ ' 1 3 ' F ' ä à ç Ý / á Ý / Þ á ? < á / + F

3 ' ê @ ? ã ' ? M + 3 Ý ' ? ' < ä Ý + 1 + F à Þ / Þ # b
N ; P % 5 % � ! 7 c � � � ; > � % � ! f g , � * � , $ h , ! (* , (; i � , ! 5 $, � % � ! , ! : k U � ; ! 5 % � !

Ü Ý @ ê ? ' â F @ M Þ ã ' < 1 I / 1 3 Ý @ Þ ' < ? á @ ' 1 3 ' F ' ä à ç @ ? @ á ' ? ? @ á 3 @ I / 1 3 Ý @ é @ ? Þ / ' 1

è @ ê 3 / 1 - ? ' 3 ô@ ä ô@ å õ ö ö ö # Ü Ý @ 1 ç @ 3 ? + 1 Þ F + 3 @ I + F F 3 Ý @ 1 + M @ Þ ' ã 3 Ý @ è 1 ' ç F @ I ä @

ê / @ á @ Þ ? @ ê ? @ Þ @ 1 3 @ I / 1 3 Ý @ ' 1 3 ' F ' ä à / 1 3 ' - ' ? 3 < ä < @ Þ @ # î / 1 + F F à 8 3 Ý @ + í / ' M Þ ç @ ? @

+ I I @ I 3 ' ' < ? ' 1 3 ' F ' ä à < Þ / 1 ä - ? ' 3 ô@ ä ô@ æ í / ' M - + 1 ä < + ä @ 1 - æ - 4 # L ' ? @ ' é @ ? 8

Þ ' M @ á ' 1 á @ ê 3 Þ 8 3 Ý + 3 + ? @ 1 @ @ I @ I 3 ' I @ Þ á ? / â @ 3 Ý @ 3 / M @ I ' M + / 1 ã ' ? ' < ? ê + ? 3 / á < F + ?

+ ê ê F / á + 3 / ' 1 8 ç @ ? @ + I I @ I # l î ' ? / 1 Þ 3 + 1 á @ 8 Ý + F ã + 1 Ý ' < ? #

m Z ^ X Y k \ Y | � � f ` g | | Y | m ® � � a \ | ^ g \ f Y | m � n Q Y ` g ^ a W \ | g \ X � � w S \ f ^ a W \ | u

p q � � s t t � � � � � � � � � � ° � � � � � � � � t � � � � ° � t � v w ³ � � w t � v w ³ x � � w � q � ² �
y £ W Q a \ | ^ g \ f Y m ^ ½ Y � z � � � � Q Y ` g ^ a W \ a \ Ç \ ^ W ` a \ c S g a | X Y k \ Y X w W Q � W ^ ½ � � ² � ´ � � ° � |

g \ X � � ² � ´ � � ° � � | { U W ` ¬ q W Q U ½ a f Q Y k \ Y q Y \ ^ | u ~ W Å Y � Y Q m ^ ½ Y Q Y a | g \ Y Q Q W Q m | a \ f Y ^ ½ Y

X Y k \ a ^ a W \ w W Q � � ² � ´ � � ° � � | a \ ^ Q W X S f Y | ^ Å W � g Q a g � ` Y | ^ ½ g ^ g Q Y \ W ^ X Y f ` g Q Y X u

� £ W Q a \ | ^ g \ f Y m Å a ^ ½ W S ^ ^ ½ Y f W \ f Y U ^ S g ` q W X Y ` m Å Y f W S ` X q a | | ^ ½ Y w g f ^ ^ ½ g ^ w S \ f ^ a W \ |

² � ° � q ´ � � g \ X ² � ° � q ´ ° � ² � ´ � � g Q Y ^ ½ Y | g q Y w S \ f ^ a W \ u

� � ½ Y X Y | f Q a U ^ a W \ W w ^ ½ Y Q Y � S a Q Y q Y \ ^ | U Y f a k f g ^ a W \ U Y Q w W Q q Y X a \ ^ ½ a | X Y � Y ` W U q Y \ ^ U Q W �

f Y | | a | W S ^ W w ^ ½ Y | f W U Y W w ^ ½ a | U g U Y Q u

17

Reengineering

Import Simple−Time

Protege−2000

Download Source

Analysis

Analysis

Protege−2000

Simple−Time
taxonomy

Rearrangement &

Protege−2000

Protege−2000

Correction,

Export to OKBC

Protege−2000

relations/functions

Simple−Time
taxonomy

Possible
Conceptual Model

Document:Evaluation

Missing & Misplaced

Knowledge

Source Code

2

3

Ontolingua Server

Ontolingua Server

1

NL expressions
axioms

Protege−2000

relations/functions

Simple−Time
taxonomy

7

Evaluation

Technical Evaluation

Document:

OKBC Code

...

...

Extension

6

8

Natural Language Translation &

Extension

Ontolingua Server

5

4

� � � ¼ � ¼ É S a ` X a \ c U Q W f Y | |

ï 1 3 Ý @ ã ' F F ' ç / 1 ä Þ @ á 3 / ' 1 Þ ç @ + 1 + F à
�

@ 3 Ý @ < Þ @ ' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö 3 ' ê @ ? ã ' ? M

3 Ý / Þ ê ? ' á @ Þ Þ # Ü Ý @ ã ' á < Þ / Þ ê F + á @ I ' 1 3 Ý @ + I é + 1 3 + ä @ Þ + 1 I I / Þ + I é + 1 3 + ä @ Þ ' ã < Þ å

/ 1 ä - ? ' 3 ô@ ä ô@ å õ ö ö ö 3 ' â < / F I ' < ? 3 / M @ ' 1 3 ' F ' ä à # % / 1 á @ 3 Ý @ 3 ' ' F ç + Þ 1 ' 3 < Þ @ I / 1 3 Ý @

+ 1 + F à Þ @ Þ Þ 3 + ä @ Þ ' ã 3 Ý / Þ ê ? ' á @ Þ Þ 8 ç @ ç / F F 1 ' 3 + I I ? @ Þ Þ 3 Ý @ M / 1 3 Ý / Þ ê + ê @ ? #

� �
 � � �
 $; � 5 , � � ; � � � � � � � % ! (� � � � � ! � � $ % ! (* ,

Ü ' / M ê ' ? 3 3 Ý @ % / M ê F @ å Ü / M @ ' 1 3 ' F ' ä à ã ? ' M 3 Ý @ ú 1 3 ' F / 1 ä < + % @ ? é @ ? 8 3 Ý @ ú ü ý þ

3 + â ê F < ä å / 1 ç + Þ < Þ @ I # ó @ ã ' < 1 I 3 Ý + 3 ê + ? 3 ' ã 3 Ý @ è 1 ' ç F @ I ä @ ? @ ê ? @ Þ @ 1 3 @ I / 1 3 Ý @

Þ ' < ? á @ ' 1 3 ' F ' ä à + 1 I / M ê ' ? 3 @ I < Þ / 1 ä 3 Ý / Þ 3 ? + 1 Þ F + 3 ' ? ç + Þ F ' Þ 3 #

þ ' M ê + ? / 1 ä 3 Ý @ I @) 1 / 3 / ' 1 Þ ' ã 3 Ý @ Þ + M @ á ' 1 á @ ê 3 Þ + ã 3 @ ? < Þ / 1 ä ú 1 3 ' F / 1 ä < + K Þ @ í å

ê ' ? 3 3 ? + 1 Þ F + 3 ' ? + 1 I + ã 3 @ ? < Þ / 1 ä - ? ' 3 ô@ ä ô@ å õ ö ö ö / M ê ' ? 3 3 ? + 1 Þ F + 3 ' ? ç @ á + 1 Þ @ @ 3 Ý + 3

3 Ý @ ? @ + ? @ / M ê ' ? 3 + 1 3 I / ì @ ? @ 1 á @ Þ # Ü + è @ 8 ã ' ? / 1 Þ 3 + 1 á @ 8 3 Ý @ I @) 1 / 3 / ' 1 ' ã 3 Ý @ � � � � �

18

� � � � � 	 � � � � � � � � � 	 � � � � � � � � � � � � � � 	 � � � � � � � � � � � � 	 � � � " #
$ � � � � � � � 	 � � � � � � � � � � 	 � � � � � 	 � � � � � (� � � � � � � � � � � � � � � � 	 � � � � � � � � � � 	 � � � " � � � � � � + $

- � � � � � � � � / 0 1 � � � � / 	 � � 3 � � � � 4 � � � � � � � � � 	 � � � � #
� 6 � � � � � 3 � � � � 4 � � � � � � � � � 	 � � � " # # #

� � � ¼ 9 ¼ o Y k \ a ^ a W \ W w Q Y ` g ^ a W \ ± � � � � a \ Ç \ ^ W ` a \ c S g

? @ F + 3 / ' 1 / 1 ú 1 3 ' F / 1 ä < + 8 î / ä # õ # Ü Ý @ ú 1 3 ' F / 1 ä < + ú ü ý þ @ í ê ' ? 3 3 ? + 1 Þ F + 3 ' ? ? @ ê ? @ å
Þ @ 1 3 @ I 3 Ý / Þ â / 1 + ? à ? @ F + 3 / ' 1 + Þ + Þ F ' 3 8 î / ä # � # " ' ç @ é @ ? 8 3 Ý @ ú ü ý þ / M ê ' ? 3 3 ? + 1 Þ F + å

3 ' ? ' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö F ' Þ 3 3 Ý / Þ ? @ F + 3 / ' 1 # % / 1 á @ + í / ' M Þ + ? @ ' < 3 Þ / I @ 3 Ý @ ú ü ý þ M ' I @ F 8
3 Ý @ + í / ' M Þ I @) 1 / 1 ä 3 Ý @ ? @ F + 3 / ' 1 Þ ç @ ? @ 1 ' 3 3 ? + 1 Þ F + 3 @ I 8 ã ' ? / 1 Þ 3 + 1 á @ 3 Ý @ + í / ' M Þ

I @) 1 / 1 ä 3 Ý @ ? @ F + 3 / ' 1 � � � � � #
æ F 3 Ý ' < ä Ý ' 1 @ á + 1 + ? ä < @ 3 Ý + 3 ? @ F + 3 / ' 1 Þ 1 + 1 I ã < 1 á 3 / ' 1 Þ 4 + ? @ + F Þ ' ' < 3 Þ / I @ 3 Ý @

ú ü ý þ è 1 ' ç F @ I ä @ M ' I @ F 8 ; 3 Ý @ Þ + M @ ê ? ' â F @ M Þ @ @ M @ I 3 ' + ì @ á 3 3 Ý @ 3 ? + 1 Þ F + 3 / ' 1 ' ã
Þ F ' 3 Þ # î ' ? / 1 Þ 3 + 1 á @ 8 ç @ 3 ? / @ I 3 ' / M ê ' ? 3 3 Ý @ æ ä @ 1 3 Þ ' 1 3 ' F ' ä à ã ? ' M 3 Ý @ ú 1 3 ' F / 1 ä < +
% @ ? é @ ? # Ü Ý @ < > � @ � á F + Þ Þ / Þ I @) 1 @ I + Þ + ã ? + M @ ç / 3 Ý + 3 @ M ê F + 3 @ Þ F ' 3 @ < C � # æ ã 3 @ ?

/ M ê ' ? 3 / 1 ä 3 Ý / Þ ' 1 3 ' F ' ä à / 1 3 ' - ? ' 3 ô@ ä ô@ å õ ö ö ö 8 + F F Þ F ' 3 Þ ç @ ? @ F ' Þ 3 #
% ' M @ ' ã 3 Ý @ ã < 1 á 3 / ' 1 Þ ç @ ? @ / M ê ' ? 3 @ I 8 â < 3 1 ' 3 + F F # î ' ? / 1 Þ 3 + 1 á @ 8 3 Ý @ ã < 1 á 3 / ' 1

E / 1 é ' F é / 1 ä � F C � I K M F @ � Þ 8 � F C � I P < @ > � Þ + 1 I Q S P < � F M @ Þ ç + Þ F ' Þ 3 # L ' ? @ ' é @ ? 8 3 Ý @
ã < 1 á 3 / ' 1 Þ 3 Ý + 3 ç @ ? @ / M ê ' ? 3 @ I 8 ç @ ? @ 1 ' 3 3 ? + 1 Þ F + 3 @ I + Þ @ í ê @ á 3 @ I # î ' ? / 1 Þ 3 + 1 á @ 8 3 Ý @
ã < 1 á 3 / ' 1 U � < P I M Y / Þ I @) 1 @ I / 1 3 Ý @ Þ ' < ? á @ ' 1 3 ' F ' ä à ç / 3 Ý I ' M + / 1 � F C � I K M F @ � #

" ' ç @ é @ ? 8 + ã 3 @ ? 3 Ý @ 3 ? + 1 Þ F + 3 / ' 1 8 3 Ý @ Þ F ' 3 3 Ý + 3 ç + Þ á ? @ + 3 @ I ç + Þ 1 ' 3 + 3 3 + á Ý @ I 3 ' 3 Ý @
� F C � I K M F @ � á F + Þ Þ # ï 3 ç + Þ ' 1 F à + 3 3 + á Ý @ I 3 ' 3 Ý @ á F + Þ Þ @ Þ Z < \ � @ Q < P I U � < P 8 Z < \ � @ Q < P I

I Q < � � + 1 I S @ F ` � P � < \ I � F C � I � K � Z # Ü Ý @ Þ @ á ' 1 á @ ê 3 Þ ç @ ? @ á Ý + ? + á 3 @ ? / � @ I / 1 3 Ý @ / ?
ú 1 3 ' F / 1 ä < + ÷ a ù I @) 1 / 3 / ' 1 Þ â à Ý + é / 1 ä ' 1 @ 1 b < � I M @ � 4 U � < P I M Y # L ' ? @ ' é @ ? 8 3 Ý @ M / 1 å

/ M < M á + ? I / 1 + F / 3 à á ' 1 Þ 3 ? + / 1 3 Þ ' ã 3 Ý @ Þ F ' 3 Þ á ' ? ? @ Þ ê ' 1 I / 1 ä 3 ' 3 Ý @ Þ @ ã < 1 á 3 / ' 1 Þ ç @ ? @
F ' Þ 3 #

% < M M + ? / � / 1 ä 8 3 Ý @ ê ? ' â F @ M Þ ç @ ã ' < 1 I / 1 3 Ý @ 3 ? + 1 Þ F + 3 / ' 1 ' ã 3 Ý @ % / M ê F @ å Ü / M @
' 1 3 ' F ' ä à ç @ ? @ ^

d
æ F F è 1 ' ç F @ I ä @ ? @ ê ? @ Þ @ 1 3 @ I < Þ / 1 ä 3 Ý @ Q � Y F @ � I P � \ < � F M @ ê ? / M / 3 / é @ ç + Þ 1 ' 3

3 ? + 1 Þ F + 3 @ I 8 ã ' ? / 1 Þ 3 + 1 á @ 3 Ý @ ? @ F + 3 / ' 1 � � � � � #

d
% ' M @ ã < 1 á 3 / ' 1 Þ ç @ ? @ / M ê ' ? 3 @ I 8 â < 3 M ' Þ 3 ç @ ? @ F ' Þ 3 # Ü Ý @ ' 1 F à Þ F ' 3 Þ 3 Ý + 3 ç @ ? @

á ? @ + 3 @ I / 1 - ? ' 3 ô@ ä ô@ å õ ö ö ö á ' ? ? @ Þ ê ' 1 I 3 ' ã < 1 á 3 / ' 1 Þ 3 Ý + 3 + ê ê @ + ? / 1 3 Ý @ I @) 1 / 3 / ' 1
' ã á F + Þ Þ @ Þ < Þ / 1 ä 3 Ý @ b < � I M @ � ê ? / M / 3 / é @ # æ F 3 Ý ' < ä Ý 3 Ý @ Þ F ' 3 ç + Þ á ? @ + 3 @ I 8 / 3 ç + Þ
+ 3 3 + á Ý @ I 3 ' 3 Ý @ / 1 á ' ? ? @ á 3 á F + Þ Þ 1 ç Ý @ 1 á ' M ê + ? @ I 3 ' 3 Ý @ Þ ' < ? á @ á ' I @ 4 + 1 I 3 Ý @
M / 1 / M < M á + ? I / 1 + F / 3 à á ' 1 Þ 3 ? + / 1 3 Þ ç @ ? @ F ' Þ 3 #

� � f N ; , � � , ! (; � ; ! � , ! : k U � ; ! 5 % � ! � � g ! � I $; : (;

ï 1 3 Ý @ â @ ä / 1 1 / 1 ä ' ã 3 Ý / Þ Þ 3 + ä @ ç @ Ý + I h < Þ 3 / I @ 1 3 /) @ I ç Ý + 3 è 1 ' ç F @ I ä @ Ý + I â @ @ 1
F ' Þ 3 + 1 I M / Þ ê F + á @ I # æ 3 3 Ý / Þ 3 / M @ 8 ç @ I @ á / I @ I 3 ' ? @ + ? ? + 1 ä @ M / Þ ê F + á @ I è 1 ' ç F @ I ä @
+ 1 I ' 1 F à + I I 3 Ý @ M / Þ Þ / 1 ä ? @ F + 3 / ' 1 Þ + 1 I ã < 1 á 3 / ' 1 Þ #

i ¥ ` g | | Y | m a \ | ^ g \ f Y | m | ` W ^ | g \ X w g f Y ^ | u

19

� � � � � 	 � � � � � � � � � � � � � � � � �

- � � � � � � � � � � - � � � �

- � 	
 � 	 � � � � � � � � � � � 	 #

- � � 	 � � � � � � � � � � � � � " # #

- � � � � � � � � � � � � � � � � 	 � � � � � - 	 � �

- � � 	 � � 	 � � �

� + + +

� � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � 	 � � � " #

� / 0 1 � � � � / 	 � � 3 � � � � 4 � � � � � � � � � 	 � � � � #

� 6 � � � � � 3 � � � � 4 � � � � � � � � � 	 � � � " # # #

+ + + # #

� � � ¼ � ¼ o Y k \ a ^ a W \ W w Q Y ` g ^ a W \ ± � � � � a \ Ç È É ¥ S | a \ c Ç \ ^ W ` a \ c S g � | Y Á U W Q ^ ^ Q g \ | ` g ^ W Q

- + ? 3 ' ã 3 Ý @ ? @ + ? ? + 1 ä @ M @ 1 3 + 1 I @ í 3 @ 1 Þ / ' 1 I ' 1 @ + 3 3 Ý / Þ Þ 3 + ä @ / Þ Þ Ý ' ç 1 / 1 î / ä # û #

î ' ? @ í + M ê F @ 8 ç / 3 Ý 3 Ý @ 3 ? + 1 Þ F + 3 @ I é @ ? Þ / ' 1 ' ã 3 Ý @ ' 1 3 ' F ' ä à 8 / 3 ç + Þ 1 ' 3 ê ' Þ Þ / â F @ 3 '

á Ý + ? + á 3 @ ? /
�

@ 3 Ý @ I + à ' ã + ä / é @ 1 � F C � I K M F @ � # % / 1 á @ 3 Ý @ á F + Þ Þ ' ã � F C � I K M F @ � Þ

F ' Þ 3 + F F / 3 Þ + 3 3 ? / â < 3 @ Þ 8 ç @ á ' < F I 1 ' 3 ê + ? 3 / + F F à á Ý + ? + á 3 @ ? /
�

@ Þ ê @ á /) á � F C � I K M F @ � / 1 å

Þ 3 + 1 á @ Þ # Ü Ý / Þ á + 1 â @ I ' 1 @ / 1 3 Ý @ % / M ê F @ å Ü / M @ ' 1 3 ' F ' ä à + 3 3 Ý @ ú 1 3 ' F / 1 ä < + % @ ? é @ ? #

Ü Ý @ ' 1 F à á F + Þ Þ @ Þ ã ' ? ç Ý / á Ý ç @ á ' < F I I ' 3 Ý / Þ ç @ ? @ Z < \ � @ Q < P I U � < P 8 Z < \ � @ Q < P I Q < � �

+ 1 I S @ F ` � P � < \ I � F C � I � K � Z #

Ü Ý @ 3 ' ' F ê ? ' é @ I 3 ' â @ + ä ' ' I Ý @ F ê 8 Þ / 1 á @ ? @ F ' á + 3 / 1 ä è 1 ' ç F @ I ä @ Þ / M ê F à á ' ? ? @ å

Þ ê ' 1 I Þ 3 ' + I ? + ä � I ? ' ê + á 3 / ' 1 ' ã 3 Ý @ M ' < Þ @ # - / è @ / 1 + ? @ ä < F + ? ã ? + M @ å â + Þ @ I Þ à Þ 3 @ M 8

+ 1 ' 3 Ý @ ? ç + à ' ã ? @ F ' á + 3 / 1 ä + Þ F ' 3 / Þ ? @ M ' é / 1 ä 3 Ý @ Þ F ' 3 ã ? ' M 3 Ý @ á F + Þ Þ ç Ý @ ? @ / 3 / Þ

ç ? ' 1 ä F à + Þ Þ ' á / + 3 @ I + 1 I + 3 3 + á Ý / 3 3 ' 3 Ý @ á ' ? ? @ á 3 á F + Þ Þ # ï 1 ã + á 3 8 3 Ý @ / 1 3 < / 3 / é @ < Þ @

' ã 3 Ý @ 3 ' ' F / Þ ' 1 @ ' ã / 3 Þ M + / 1 ã @ + 3 < ? @ Þ #

Ü ' M + 1 < + F F à / 1 3 ? ' I < á @ 3 Ý @ M / Þ Þ / 1 ä Þ F ' 3 Þ 8 ç @ < Þ @ I 3 Ý @ ú ü ý þ á ' I @ ê ? ' I < á @ I

â à ú 1 3 ' F / 1 ä < + K Þ @ í ê ' ? 3 3 ? + 1 Þ F + 3 ' ? + Þ + ä < / I @ 8 î / ä # � # ó @ Þ / M ê F à á ? @ + 3 @ I 3 Ý @

Þ F ' 3 Þ 3 Ý + 3 ç @ ? @ I @) 1 @ I / 1 3 Ý / Þ 3 ? + 1 Þ F + 3 / ' 1 + 1 I + 3 3 + á Ý @ I 3 Ý @ M 3 ' 3 Ý @ + ê ê ? ' ê ? / + 3 @

á F + Þ Þ @ Þ # æ F F ? @ F + 3 / ' 1 Þ 1 � a 4 + 1 I F ' Þ 3 ã < 1 á 3 / ' 1 Þ 1 � 4 ç @ ? @ / 1 3 ? ' I < á @ I #

� � � c � � � ; > � % � ! f g , � * � , $ h , ! (* , (; i � , ! 5 $, � % � ! f , ! : k U � ; ! 5 % � !

ï 1 3 Ý @ â @ ä / 1 1 / 1 ä ' ã 3 Ý / Þ Þ 3 + ä @ ç @ Ý + I + 3 ? + 1 Þ F + 3 @ I é @ ? Þ / ' 1 ' ã 3 Ý @ % / M ê F @ å Ü / M @

' 1 3 ' F ' ä à 8 á ' 1 Þ / Þ 3 / 1 ä ' ã 3 Ý @ ç Ý ' F @ 3 + í ' 1 ' M à 8 3 Ý @ ? @ F + 3 / ' 1 Þ + 1 I ã < 1 á 3 / ' 1 Þ # ó @ + F Þ '

Ý + I 3 Ý @ 3 @ á Ý 1 / á + F @ é + F < + 3 / ' 1 I ' á < M @ 1 3 # Ü Ý @ ê ? ' â F @ M Þ ã ' < 1 I / 1 3 Ý @ + 1 + F à Þ / Þ ' ã

3 Ý @ Þ ' < ? á @ ' 1 3 ' F ' ä à ç @ ? @ á ' ? ? @ á 3 @ I 1 þ ' ? ? @ á 3 / ' 1 4 8 3 Ý @ 1 + M @ Þ / 1 3 Ý @ ' 1 3 ' F ' ä à ç @ ? @

3 ? + 1 Þ F + 3 @ I / 1 3 ' - ' ? 3 < ä < @ Þ @ 1 A + 3 < ? + F - + 1 ä < + ä @ Ü ? + 1 Þ F + 3 / ' 1 4 + 1 I 3 Ý @ + í / ' M Þ 3 Ý + 3

ç @ ? @ F ' Þ 3 I < ? / 1 ä 3 Ý @ / M ê ' ? 3 3 ? + 1 Þ F + 3 / ' 1 ã ? ' M ú 1 3 ' F / 1 ä < + ç @ ? @ + I I @ I 1 � í 3 @ 1 Þ / ' 1 4 #

þ ' ? ? @ á 3 / ' 1 á ' 1 Þ / Þ 3 @ I M + / 1 F à / 1 á Ý + 1 ä / 1 ä 3 Ý @ ? + 1 ä @ Þ + 1 I I ' M + / 1 Þ ' ã ã < 1 á 3 / ' 1 Þ

+ 1 I ? @ F + 3 / ' 1 Þ # ï 1 - ? ' 3 ô@ ä ô@ å õ ö ö ö 8 3 Ý / Þ M @ + 1 Þ ? @ F ' á + 3 / 1 ä Þ F ' 3 Þ 1 á Ý + 1 ä @ ' ã I ' M + / 1 4 ' ?

á Ý + 1 ä / 1 ä 3 Ý @ é + F < @ ' ã 3 Ý @ < \ \ M ! � Q I Z \ < � � � � ã + á @ 3 ' ã 3 Ý @ Þ F ' 3 1 á Ý + 1 ä @ ' ã ? + 1 ä @ 4 #

æ ã 3 @ ? á ' ? ? @ á 3 / 1 ä 3 Ý @ 3 + í ' 1 ' M à + 1 I â @ ã ' ? @ Þ 3 + ? 3 / 1 ä 3 ' ç ? / 3 @ + í / ' M Þ 8 3 Ý @ ' 1 å

3 ' F ' ä à ç + Þ 3 ? + 1 Þ F + 3 @ I / 1 3 ' - ' ? 3 < ä < @ Þ @ 8 â @ á + < Þ @ + í / ' M I @) 1 / 3 / ' 1 Þ ? @ ã @ ? 3 ' 1 + M @ Þ

' ã ã ? + M @ Þ / 1 3 Ý @ ' 1 3 ' F ' ä à 8 + 1 I á Ý + 1 ä @ Þ 3 ' 3 Ý @ Þ @ 1 + M @ Þ + ? @ 1 ' 3 ê ? ' ê + ä + 3 @ I 3 '

3 Ý @ 3 @ í 3 < + F I @) 1 / 3 / ' 1 Þ ' ã 3 Ý @ + í / ' M Þ # ú 1 @ M + h ' ? + I é + 1 3 + ä @ ' ã < Þ / 1 ä 3 Ý / Þ 3 ' ' F 3 '

ê @ ? ã ' ? M 3 Ý / Þ 3 + Þ è ç + Þ 3 Ý + 3 ' 1 á @ ç @ á Ý + 1 ä @ 3 Ý @ 1 + M @ ' ã + ã ? + M @ 8 3 Ý / Þ á Ý + 1 ä @ / Þ

/ M M @ I / + 3 @ F à ê ? ' ê + ä + 3 @ I 3 Ý ? ' < ä Ý 3 Ý @ @ 1 3 / ? @ 3 + í ' 1 ' M à #

20

Slot: Year−of

Calendar−Year

Slot: Month−of

Slot: Year−of

Slot: Month−of

Time−Point

No slots

Slot: Month−of

Slot: Year−of

Time−Point

Universal−Time−Spec

Slot: Year−ofSlot: Year−ofSlot: Year−of

Calendar−Date Calendar−Year

Slot: Month−of Slot: Month−of

Universal−Time−SpecCalendar−Date

Slot: Year−of

Rearranged
& Entended

Max. Cardinality 1

Slot: Second−of

Max. Cardinality 1
Slot: Minute−of

Max. Cardinality 1

Slot: Day−of

Max. Cardinality 1

Max. Cardinality 1

Max. Cardinality 1Max. Cardinality 1

Max. Cardinality 1

Max. Cardinality 1

Max. Cardinality 1

Max. Cardinality 1

Max. Cardinality 1

Max. Cardinality 1

Max. Cardinality 1

Max. Cardinality 1

Min. Cardinality 1

Slot: Minute−of
1Min. Cardinality

Slot: Hour−of
1Min. Cardinality

Slot: Day−of
1Min. Cardinality

1Min. Cardinality

Min. Cardinality 1

1Min. Cardinality

Translated

Slot: Day−of Slot: Day−of

Slot: Minute−of

Slot: Second−of

Slot: Hour−of

Slot: Second−of
Min. Cardinality 1

1Min. Cardinality

Min. Cardinality
Slot: Day−of

1

added knowledge

� � � ¼ � ¼ � Y g Q Q g \ c Y q Y \ ^ g \ X s Á ^ Y \ | a W \ W w � � ² � ´ � � ° � g \ X a ^ | | S � f ` g | | Y |

î / 1 + F F à 8 ç @ + I I @ I è 1 ' ç F @ I ä @ 3 Ý + 3 ç + Þ á ' M ê F @ 3 @ F à F ' Þ 3 / 1 3 Ý @ 3 ? + 1 Þ F + 3 / ' 1 ê ? ' å
á @ Þ Þ ^ + í / ' M Þ # Ü ' ç ? / 3 @ + í / ' M Þ / 1 - ? ' 3 ô@ ä ô@ å õ ö ö ö 3 Ý @ - æ - á ' 1 Þ 3 ? + / 1 3 Þ 3 + â ê F < ä å / 1 6 �

ç + Þ < Þ @ I # - æ - á ' 1 Þ 3 ? + / 1 3 Þ + ? @ ê + ? 3 ' ã 3 Ý @ - æ - 3 ' ' F Þ @ 3 ê F < ä å / 1 ã ' ? - ? ' 3 ô@ ä ô@ å õ ö ö ö #
Ü Ý @ / I @ + / Þ 3 ' + F F ' ç 3 Ý @ < Þ @ ? 3 ' ç ? / 3 @ á ' 1 Þ 3 ? + / 1 3 Þ ' é @ ? 3 Ý @ ê ' Þ Þ / â F @ é + F < @ Þ ' ã

/ 1 Þ 3 + 1 á @ Þ 3 Ý + 3 á + 1 1 ' 3 â @ ? @ ê ? @ Þ @ 1 3 @ I < Þ / 1 ä ' 1 F à á F + Þ Þ @ Þ 8 Þ F ' 3 Þ + 1 I ê ? @ å I @) 1 @ I
ã + á @ 3 Þ # 6 6 - æ - / Þ + F / M / 3 @ I ê ? @ I / á + 3 @ F ' ä / á @ í 3 @ 1 Þ / ' 1 ' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö # ï 3 Þ Þ à 1 3 + í
/ Þ Þ / M / F + ? 3 ' ü ï î ÷ � ù # " ' ç @ é @ ? 8 Þ 3 + 3 @ M @ 1 3 Þ F / è @ Q � Y P � \ < � F M @ + 1 I Q � Y Y S @ Z � F M @

+ ? @ 1 ' 3 Þ < ê ê ' ? 3 @ I # Ü Ý @ - æ - F + 1 ä < + ä @ / Þ á ' M ê F @ 3 @ F à / 1 3 @ ä ? + 3 @ I ç / 3 Ý 3 Ý @ - ? ' 3 ô@ ä ô@ å
õ ö ö ö è 1 ' ç F @ I ä @ M ' I @ F # þ ' 1 Þ 3 ? + / 1 3 Þ + ? @ / 1 Þ 3 + 1 á @ Þ ' ã 3 Ý @ � K < \ I Z M @ � � P < F @ � á F + Þ Þ #

ó Ý @ 1 ç ? / 3 / 1 ä + - æ - á ' 1 Þ 3 ? + / 1 3 8 ç @ á + 1 < Þ @ + 1 à Þ F ' 3 + Þ + ê ? @ I / á + 3 @ 8 ã ' ? / 1 å
Þ 3 + 1 á @ � � � < P � I � F C � I M Y � � F C � I P < @ > �
 � � � F C � I K M F @ � U � � # ï ã 3 Ý @ Þ F ' 3 Ý + Þ +

C <
 F C S C I Z < P Q F @ < \ F � U ' ã � 8 / 3 á + 1 + F Þ ' â @ < Þ @ I + Þ + ã < 1 á 3 / ' 1 # ï 1 3 Ý / Þ á + Þ @ 8
� � � < P � I � F C � I M Y � � F C � I P < @ > �
 � � ? @ ê ? @ Þ @ 1 3 Þ � � F C � I K M F @ � U � # Ü Ý @ - æ - á ' 1 å

Þ 3 ? + / 1 3 á Ý @ á è / 1 ä M @ á Ý + 1 / Þ M á + 1 â @ á + F F @ I â à 3 Ý @ < Þ @ ? 8 3 ' Þ Ý ' ç ç Ý / á Ý á ' 1 Þ 3 ? + / 1 3 Þ
+ ? @ é / ' F + 3 @ I + 1 I â à ç Ý / á Ý / 1 Þ 3 + 1 á @ Þ # ï 3 á + 1 + F Þ ' â @ á + F F @ I ê ? ' ä ? + M M + 3 / á + F F à â à
+ 1 + ê ê F / á + 3 / ' 1 3 Ý + 3 < Þ @ Þ 3 Ý @ - ? ' 3 ô@ ä ô@ å õ ö ö ö æ - ï #

Ü Ý @ - æ - á ' 1 Þ 3 ? + / 1 3 á Ý @ á è / 1 ä M @ á Ý + 1 / Þ M + F Þ ' Ý + Þ + 3 ? + á @ M @ á Ý + 1 / Þ M 3 Ý + 3
+ F F ' ç Þ < Þ 3 ' ã ' F F ' ç 3 Ý @ @ é + F < + 3 / ' 1 ' ã + ä / é @ 1 á ' 1 Þ 3 ? + / 1 3 # Ü Ý / Þ / Þ é @ ? à < Þ @ ã < F ç Ý @ 1
ç ? / 3 / 1 ä á ' 1 Þ 3 ? + / 1 3 Þ 8 Þ / 1 á @ / 3 Ý @ F ê Þ 3 ' < 1 I @ ? Þ 3 + 1 I ç Ý à 3 Ý @ à + ? @ 1 ' 3 ç ' ? è / 1 ä + Þ ç @

O � q � � s t t � � � � � � � � � � ° � � � � � � � � t � � � � ° � t � � � � w � t � � � x � � w � � q � ² �
O O £ W Q a \ | ^ g \ f Y m � � � � � ´ � � � m q a \ a q S q g \ X q g Á a q S q ³ � � � � ° � � � � a Y | m ² � ° � ² � ² g \ X

² � � � ² � ² � g ` S Y | g ` ` W Å Y X u

21

� � � � � � 	 � � � � � � � � � � 	 � � � � - � � � � / 3 � � / � � � � � / #

� � � � � � 	 � � � � � � � � � � 	 � � � " - � � � � / 3 � � / � � � � � / � / / 3 6 #

� � � � � � � � � � � � � � � 	 � � � �

� � � � � � � � � � � � � � � 	 � � � "

� � � � � 	 � � � / / 3 6 � � � � � � � � 	 � � � � � � � � � � � � 	 � � � " #

� � � 	 � � � � � � 	 � � � 	 1 � � / � 	 � 3 � � / � 4 � � � � � � � � � 	 � � � � #

� � � 	 � � � � � � 	 � � � 	 1 � � 6 3 � � 3 � 3 � � / � 4 � � � � � � � � � 	 � � � " # #

� � � / � 	 � 3 � � / � 4 � � � � � � � � � 	 � � � � #

� 6 3 � � 3 � 3 � � / � 4 � � � � � � � � � 	 � � � " # # # # #

� � � ¼
 ¼ h Á a W q Å Q a ^ ^ Y \ a \ � h �

3 Ý / 1 è 3 Ý @ à Þ Ý ' < F I # " ' ç @ é @ ? 8 3 Ý / Þ 3 ? + á / 1 ä M @ á Ý + 1 / Þ M ' 1 F à 3 ? + á @ Þ ê ? @ I / á + 3 @ Þ + 1 I

ã < 1 á 3 / ' 1 Þ ê ? @ I @) 1 @ I / 1 - æ - F + 1 ä < + ä @ 8 ã ' ? / 1 Þ 3 + 1 á @ � ã ' ? 1 < M â @ ? Þ 8 + 1 I ' 1 F à ' 1 @

+ 3 + 3 / M @ # ï 3 ç ' < F I â @ + F Þ ' < Þ @ ã < F 3 ' ê ? ' é / I @ 3 ? + á @ å + â / F / 3 à ' ã < Þ @ ? å I @) 1 @ I Þ F ' 3 Þ

1 3 ? @ + 3 @ I / 1 - æ - + Þ ê ? @ I / á + 3 @ Þ ' ? ã < 1 á 3 / ' 1 Þ 4 #

æ F 3 Ý ' < ä Ý 3 Ý @ - æ - á ' 1 Þ 3 ? + / 1 3 á Ý @ á è / 1 ä M @ á Ý + 1 / Þ M / Þ < Þ @ ã < F 8 / 3 / Þ 1 ' 3 é @ ? à

@ + Þ à 3 ' < Þ @ + 3) ? Þ 3 # ú 1 @ ' ã 3 Ý @ ? @ + Þ ' 1 Þ / Þ â @ á + < Þ @ è 1 ' ç F @ I ä @ ? @ ê ? @ Þ @ 1 3 @ I / 1 ü ï î

+ í / ' M Þ 3 Ý + 3 / Þ 1 ' 3 Þ < ê ê ' ? 3 @ I â à - æ - Ý + Þ 3 ' â @ 3 ? + 1 Þ ã ' ? M @ I â @ ã ' ? @ / 3 á + 1 â @

/ 1 á ' ? ê ' ? + 3 @ I # - æ - + í / ' M Þ á ' 1 Þ / Þ 3 ' 1 + Þ @ 3 ' ã é + ? / + â F @ ? + 1 ä @ I @) 1 / 3 / ' 1 Þ + 1 I +

ê ? @ I / á + 3 @ 3 Ý + 3 M < Þ 3 Ý ' F I ' é @ ? 3 Ý ' Þ @ é + ? / + â F @ Þ # æ 1 @ í + M ê F @ ' ã + 1 + í / ' M ç ? / 3 3 @ 1

/ 1 - æ - / Þ Þ Ý ' ç 1 / 1 î / ä # � #

Ü Ý / Þ) ? Þ 3 < Þ @ ? K Þ ? @ + á 3 / ' 1 3 ' - æ - ç + Þ 1 ' 3 + é @ ? à ä ' ' I ' 1 @ # Ü Ý / Þ á ' < F I â @

@ + Þ / F à á Ý + 1 ä @ I ç / 3 Ý + M ' ? @ I @ 3 + / F @ I I ' á < M @ 1 3 + 3 / ' 1 # ó @ ã ' < 1 I Þ ' M @ @ í + M ê F @ Þ

' 1 Ý ' ç 3 ' ç ? / 3 @ + 1 @ ç á ' 1 Þ 3 ? + / 1 3 / 1 3 Ý @ I ' á < M @ 1 3 + 3 / ' 1 8 â < 3 Þ ' M @ @ í + M ê F @ Þ ' 1

Ý ' ç 3 ' 3 ? + 1 Þ ã ' ? M + 1 + í / ' M ç ? / 3 3 @ 1 / 1 ü ï î 1 ' ? + 1 à ' 3 Ý @ ? F + 1 ä < + ä @ 4 / 1 3 ' + - æ -

á ' 1 Þ 3 ? + / 1 3 ç ' < F I + F Þ ' â @ < Þ @ ã < F # 6 N

� � Ð Ö Î � � Ö Ï Ñ Ð � Î Ö � � � Õ �

ó @ + 1 + F à � @ I 3 Ý @ ú ü ý þ å 3 + â ê F < ä å / 1 á ' I @ 8 / 1 ' ? I @ ? 3 ' â @ 3 3 @ ? < 1 I @ ? Þ 3 + 1 I ç Ý à

è 1 ' ç F @ I ä @ ç + Þ â @ / 1 ä F ' Þ 3 ' ? M / Þ ê F + á @ I # Ü Ý @ ê F < ä å / 1 Þ 3 + ? 3 Þ â à á ' 1 1 @ á 3 / 1 ä 3 ' + 1

ú ü ý þ á ' M ê F / + 1 3 Þ @ ? é @ ? 1 / 1 ' < ? á + Þ @ 8 3 Ý @ ú 1 3 ' F / 1 ä < + % @ ? é @ ? 4 + 1 I 3 Ý @ 1 < Þ @ Þ 3 Ý @

ú ü ý þ ê ? ' 3 ' á ' F 3 ' ä @ 3 / 1 ã ' ? M + 3 / ' 1 + â ' < 3 3 Ý @ ' 1 3 ' F ' ä à â @ / 1 ä / M ê ' ? 3 @ I # Ü Ý @ M + / 1

/ M ê ' ? 3 ê ? ' á @ I < ? @ 8 > � � � \ < � � � � � < F \ � 8 Þ 3 + ? 3 Þ ç / 3 Ý + 1 / 1 / 3 / + F Þ @ 3 ' ã á F + Þ Þ @ Þ + 1 I 3 Ý @ 1

ä ' @ Þ I ' ç 1 3 Ý @ F � I < Ý / @ ? + ? á Ý à ä @ 3 3 / 1 ä ã ' ? @ + á Ý á F + Þ Þ / 3 Þ 1 + M @ 8 I ' á < M @ 1 3 + 3 / ' 1 8

/ 1 Þ 3 + 1 á @ Þ 8 3 @ M ê F + 3 @ Þ F ' 3 Þ 8 6 3 + 1 I ã ' ? @ + á Ý 3 @ M ê F + 3 @ Þ F ' 3 3 Ý @ é + F < @ ' ã 3 Ý @ ã + á @ 3 Þ

` < \ S � I � U K � 8 C <
 F C S C I Z < P Q F @ < \ F � U + 1 I C F @ F C S C I Z < P Q F @ < \ F � U # ó Ý @ 1 ? @ + á Ý / 1 ä

/ 1 Þ 3 + 1 á @ Þ / 3 ä @ 3 Þ 3 Ý @ / ? 1 + M @ Þ 8 Þ F ' 3 Þ + 1 I Þ F ' 3 é + F < @ Þ # Ü Ý / Þ ê ? ' á @ I < ? @ F @ + é @ Þ ' < 3

+ 1 à è 1 ' ç F @ I ä @ 3 Ý + 3 / Þ 1 ' 3 @ í ê F / á / 3 F à ? @ ê ? @ Þ @ 1 3 @ I / 1 3 Ý @ I @) 1 / 3 / ' 1 ' ã + á F + Þ Þ ' ?

/ 1 Þ 3 + 1 á @ ã ? + M @ # L ' ? @ ' é @ ? 8 + 1 à è 1 ' ç F @ I ä @ 3 Ý + 3 / Þ ? @ ê ? @ Þ @ 1 3 @ I + Þ + 1 ' ç 1 Þ F ' 3 / 1

+ á F + Þ Þ ã ? + M @ / Þ + F Þ ' F ' Þ 3 #

O ¢ ~ a \ f Y W S Q c W g ` Å g | ^ W Q Y S | Y ^ ½ Y X Y k \ a ^ a W \ | a q U ` Y q Y \ ^ Y X a \ È Z £ { W Q Ç \ ^ W ` a \ c S g | u
O 6 � ½ Y ª \ W Å ` Y X c Y q W X Y ` W w � Q W ^ yY c yY � ® � � � X W Y | \ W ^ a \ f ` S X Y W Å \ | ` W ^ | g ^ ^ g f ½ Y X ^ W f ` g | | Y | u

22

ï 1 3 Ý @ á + Þ @ ' ã 3 Ý @ % / M ê F @ å Ü / M @ ' 1 3 ' F ' ä à + F F ? @ F + 3 / ' 1 Þ + ? @ ? @ ê ? @ Þ @ 1 3 @ I / 1 ú ü ý þ

+ Þ Þ F ' 3 ã ? + M @ Þ + 1 I + ? @ 1 ' 3 @ í ê F / á / 3 F à ? @ ã @ ? ? @ I / 1 3 Ý @ I @) 1 / 3 / ' 1 ' ã + 1 à á F + Þ Þ ã ? + M @ #

Ü Ý @ ? @ ã ' ? @ 8 + F F ? @ F + 3 / ' 1 Þ ç @ ? @ F ' Þ 3 #

" ' ç @ é @ ? 8 3 Ý / Þ Þ 3 / F F I / I 1 ' 3 @ í ê F + / 1 ç Ý à / 1 3 Ý @ æ ä @ 1 3 Þ ' 1 3 ' F ' ä à 3 Ý @ Þ F ' 3 @ < C �

+ Þ Þ ' á / + 3 @ I 3 ' 3 Ý @ < > � @ � á F + Þ Þ ç + Þ 1 ' 3 3 ? + 1 Þ F + 3 @ I # ó @ ã ' < 1 I 3 Ý + 3 3 Ý @ ú ü ý þ ê F < ä å

/ 1 I ' @ Þ 1 ' 3 / M ê ' ? 3 ã ? + M @ Þ ç Ý ' Þ @ 1 + M @ Þ + ? @ è @ à ç ' ? I Þ + 1 I @ < C � / Þ + è @ à ç ' ? I / 1

ú ü ý þ #

ó @ + F Þ ' I / Þ á ' é @ ? @ I 3 Ý @ á + < Þ @ Þ ' ã M / Þ ê F + á @ I è 1 ' ç F @ I ä @ # î ' ? / 1 Þ 3 + 1 á @ 8 3 Ý @

� F C � I K M F @ � á F + Þ Þ / Þ I @) 1 @ I / 1 ú 1 3 ' F / 1 ä < + + Þ â @ / 1 ä 3 Ý @ Q M C < F @ I M Y ' ã 3 Ý @ ã < 1 á 3 / ' 1

U � < P I M Y # % / 1 á @ 3 Ý @ I @) 1 / 3 / ' 1 ' ã 3 Ý @ á F + Þ Þ � F C � I K M F @ � / 1 ú ü ý þ ' 1 F à M + è @ Þ

? @ ã @ ? @ 1 á @ 3 ' 3 Ý @ U � < P I M Y ã < 1 á 3 / ' 1 / 1 3 Ý @ ' ç 1 å Þ F ' 3 Q M C < F @ I M Y 8 3 Ý @ á ' ? ? @ Þ ê ' 1 I / 1 ä

Þ F ' 3 / Þ 1 ' 3 á ? @ + 3 @ I # " ' ç @ é @ ? 8 3 Ý @ á F + Þ Þ Z < \ � @ Q < P I Q < � � / Þ I @) 1 @ I / 1 ú 1 3 ' F / 1 ä < + + Þ

Ý + é / 1 ä ' 1 @ 1 b < � I M @ � 4 U � < P I M Y # ï 1 3 Ý / Þ á + Þ @ 8 3 Ý @ ú ü ý þ I @) 1 / 3 / ' 1 ' ã Z < \ � @ Q < P I

I Q < � � @ í ê F / á / 3 F à M @ 1 3 / ' 1 Þ 3 Ý + 3 U � < P I M Y / Þ + 3 @ M ê F + 3 @ Þ F ' 3 ' ã 3 Ý / Þ á F + Þ Þ # Ü Ý @ ? @ ã ' ? @ 8

3 Ý @ Þ F ' 3 / Þ á ? @ + 3 @ I / 1 - ? ' 3 ô@ ä ô@ å õ ö ö ö + 1 I + 3 3 + á Ý @ I 3 ' 3 Ý @ Z < \ � @ Q < P I Q < � � á F + Þ Þ #

ü 1 ' ç F @ I ä @ + â ' < 3 + Þ F ' 3 / Þ @ í ê F / á / 3 F à ? @ ê ? @ Þ @ 1 3 @ I / 1 3 Ý @ I @) 1 / 3 / ' 1 ' ã + á F + Þ Þ

ã ? + M @ / 1 ú ü ý þ / ã / 1 3 Ý @ ú 1 3 ' F / 1 ä < + I @) 1 / 3 / ' 1 ' ã 3 Ý + 3 á F + Þ Þ Þ ' M @ Þ ê @ á /) á ê ? / M å

/ 3 / é @ Þ + ? @ < Þ @ I # ï ã ç @ < Þ @ 3 Ý @ Q � Y F @ � I Z \ < � � ê ? / M / 3 / é @ ç @ á + 1 < Þ @ 3 Ý @ b < � I M @ �

' ? b < � I � M C � ê ? / M / 3 / é @ Þ 3 ' á ' 1 Þ 3 ? + / 1 3 á + ? I / 1 + F / 3 / @ Þ # ï ã ç @ < Þ @ 3 Ý @ Q � Y F @ � I Y P < C �

ê ? / M / 3 / é @ 3 ' I @) 1 @ + á F + Þ Þ ç @ á + 1 Þ ê @ á / ã à ' 1 @ ' ã 3 Ý @ ã ' F F ' ç / 1 ä / 3 @ M Þ ^ 1 � 4 3 Ý @ 1 + M @

' ã 3 Ý @ 3 @ M ê F + 3 @ Þ F ' 3 8 1 õ 4 / 3 Þ C <
 F C S C I Z < P Q F @ < \ F � U 8 1 � 4 C F @ F C S C I Z < P Q F @ < \ F � U

' ? 1 û 4 ` < \ S � I � U K � # � @ ä + ? I / 1 ä á + ? I / 1 + F / 3 / @ Þ 8 - ? ' 3 ô@ ä ô@ å õ ö ö ö ' 1 F à < Þ @ Þ 3 Ý @ é + F < @ Þ

' ã á + ? I / 1 + F / 3 / @ Þ 3 ' + Þ Þ @ Þ Þ ç Ý @ 3 Ý @ ? 3 Ý @ Þ F ' 3 / Þ M < F 3 / ê F @ å é + F < @ I # " ' ç @ é @ ? 8 3 Ý @ ? @ + ? @

Þ ' M @ ê ? ' â F @ M Þ # Ü Ý @ M + í / M < M á + ? I / 1 + F / 3 à / Þ + F ç + à Þ ' 1 @ + 1 I 3 Ý @ M / 1 / M < M á + ? å

I / 1 + F / 3 à / Þ 1 ' 3 < Þ @ I + 3 + F F #

Ü ' Þ < M M + ? / � @ ^

d
Ü Ý @ / M ê ' ? 3 3 ? + 1 Þ F + 3 ' ? ' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö I ' @ Þ 1 ' 3 / M ê ' ? 3 è 1 ' ç F @ I ä @ 3 Ý + 3 / Þ 1 ' 3

@ í ê F / á / 3 F à ? @ ê ? @ Þ @ 1 3 @ I / 1 3 Ý @ I @) 1 / 3 / ' 1 ' ã + Þ ê @ á /) á á F + Þ Þ ' ? ' ã + 1 / 1 Þ 3 + 1 á @ / 1

3 Ý @ ú 1 3 ' F / 1 ä < + % @ ? é @ ? K Þ ú ü ý þ á ' I @ #

d
î ? + M @ Þ 1 á F + Þ Þ @ Þ 8 / 1 Þ 3 + 1 á @ Þ + 1 I Þ F ' 3 Þ 4 ç Ý ' Þ @ 1 + M @ / Þ + è @ à ç ' ? I ' ã 3 Ý @ ú ü ý þ

ê ? ' 3 ' á ' F + ? @ 1 ' 3 / M ê ' ? 3 @ I #

d
æ F F è 1 ' ç F @ I ä @ ? @ ê ? @ Þ @ 1 3 @ I / 1 ' ç 1 å Þ F ' 3 Þ ' ã á F + Þ Þ @ Þ / Þ 1 ' 3 / M ê ' ? 3 @ I #

d
A ' 3 + F F ú 1 3 ' F / 1 ä < + ê ? / M / 3 / é @ Þ á + 1 â @ < Þ @ I 3 ' @ í ê F / á / 3 è 1 ' ç F @ I ä @ + â ' < 3 3 @ M å

ê F + 3 @ Þ F ' 3 Þ / 1 3 Ý @ I @) 1 / 3 / ' 1 ' ã + á F + Þ Þ #

d
æ F F ã + á @ 3 Þ 8 @ í á @ ê 3 ` < \ S � I � U K � 8 + ? @ F ' Þ 3 # æ F 3 Ý ' < ä Ý 3 Ý @ 3 ? + 1 Þ F + 3 ' ? F ' ' è Þ ã ' ?

3 Ý @ ã + á @ 3 Þ C <
 F C S C I Z < P Q F @ < \ F � U + 1 I C F @ F C S C I Z < P Q F @ < \ F � U 8 - ? ' 3 ô@ ä ô@ å õ ö ö ö

' 1 F à < Þ @ Þ 3 Ý + 3 / 1 ã ' ? M + 3 / ' 1 3 ' + Þ Þ @ Þ Þ 3 Ý @ M < F 3 / ê F / á / 3 à ' ã 3 Ý @ Þ F ' 3 #

� � � � Ö Ï � Ò � Ñ Ð �

æ 3 ? + 1 Þ F + 3 / ' 1 ê ? ' á @ Þ Þ / 1 é ' F é / 1 ä 3 Ý @ % / M ê F @ å Ü / M @ ' 1 3 ' F ' ä à / 1 3 Ý @ ú 1 3 ' F / 1 ä < +

% @ ? é @ ? / Þ I @ Þ á ? / â @ I / 1 ÷ � ö ù # ï 1 3 Ý / Þ á + Þ @ 3 Ý @ @ í ê ' ? 3 3 ? + 1 Þ F + 3 ' ? ' ã ú 1 3 ' F / 1 ä < + / 1 3 '

- ' ' M ç + Þ < Þ @ I # æ 3 3 Ý + 3 3 / M @ 8 3 Ý @ á ' 1 á F < Þ / ' 1 Þ ç @ ? @ 3 Ý + 3 3 Ý @ + < 3 ' M + 3 / á 3 ? + 1 Þ F + 3 ' ? Þ

ç @ ? @ Þ 3 / F F + 3 I ? + ã 3 F @ é @ F # æ F 3 Ý ' < ä Ý 3 Ý @ à ç @ ? @ < Þ @ ã < F 3 ' ê ? ' é / I @ / 1 / 3 / + F é @ ? Þ / ' 1 Þ 8

23

á ' 1 Þ / I @ ? + â F @ Ý < M + 1 / 1 3 @ ? + á 3 / ' 1 ç + Þ 1 @ @ I @ I 3 ' / M ê ? ' é @ 3 Ý @ + < 3 ' M + 3 / á é @ ? Þ / ' 1 Þ #

Ü Ý @ 3 ç ' ê ? ' â F @ M Þ ã ' < 1 I + 3 3 Ý + 3 3 / M @ ç @ ? @ ^

� % 5 � , � > Y � � � � : ; $ % ! (5 � 3 $; 5 Ü Ý @ ç + à è 1 ' ç F @ I ä @ / Þ M ' I @ F @ I / 1 ú 1 3 ' F / 1 ä < +

/ Þ I / ì @ ? @ 1 3 ã ? ' M 3 Ý @ ç + à / 3 / Þ < Þ < + F F à M ' I @ F @ I / 1 - ' ' M # Ü Ý @ á ' 1 Þ 3 ? < á 3 Þ

ê ? ' é / I @ I â à @ + á Ý F + 1 ä < + ä @ ã ' ? M + ? @ ê ? @ Þ @ 1 3 + 3 / ' 1 ' 1 3 ' F ' ä à 3 Ý + 3 / Þ I / ì @ ? @ 1 3 ã ' ?

@ + á Ý F + 1 ä < + ä @ # æ 3 ? + 1 Þ F + 3 ' ? â @ 3 ç @ @ 1 3 ç ' F + 1 ä < + ä @ Þ M < Þ 3 Þ 3 + ? 3 â à M + ê ê / 1 ä

â @ 3 ç @ @ 1 3 Ý @ 3 ç ' ? @ ê ? @ Þ @ 1 3 + 3 / ' 1 ' 1 3 ' F ' ä / @ Þ # ï 1 ä @ 1 @ ? + F 8 â < / F I / 1 ä + 3 ? + 1 Þ F + 3 ' ?

/ Þ @ + Þ / @ ? / ã 3 Ý @ Þ @ ' 1 3 ' F ' ä / @ Þ + ? @ Þ / M / F + ? #

� ! � ; � ; ! > ; ; ! (% ! ;
 % , 5 � é @ 1 / ã 3 Ý @ è 1 ' ç F @ I ä @ / Þ M ' I @ F @ I ç / 3 Ý ' < 3 + Þ ê @ á /) á

+ ê ê F / á + 3 / ' 1 / 1 M / 1 I 8 / 3 / Þ < Þ < + F F à M ' I @ F @ I á ' 1 Þ / I @ ? / 1 ä á @ ? 3 + / 1 / 1 ã @ ? @ 1 á @ Þ # î ' ?

/ 1 Þ 3 + 1 á @ 8 / 1 - ' ' M 8 è 1 ' ç F @ I ä @ / Þ < Þ < + F F à M ' I @ F @ I á ' 1 Þ / I @ ? / 1 ä 3 Ý + 3 / 3 / Þ ä ' / 1 ä

3 ' â @ < Þ @ I â à / 3 Þ â < / F 3 å / 1 / 1 ã @ ? @ 1 á @ @ 1 ä / 1 @ #

ï 1 ' < ? á + Þ @ Þ 3 < I à ç @ ã ' < 1 I 3 Ý + 3 ^

d
ý ' 3 Ý 3 Ý @ ú 1 3 ' F / 1 ä < + % @ ? é @ ? + 1 I - ? ' 3 ô@ ä ô@ å õ ö ö ö + ? @ ú ü ý þ å á ' M ê + 3 / â F @ 8 Þ '

3 Ý @ ? @ / Þ 1 ' M / Þ M + 3 á Ý / 1 M ' I @ F / 1 ä Þ 3 à F @ Þ #

d
" ' ç @ é @ ? 8 3 Ý @ / 1 ã @ ? @ 1 á @ @ 1 ä / 1 @ â / + Þ / Þ é @ ? à Þ 3 ? ' 1 ä / 1 ' < ? á + Þ @ # î ' ? / 1 Þ 3 + 1 á @ 8

ç Ý @ 1 / 3 á ' M @ Þ 3 ' + í / ' M Þ 8 3 Ý @ - æ - F + 1 ä < + ä @ Ý + Þ + ? + 3 Ý @ ? I / ì @ ? @ 1 3 Þ 3 à F @

ã ? ' M ü ï î # Ü Ý @ - æ - 3 ' ' F Þ @ 3 / Þ + á ' 1 Þ 3 ? + / 1 3 å á Ý @ á è / 1 ä ? + 3 Ý @ ? 3 Ý + 1 3 Ý @ ' ? @ M å

ê ? ' é / 1 ä M @ á Ý + 1 / Þ M # Ü Ý / Þ M @ + 1 Þ 3 Ý + 3 - æ - ' 1 F à á Ý @ á è Þ á ' 1 Þ 3 ? + / 1 3 Þ â + Þ @ I

' 1 3 Ý @ / 1 Þ 3 + 1 á @ Þ / 1 3 Ý @ ' 1 3 ' F ' ä à # % ' 8 + í / ' M Þ ç ? / 3 3 @ 1 / 1 - æ - Ý + é @ 3 ' M + è @

Þ 3 ? ' 1 ä á F ' Þ @ I å ç ' ? F I + Þ Þ < M ê 3 / ' 1 Þ + â ' < 3 3 Ý @ è 1 ' ç F @ I ä @ 3 Ý + 3 / Þ â @ / 1 ä M ' I @ F @ I #

L ' ? @ ' é @ ? 8 / 1 ' ? I @ ? 3 ' Þ / M ê F / ã à 3 Ý @ + í / ' M Þ 8 ç @ + I I @ I + Þ F ' 3 P � K P � � � @ � < Z < M I

I @ S C � P F Z < 1 1 < M â @ ? å ? @ ê ? @ Þ @ 1 3 + 3 / ' 1 4 3 ' + F F á F + Þ Þ @ Þ 3 Ý + 3 + ? @ Þ < â á F + Þ Þ @ Þ ' ã / 1 3 @ å

ä @ ? Þ 1 b M S P I @ S C � � P 8 U � < P I @ S C � � P 8 @ 3 á # 4 # Ü Ý / Þ ç + Þ I ' 1 @ â @ á + < Þ @ / 1 - æ - 3 Ý @

? @ F + 3 / ' 1 Þ � 8 � + 1 I � + ? @ + F ? @ + I à I @) 1 @ I ã ' ? / 1 3 @ ä @ ? Þ #

� � Ñ Î Ô � Ó � Õ Ñ Î � Ö Î Ò � Ó Ï Ó Ð � � Ñ Ð �

ï 1 3 Ý / Þ + ? 3 / á F @ ç @ ? @ ê ' ? 3 + ? @ < Þ @ @ í ê @ ? / @ 1 á @ 3 Ý + 3 / 1 é ' F é @ I 3 ? + 1 Þ F + 3 / ' 1 8 ? @ + ? ? + 1 ä @ å

M @ 1 3 8 á ' ? ? @ á 3 / ' 1 + 1 I @ í 3 @ 1 Þ / ' 1 ' ã + 1 ' 1 3 ' F ' ä à < Þ / 1 ä - ? ' 3 ô@ ä ô@ å õ ö ö ö # ó @ 3 ? / @ I 3 '

@ é + F < + 3 @ 3 Ý @ Þ < ê ê ' ? 3 ê ? ' é / I @ I â à 3 Ý / Þ 3 ' ' F / 1 ? @ < Þ @ ê ? ' á @ Þ Þ @ Þ # ó @ Ý + é @ ã ' < 1 I

3 Ý + 3 3 Ý @ ú ü ý þ / M ê ' ? 3 3 ? + 1 Þ F + 3 ' ? ' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö 8 + F 3 Ý ' < ä Ý < Þ @ ã < F ã ' ? ê ? ' é / I å

/ 1 ä + 1 / 1 / 3 / + F é @ ? Þ / ' 1 8 / Þ 1 ' 3 ? @ + I à 3 ' â @ < Þ @ I / 1 + ã < F F à + < 3 ' M + 3 / á 3 ? + 1 Þ F + 3 / ' 1

ê ? ' á @ Þ Þ # ó @ + 1 + F à � @ I 3 Ý @ Þ ' < ? á @ á ' I @ ' ã 3 Ý @ ú ü ý þ å 3 + â ê F < ä å / 1 + 1 I I / Þ á ' é @ ? @ I

3 Ý @ Þ ' < ? á @ ' ã 3 Ý @ ê ? ' â F @ M Þ 3 Ý + 3 ç @ Ý + I / I @ 1 3 /) @ I #

� @ ä + ? I / 1 ä < Þ + â / F / 3 à 8 ç @ Ý + é @ ã ' < 1 I 3 Ý @ 3 ' ' F 3 ' â @ / 1 3 < / 3 / é @ + 1 I @ + Þ à 3 ' < Þ @ #

Ü Ý @ 3 ' ' F @ + Þ @ I ' < ? ? @ < Þ @ ê ? ' á @ Þ Þ # ï 1 ê + ? 3 / á < F + ? 8 ç @ Ý + é @ ã ' < 1 I 3 Ý + 3 / 3 ç + Þ M ' ? @

á ' Þ 3 @ ì @ á 3 / é @ 1 3 / M @ L @ ì ' ? 3 4 3 ' < Þ @ 3 Ý @ 3 ' ' F ? + 3 Ý @ ? 3 Ý + 1 â < / F I / 1 ä 3 Ý @ ç Ý ' F @ 3 / M @

' 1 3 ' F ' ä à ã ? ' M Þ á ? + 3 á Ý / 1 - ? ' 3 ô@ ä ô@ å õ ö ö ö #

ï 1 ã < 3 < ? @ ç @ ê F + 1 3 ' â < / F I ' 3 Ý @ ? ' 1 3 ' F ' ä / @ Þ â à M @ + 1 Þ ' ã ? @ < Þ @ 8 1 + M @ F à 3 Ý @

' 3 Ý @ ? Þ < â ' 1 3 ' F ' ä / @ Þ 1 @ @ I @ I ã ' ? 3 Ý @ 1 + 3 < ? + F F + 1 ä < + ä @ I / + F ' ä < @ Þ à Þ 3 @ M 8 < Þ / 1 ä 3 Ý @

Þ < ê ê ' ? 3 ' ã + é + / F + â F @ 3 ' ' F Þ # ó @ + F Þ ' ê F + 1 3 ' / M ê ? ' é @ 3 Ý @ ú ü ý þ / M ê ' ? 3 3 ? + 1 Þ F + 3 ' ?

' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö #

24

� � Ô � Î Ñ � � � Ò � � + � Î Ï �

ó @ 3 Ý + 1 è 3 Ý @ + 1 ' 1 à M ' < Þ ? @ é / @ ç @ ? Þ ã ' ? 3 Ý @ / ? < Þ @ ã < F F á ' M M @ 1 3 Þ # ó @ + F Þ ' 3 Ý + 1 è 3 Ý @

Þ < ê ê ' ? 3 ê ? ' é / I @ I â à 3 Ý @ 3 @ á Ý 1 / á + F Þ < ê ê ' ? 3 3 @ + M Þ ' ã - ? ' 3 ô@ ä ô@ å õ ö ö ö + 1 I ú 1 3 ' F / 1 ä < +

% @ ? é @ ? # ó @ 3 Ý + 1 è î þ Ü #

� � � � Ð � Î Ô � �

� u É ` yg � � S Y � m � u m £ Y Q \ yg \ X Y � m � u m P g Q f y	 g � � a \ g Q m
 u � u m P W q yY � � � yY Q Y � m h u 7 É S a ` X a \ c Ç \ �

^ W ` W c a Y | g ^ ^ ½ Y È \ W Å ` Y X c Y � Y � Y `
 | a \ c ^ ½ Y Ç \ ^ W ` W c ¬ o Y | a c \ s \ � a Q W \ q Y \ ^ u Z \ 7 � � � �

� � � � � � � � ! # % � ' � � * + � � � � . � 0 1 � � # � � � 2 � � 4 % � 6 { È h Ã � 8 | m É g \ 9 m h ` � Y Q ^ g m � � � 8 u

® u ¥ ½ g S X Q a m : u m £ g Q � S ½ g Q m h u m £ a ª Y | m � u m È g Q U m � u m � a f Y m
 u 7 = 6 � � ' � � * + � � � � B D �
E � � � � � # � F � # G H J L J N u È \ W Å ` Y X c Y ~ ¬ | ^ Y q | � g � W Q g ^ W Q ¬ m È ~ � � � 8 � � O m ~ ^ g \ w W Q X
 \ a � Y Q | a ^ ¬ m

� � � 8 u

R u o S a \ Y � Y ` X m h u
 u m ~ ^ W ^ Y Q m � u m Ã Y a X Y \ m � u � u m È Y \ Y U g m É u m É Y \ T g q a \ | m : u � u 7 Ã W \ �

X Y Q ^ W W ` | U h f W q U g Q g ^ a � Y | ^ S X ¬ W w W \ ^ W ` W c a f g ` Y \ c a \ Y Y Q a \ c ^ W W ` | u Z \ 7 � � � � � � � � � � � !
% � ' � � * + � � � � . � 0 1 � � # � � � 2 � � 4 % � 6 { È h Ã � � | m É g \ 9 m h ` � Y Q ^ g m � � � � u

� u £ g Q � S ½ g Q m h u m £ a ª Y | m � u m � a f Y m
 u 7 � ½ Y Ç \ ^ W ` a \ c S g ~ Y Q � Y Q 7 h � W W ` w W Q ¥ W ` ` g � W Q g �

^ a � Y Ç \ ^ W ` W c ¬ ¥ W \ | ^ Q S f ^ a W \ u Z \ 7 � � � � � � � � � � � ! # % � ' � � * + � � � � . � 0 1 � � # � � � 2 � � 4 % � 6
{ È h Ã � O | m É g \ 9 m h ` � Y Q ^ g m � � � O u

Z u P Y \ Y | Y Q Y ^ ½ m � u 7 È \ W Å ` Y X c Y Z \ ^ Y Q f ½ g \ c Y £ W Q q g ^ u Z \ 7
 u h ` ` Y \ g \ X � u £ a ª Y | g \ X s u

~ g \ X Y Å g ` ` { Y X | u | 7 ' [\ ^ � � � � � � � � � � m � W Q c g \ È g S w q g \ \ 7 Z � � _ O � � m � � � � u

O u P yW q Y � � � yY Q Y � m h u m
 S Q a | ^ W m ¤ u m � g � W | m
 u 7 s � g ` S g ^ a W \ g \ X h | | Y | | q Y \ ^ W w ^ ½ Y È \ W Å ` �

Y X c Y ~ ½ g Q a \ c � Y f ½ \ W ` W c ¬ u Z \ 7 ¤ u
 u Z u � g Q | { Y X | u | 7 a � * D � � c � � G e D � � � ' � � * + � � � �
B D � m Z Ç ~ � Q Y | | 7 ® 8 � _ ® � O m � � � Z u

n u P Q S � Y Q m � u 7 h � Q g \ | ` g ^ a W \ h U U Q W g f ½ ^ W � W Q ^ g � ` Y Ç \ ^ W ` W c ¬ ~ U Y f a k f g ^ a W \ | u ' � � * + � � � �
. � 0 1 � � # � � � m
 7 � � � _ ® ® � m � � � R u

8 u ¤ W ¬ m ¤ u £ u m ~ a \ ^ Y ª m � u m o Y f ª Y Q m ~ u m ¥ Q S � yY � ¬ m � u m £ Y Q c Y Q | W \ m � u Ã u m � S | Y \ m � u 7 ¥ Q Y �

g ^ a \ c ~ Y q g \ ^ a f Ã Y � ¥ W \ ^ Y \ ^ | Å a ^ ½ � Q W ^ yY c yY � ® � � � u i k k k i � # � + + � � � � # o G # � p � r { ® | 7

O � _ n � m ® � � � u

� u Ç \ ^ W Ã Y � 7 t � + � F � � D u + � ^ J N v . 1 � F � G � � � � # � + � � G # � � + m ® � � ® u

� � u � S | | m � u m : g ` Y \ ^ Y m h u m � g f P Q Y c W Q m � u m ~ Å g Q ^ W S ^ m Ã u 7 � Q g f ^ a f g ` s Á U Y Q a Y \ f Y | a \ � Q g X �

a \ c Ç 9 Ç \ ^ W ` W c ¬
 | g � a ` a ^ ¬ g \ X � Y S | g � a ` a ^ ¬ u Z \ 7 � � � � � � � � � � � ! # % � ' � � * + � � � � . � �

0 1 � � # � � � 2 � � 4 % � 6 { È h Ã � � | m É g \ 9 m h ` � Y Q ^ g m � � � � u

25

Integrating Ontology Storage and Ontology-based Applications
Through Client-side Query and Transformations

Peter Mika

Vrije Universiteit, Amsterdam
pmika@cs.vu.nl

Abstract. This paper investigates the integration of ontology storage and ontology-based applications
through the example of the EnerSearch case study conducted within the On-To-Knowledge research
project. We look at the problem of integrating the Sesame storage and query facility with its client
application and identify both functional and technical needs for a new software package for client-side
query and transformations. We introduce the solution developed during the case study that also opens
the way for creating Portable Inference Modules that capture transformation knowledge in a modular
way. We discuss future extensions to this package based on the belief that the issues at hand will
equally effect future Semantic Web applications.

26

Introduction

The World Wide Web has drastically changed both the form and availability of information in the past
years. As the number of web pages and users on the public internet skyrocketed, companies around the
world have just as eagerly adopted internet technologies as a basis for their own networked, electronic
information stores. The resulting intranets, filled with weakly structured, weakly organized information,
have created a knowledge management problem that could not be any more handled by existing document
management solutions.

The On-To-Knowledge research project [1] is a joint, EU-funded research effort that aims to improve on
the state of the art of web-based knowledge management solutions for SMEs and distributed organizations
by leveraging ontologies. Instead of building a complete knowledge portal, the approach of On-To-
Knowledge is to provide for the interoperability of the components developed within the project, based on
open standards and agreements among the partners, such as a common data model for representing domain
knowledge. The aim of the case studies within On-To-Knowledge is to validate this approach by showing
that it is indeed possible to integrate these components into customized solutions that fit the specific
knowledge management problems of the case study partners.

EnerSearch, a pan-European research organization investigating new IT based business strategies and
customer services in deregulated energy markets, carried out the case study that we will use as an example
in this paper. The company joined On-To-Knowledge for what ontologies promise with respect to greater
user satisfaction through more effective querying of its corporate memory. The status of EnerSearch as a
virtual knowledge organization warranted that the value attributed to finding the right information is high
enough for an increased interest in state-of-the-art semantic solutions.

The ontology developed in the case study is a combination of a lightweight domain ontology obtained by
natural language processing with OntoExtract [2] and a rich ontology reverse engineered from the
publication database of EnerSearch1. The ontology, which currently contains over 140,000 statements about
approximately 20,000 resources, is represented in RDF(S) format and stored in a repository at the central
Sesame storage server [3]. It provided semantic data for the searching and browsing interfaces that were
generated using the QuizRDF [4] and Spectacle [5] tools, respectively.

The case study provided ample evidence that ontology-based tools should not be evaluated as standalone
applications, but should be qualified as part of integrated frameworks or applications. In the following we
discuss our experience in application integration to demonstrate the relevance of such an approach.

In the course of the case study we identified a bottleneck in integrating the ontology storage facility and
the ontology-based applications: the division of query and transformation work between client and server
inhibited creating applications that would have scaled up to industrial standards. Moreover, support was
lacking for custom inference using semantics that is available only at the client side.

This paper presents a detailed description of the issues at hand and proposes a solution to address the
need for client-side query and transformations. In the following section we take a closer look at the
workings of ontology storage facilities through the example of the Sesame storage server. This will lead us
to a better understanding of the observations that follow in Section 0 with regard to the present approach to
query and transformations. These observations also form requirements in that they point to the necessity of
client-side query and transformations.

The solution that was developed during the case study is presented in Section 0. We also show that this
solution finds an even wider application in creating Portable Inference Modules (PIMs). These modules not
only serve to improve efficiency, but enable the sharing of transformation knowledge by capturing it in a
portable way. We outline future work in Section 0 and offer some conclusions in the closing section of the
paper.

1 The database contains metainformation about the documents such as the author, title, publication date etc. It has been

used on the current website to render a table of the publications.

27

The Sesame RDF(S) storage and query facility

In many early Semantic Web initiatives semantic data was embedded within HTML or XML pages or it
was simply stored within separate files and served to clients by web servers (cf. SHOE [6] or OntoBroker
[7]). However, as ontologies became all the more valuable and ontology-based applications started to
appear, the need has arisen for specialized ontology servers to make data manipulation efficient and to
provide advanced services such as querying, versioning, access control and security.

To better understand the problems related to ontology storage and query, it's helpful to take an in-depth
look at how these facilities operate. For this purpose, we've chosen the Sesame storage and query server for
its role in the EnerSearch case study and for its open architecture. Sesame, originally developed and further
supported by AIdministrator B.V. in the Netherlands, has become open source since March 2002.

Functional modules

DBMSFiles
Permanent storage

RM
I

SO
AP

H
TT

P

Request demult iplexer (router)

Backend layer

St
or

ag
e

fa
ci

lit
y

Client library

Figure 1. Overall design of web-based storage facilities

Although actual implementations differ, ontology storage facilities share the common design of web-
based storage facilities shown in Figure 1. In the following, we will describe how Sesame implements the
components of this design.

As all Semantic Web tools, Sesame primarily communicates with clients through HTTP, though in the
future some services will be offered through SOAP and RMI as well. Sesame also has a client API, which
is a Java programming interface that abstracts remote communication. In other words, programmers can
use the API to access the services of Sesame in their ontology-based applications without having to deal
with the actual communication between client and server.

The next layer, the request router forwards requests to the functional modules of Sesame. The server
currently implements the following operations on repositories:

1) Data manipulation

a) Upload of RDF(S) documents. Currently only RDF-XML format is supported.
b) Extraction of ontology and data in RDF(S). It's possible to separately extract the ontology

(schema) and the instance data.
c) Removal of statements.
d) Clearing the entire repository.

2) Query

28

a) Formal queries. Support for two RDF query languages have been implemented, namely RQL [8]
and RDQL [9], with RQL being strictly more expressive than RDQL.2

b) Browsing of the repository. The user can navigate through the RDF graph model by clicking
through the nodes that are of interest.

From the applications point of view, the significance of the query engines is that they provide access to

the content of the repository on the level of the data model, i.e. the RDF graph model complemented with
the semantics of the reserved vocabulary of RDF(S).3 This means that queries may not only match triples,
but can also refer to paths in the graph model or elements of the schema. For the software engineer this
allows to formulate complex queries in a relatively simple language.

A support function to querying is the built-in inference module of Sesame that applies the RDF(S)
closure rules [10] to data, thereby calculating the complete RDF model of the repository. At present
inferencing is applied at upload time, where the alternative would be to run the inference module at query
time. The difference is that the present solution suits query intensive applications better as opposed to
applications that rely on frequent manipulation of the data.

The functional modules access the repositories through another abstract layer called SAIL. The purpose
of the SAIL API is to hide the implementation of permanent storage. Storage SAILs exist for relational
databases (PostgreSQL, mySQL) with several others under way. Development plans call for in-memory
and peer-to-peer network storage.

Revisiting the design shown in Figure 1, the reader may notice that ontology-based storage facilities
such as Sesame only differ from other web-based storage systems in their functional modules. More
specifically, ontology servers are partially aware of the semantics behind the data which enables them to
offer services such as query and reasoning. However, as we will see in the next section, server-based query
and transformations do not always provide an ideal solution for building scalable ontology-based
applications.

Ontology storage, query and transformations in the EnerSearch case study

As mentioned above, in the framework of the EnerSearch case study Sesame was used to store the
lightweight domain ontology extracted by OntoExtract and the ontology obtained by converting the
publication database of EnerSearch. This repository was then queried for the semantic data that was needed
by the two ontology-based applications, the QuizRDF search engine and the Spectacle presentation.
Through the course of building these applications, we have made six observations that led to the
development of a new package for client side query and transformations. Note that these observations are
generic on purpose. In particular, nothing is claimed about the absolute performance or scalability of
Sesame, for such statements could only be made within a framework and in comparison to some other
product, theoretical limit or baseline.

Observation 1: Small, frequent queries are inefficient.

The first, naïve implementation of the Spectacle application called for querying Sesame on an on-

demand basis, i.e. whenever the value of a property or the subclass(es) of a class became relevant. While
testing the application with ontologies containing more than a hundred classes, it was found that posing
small, frequent queries to Sesame presents a serious bottleneck in generating the presentation. Even though

2 Note that parallel to the development of ontology representation languages, query languages go through an intensive

phase of development. Moreover, there is no widely accepted RDF(S) query language yet that would also have the
sanction of a standardization body.

3 Similarly to how relational query languages operate on tables and XML query languages work on the XML tree,

regardless of external representation.

29

the users would not encounter the problem4, runtimes on the scale of days were deemed unacceptable even
for off-line website generation.

Here, the bottleneck is caused by the communication costs of accessing the server through HTTP.

Observation 2: Some queries that are useful from an application perspective cannot be expressed

or efficiently executed.

As it turned out, some of the more advanced queries also suffer from slow evaluation times. An example

of such a query is the following RQL select statement that returns the concepts from the ontology along
with page(s) where they appear.

select c, p from {p} oe:isAbout . rdf:type {c} . rdf:type { concept }

where concept = oe:Concept

using namespace

oe = http://ontoserver.cognit.no/otk_rdf# ,

rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#

The path expression in the query matches a three edge long path in the graph and returns two points

along the path. Despite its relative simplicity, evaluation times for this query ranged over a few dozen
minutes even for an ontology with few hundred concepts.

An ever more challenging problem turned out to be querying for all direct subclass relations within an
RDF(S) model. While such information is readily available in the level of the SAIL API, there is no direct
support for it in the RQL language. More specifically, while there is a query with the intended meaning,
evaluating it calls for matching all possible pairs of classes. Again, the net effect is an execution time that is
unacceptable for sizeable ontologies.

Finally, there are transformations that require data manipulations that cannot be expressed in a
declarative language, but require the full power of a programming language. We will see such an example
in the following section when transforming a literal value of comma-separated words into several separate
relations.

At the moment steps are being taken to optimize both the query language and the evaluation of queries.
Naturally, there will always be inefficient queries in every sufficiently expressive language; the goal here is
to optimize the queries that are useful from an application perspective. Unfortunately, there are very few
real applications to provide feedback to that work.

It also seems that the technical barrier to optimization is the cost of communication with the underlying
permanent storage, although an in-memory storage implementation could remedy the situation at the
expense of size scalability.

Observation 3: The smaller the repository, the faster a transformation executes.

While this seems a trivial observation, its consequences are far reaching. Consider the case of applying

the RDF(S) closure rules to data that is being uploaded to Sesame.
Figure 2 shows the processing speed for a series of 17 consecutive uploads to an originally empty

repository for two implementations of the RDF inference engine. For the 'old' series we used the first, naïve
implementation, while values for the 'new' series were obtained using an optimized version of the inference
module. The optimizations, for example, streamline communication with the underlying database and
employ heuristics such as dependencies between the inference rules.

4 In the current version, both the navigation and content of the Spectacle website is rendered in advance, and server

only adds the design at request time. For a truly dynamic site slow queries could hinder the user experience as well.)

30

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Upload number

Sp
ee

d
of

 th
e

up
lo

ad

old new trendline (old)

Figure 2. The total number of statements per second over a series of 17 uploads for the old and
new implementation of the inference engine, with a logarithmic trend line for the former.

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Upload number

explicit statements inferred statements

Figure 3. Size of the uploads as the total number of statements.

The logarithmic trend line fitted on the graph reveals that the time needed for the inference is
proportional to the number of statements already in the repository. As the figure also demonstrates,
improvements over earlier implementation of the inference module considerably alleviated the situation
and most of the time during upload is now actually spent on parsing the input and adding the parsed
statements to the repository. For relational data stores, it would be even possible to move some of the
computation to the database server in the form of built-in procedures at the expense of portability.
Nevertheless, the basic observation would remain the same, due to the very nature of inference: every

31

added statement has to be matched against the rules and the statements in the repository to see if it results
in new, inferred statements.

Observation 4: Server-side transformation is inefficient for small datasets.

Looking at Figure 2, the reader might have wondered what is the reason behind the variation in the

upload speed, i.e. the noise that seems to be superposed over the general declining trend. Figure 3 provides
the clue: the size of the respective uploads in Figure 2.

The sharp dips on the earlier figure correspond to comparatively small uploads on the order of a few
hundred statements compared to several thousand statements for the other uploads. However, the difference
in the time needed for the upload to complete was not nearly as big as the difference in sizes. In other
words, the speed of processing smaller uploads is significantly lower then for processing larger ones.

Similarly to Observation 1, the explanation concerns the fixed administration costs of carrying out an
upload. The consequence for the applications that rely on frequent manipulation of smaller parts of the
dataset is again a performance problem.

Observation 5: Transformations weigh heavily on the storage facility.

Although this cannot be seen from the previous figure, reasoning also consumes considerable processing

power and makes the storage facility much less responsive to other requests during the inference process.
Inference over more expressive languages such as DAML+OIL [11] will be even more costly and might
seriously set back performance with respect to base functionality.

Observation 6: There is a distinct need for client side transformations.

Even if server side query and transformations could be made efficient at will, clients are in all cases

aware of much more of the semantics behind the data – semantics that in many cases cannot be described in
today’s ontology languages, yet do not warrant reasoning with a full scale predicate logic.

A typical example from the case study is the situation when a new relation is composed from other
properties. For example, if we would like introduce an occursIn relation between concepts and pages we
would need to compose three relations using the following rule:5

page) occursIn,:oe(concept,Concept):oe type,:rdf(concept,
concept)type,:rdf(instance,instance) isAbout,:oe (page, instance

→∧
∧∧∃

Such composition cannot even be described in DAML+OIL. Certainly, languages could always be

extended to allow for encoding all kinds of rules and axioms (up to the expressiveness of full logic), but we
would most likely still prefer a less expressive language considering the lightweight nature of the ontology.

Moreover, if the transformation includes resources or properties from separate repositories, inferencing
cannot be done at any single server. How to execute queries on disparate servers is an oft-neglected
research area, even though it is paramount to realizing the Semantic Web.

The above observations compelled us to develop the core of a new API for client-side query and

transformation. This package –code named on2k.graph- is presented next.

The on2k.graph package

The on2k.graph package is a generic Java API that operates on a powerful graph paradigm to support
programmatic query and transformations of RDF(S) models. The solution itself is based on a freeware
Operations Research package from DRA Systems.

5 The reader might conclude that the above RQL query returns those concept and page pairs that satisfy the precedence

of this rule. In fact, many reasoning tasks and constraint checks can be rewritten as simple actions/checks on the
result of queries.

32

The API is geared toward importing, manipulating and exporting mono-property graphs, i.e. graphs
where every edge is labeled using the same property. This design decision is motivated by
• Performance issues. Ontologies, especially lightweight ontologies, typically contain only a select

number of properties. Mono-property graphs are therefore ideal cross-sections from a performance point
of view: importing them is efficient and once the transformation has been carried out then the result can
be exported just as efficiently in the form of such graphs.

•

Functional issues. Queries and transformations typically involve only a select number of properties and
the resources related by them. Some examples from the EnerSearch case are presented later in this
section.
Therefore, the solution addresses both the performance and functional concerns that have been listed as

observations in the previous section.
The package has generic interfaces to import and export graphs using any source or target that is capable

of producing or consuming statements with a given predicate. Actual implementations of these interfaces
are given for Sesame using the client library.

Support is also provided for the mapping of ontological classes to Java classes. (At present the
programmer provides these classes, although it would be possible to compile them from their descriptions
as done in the work of Cranefield [12].) These dynamically instantiated classes are used to hold literal
properties and to provide operations on literal properties. For example, in the EnerSearch domain the class
Publication provides a getDate() operation that returns the date of the publication.

Simple graph manipulations such as taking the union or intersection of graphs and the support for
symmetric properties are provided by the underlying graph environment. Additional expressiveness,
however, is kept to the minimum, because extra expressive power could become an overhead for
applications using lightweight semantics. Instead a helper class built using the functionality of the package
provides basic operations such as determining subclasses, direct subclasses, superclasses and instances of
classes. (Types of instances are readily available without this class.) A more extensive library of queries,
inferences, constraint checks might be added later and invoked on an on-demand basis.

Using on2k.graph in the EnerSearch case

Originally, the package has been developed within the case study to optimize communication with

Sesame when generating the Spectacle presentation, but it has been later employed to facilitate simple
transformations as well.

ens:Energy

ens:energy_001

rdf:type

page.html
oe:isAbout

oe:occursIn

oe:Concept

rdf:type

page.html
dc:Subject

Load, Power, Energy

page.html

ens:Energy

ens:Power

ens:Load

oe:
isA

bout

oe:isAbout

oe:isAbout

Figure 4. An example of a simple inference and a transformation on the domain ontology.

33

pub:Author

rdf:type

pub:HansA

Akkermans, Hans

pub:paper_17
pub:hasAuthor

pub:paper_17

Akkermans, Hans

quizrdf:hasAuthor

rdf:type

pub:Publication

rdf:type

pub:Publication

rdfs:label

Figure 5. An example of a transformation on the publication ontology.

Some examples of the transformations carried out are shown on Figure 4 and Figure 5. On the domain

ontology, we infer the occursIn relation as mentioned before and convert the comma separated list of values
in the Dublin Core [13] Subject field into relations between pages and concepts. (See Observation 2 in
Section 0.) Furthermore, to transform the publication ontology into a form preferred by QuizRDF, we
transform the relation between a publication and an author into a literal attribute of the author resource.
Other examples not shown on the figures include inverting relations and filtering out non-key concepts.

All transformations work in three steps, (1) querying the necessary graphs from Sesame, (2) carrying out
the transformations and (3) uploading the resulting graph(s) if necessary. For better performance, the output
of a transformation may be kept in memory if it’s used by another transformation, as is the case with the
ones shown in Figure 4. Currently, there is no automated discovery of such a dependency (or trigger),
although this information could be inferred based on the input/output relations of our transformations.

The on2k.graph package not only enabled client side transformation (see Observation 6), but also
allowed the expressiveness mentioned in Observation 2. It greatly improved performance and made it
possible for our application to scale to the level of the EnerSearch ontology (addressing the issues in
Observations 1, 3 and 4.) The overburdened central Sesame server was relieved from the effects of
transformations (see Observation 5), except for RDF inference. On the client side memory requirements
have never exceeded 100 MB, not even with all resources kept in memory as Java classes.

Portable Inference Modules

The queries and transformations implemented using the on2k.graph package do not need to be limited to
the scope of a single application. In fact, once there is an agreement on the programmatic representation of
the data model of the ontology language, the procedures that operate on this model become what we call
Portable Inference Modules. PIMs are a sharable, reusable form of transformation knowledge captured in a
procedural form.

PIMs need not to be constrained to represent custom semantics either. Semantics of RDF-S, for example,
can be fully described as a set of inference rules that operate on the RDF model [10]. PIMs can be used to
capture the built-in inference rules and constraints of ontology languages, thereby making it possible to use
only the subset of a language that is necessary for an application or to mix-and-match functionality from
various ontology languages.

Moreover, if PIMs are trusted and fine grained enough to be explanatory, a series of such modules can
be used to support a chain of reasoning, since they provide evidence that can be checked if necessary by
executing them over the data. Looked at from another perspective, PIMs can be taken as a compression
mechanism: applications only need to transfer the explicit data and the PIMs, because the full model of the
data (i.e. all statements that are valid) can be reconstructed from these components.

34

PIMs can also be considered for use on the server side as the semantic equivalent of stored
procedures.6As we know it from the database world, such server-side transformations are indeed justified in
many scenarios.

The concept of Portable Inference Modules differs from Semantic Patterns introduced by Staab,
Erdmann and Maedche [15] in several respects. Semantic Patterns are defined on a higher level of
abstraction: while PIMs capture inference knowledge, patterns concern themselves with design knowledge.
Patterns consist of a natural language description and a set of formal constraints on their instantiations.
(There are four types of constraint relating to what an instantiation must, must not, should and should not
entail, based on the input.) PIMs, on the other hand, are given in a programmatic form (although they might
be accompanied by formal descriptions in the future), which means that they work on the level of the
representation model of a specific language (RDF). Due to the higher level of expressiveness PIMs are
expected to be practical building blocks of Semantic Web applications, while semantic patterns are better
suited for communicating, cataloguing, reverse-engineering and problem-solving on the design level.

Future work

The major value driver of the Semantic Web will be its applications ability to reason over data. Unlike
software using conventional databases, semantic applications not only reuse previously stored data, but
base their workings on facts inferred from data.

Despite its significance, there is very little attention paid to how inference knowledge will be represented
on the Semantic Web. Even the most expressive of ontology languages such as DAML+OIL provide only
limited ways to express axioms. Although they could be extended up to the expressiveness of first order
predicate logic, the resulting language would be a large overkill for applications operating with lightweight
ontologies, such as the system developed within the EnerSearch case study.

However, if at some point in the future an agreement is reached on how transformation knowledge
should be represented in a declarative way, it may become possible to compile declarative descriptions into
procedural form. Alternatively, such descriptions may accompany PIMs as an interpretation of their
workings.

In a similar fashion parameterized rules could be translated into parameterized procedures. Note that
many of the modeling constructs used in ontology languages can be interpreted as such: for example, the
transitivity of a property can be considered a generic rule that is parameterized by a property. Once we have
a 'transitivity PIM' available, and the transitivity of a property becomes evident, the PIM can be loaded,
instantiated and executed to carry out the constraint check or inference.

In the late future rule types as the ones used in the CommonKADS methodology [14] for clustering
similar rules may also be considered as templates for PIMs.

Conclusion

Due to their complexity and dynamic nature, Semantic Web applications of the future are likely to be
loosely coupled, distributed or agent-based solutions woven from a variety of components and services. In
such a setting efficient query and transformation of semantic data will largely influence the performance
and scalability of applications.

As we have seen through the example of the EnerSearch case study conducted within the On-To-
Knowledge project, the present division of query and transformation between the ontology storage and
query facility and its clients presents a significant bottleneck. The solution is to move part of these tasks to
the client, which is also aware of much more of the semantics behind the data. Besides greater efficiency,
this also opens the way to the creation of portable transformation modules that can be shared between
agents and applications.

Transformation knowledge is key to creating interoperable semantic applications. Therefore, when
captured in the right form, it may become a valuable commodity on the Semantic Web.

6 Note that “server side” is a relative notion: storage engines such as Sesame can be embedded into applications, if

required.

35

Acknowledgements

The author would like to express his gratitude to Frank van Harmelen (VU), Jeen Broekstra (VU,
AIdministrator) and Arjohn Kampman (AIdministrator) for their valuable comments to this paper, with
special thanks to Arjohn for his work with measuring and charting the performance of Sesame's inference
engine.

References:

[1] The European On-To-Knowledge project (IST-1999-10132). See http://www.ontoknowledge.org.

[2] R. Engels. CORPORUM-OntoExtract: Ontology Extraction Tool. On-To-Knowledge Deliverable D6. See

http://ontoserver.cognit.no.

[3] J. Broekstra and A. Kampman. Sesame: A Generic Architecture for Storing and Querying RDF and RDF

Schema. On-To-Knowledge Deliverable D10. See http://sesame.aidministrator.nl.

[4] U. Krohn and J. Davies. The Search Facility RDFferret. On-To-Knowledge Deliverable D11. See

http://www.ontoknowledge.org.

[5] Spectacle: White Paper on Advanced Information Disclosure, 2001. See

http://www.aidministrator.nl/publications/SpectacleWhitePaper.pdf

[6] J. Heflin and J. Hendler. Dynamic Ontologies on the Web. In Proceedings of American Association for Artificial

Intelligence Conference 2000. See http://www.cs.umd.edu/projects/plus/SHOE/

[7] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based access to distributed and semi-

structured information. In R. Meersman et al., editor, Proceedings of DS-8: Semantic Issues in Multimedia
Systems, Kluwer Academic Publisher, 1999. See http://ontobroker.semanticweb.org/

[8] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis & M. Scholl.

RQL: A Declarative Query Language for RDF. To appear in Proceedings of the 11th International Conference
on the WWW, Hawaii, 2002. See http://zeus.ics.forth.gr/forth/ics/isl/publications/paperlink/dql-rdf.pdf.

[9] A. Seaborne. RDQL: A Data Oriented Query Language for RDF Models, 2001. See

http://www.hpl.hp.com/semweb/rdql.html.

[10] P. Hayes. RDF Model Theory. W3C Working Draft, April 2002. Available online at

http://www.w3.org/TR/2002/WD-rdf-mt-20020429/.

[11] F. van Harmelen, P. Patel-Schneider and I. Horrocks. Reference description of the DAML+OIL ontology markup

language, March 2001. See http://www.daml.org/2001/03/reference.html.

[12] S. Cranefield. UML and the Semantic Web. In Proceedings of the International Semantic Web Working

Symposium (SWWS), 2001.

[13] Dublin Core Metadata Element Set, Version 1.1: Reference Description. Available at

http://dublincore.org/documents/1999/07/02/dces/

[14] G. Schreiber, H. Akkermans, A. Anjewierden, R. Hoog, N. Shadbolt W. Van de Velde and B. Wielinga.

Knowledge engineering and management: The CommonKADS Methodology. MIT Press, Massachussets, 1999.

36

[15] S. Staab, M. Erdmann and A. Maedche. Engineering Ontologies using Semantic Patterns. In Proceedings of the
IJCAI’01 Workshop on E-business and the Intelligent Web. Seattle, 2001. See
http://www.csd.abdn.ac.uk/~apreece/ebiweb/programme.html.

37

The integration of OntoClean in WebODE

Mariano Fernández-López, Asunción Gómez-Pérez

Facultad de Informática . Universidad Politécnica de Madrid

Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain

{mfernandez, asun}@fi.upm.es}

Abstract. Enterprises will only be interested in the use of ontologies if such

ontologies are evaluated enough. Therefore, the development of ontology

evaluation tools is a crucial matter. We have built the ODEClean module in the

workbench for building ontologies named WebODE. ODEClean allows

cleaning taxonomies following the OntoClean method, and WebODE provides

technical support to the Methontology methodology for building ontologies. We

approached the development of this module in two steps. Firstly, we have

integrated the OntoClean method into the conceptualisation activity of

Methontology. Secondly, we have designed and implemented ODEClean using

a declarative approach for specifying the knowledge to be used on the

evaluation. ODEClean uses: (a) the Top Level of Universals, (b) meta-

properties based on philosophical notions, and (c) OntoClean evaluation

axioms. The main advantage of this approach is that the system could easily

allow the user relax or stress the evaluation of the taxonomy just selecting more

or less meta-properties.

1 Introduction
Currently the semantic web [1] attracts researchers from all around the world.

Numerous tools and applications of semantic web technologies are already available

[2] [3] [4] and the number is growing fast [5]. Ontologies play an important role for

the semantic web as a source of formally defined terms for communication. They aim

at capturing domain knowledge in a generic way and provide a commonly agreed

understanding of a domain, which may be reused, shared, and operationalised across

applications and groups. The large visibility of the semantic web, its tools and

applications already attracts industrial partners, e.g. in numerous projects funded by

the European Commission. As they move from academic institutions into commercial

environments they have to fulfil stronger requirements (e.g. concerning correctness,

consistency, completeness, conciseness, etc.). Therefore, the evaluation is a key

activity in ontology development. Some of the most well-known proposals for

ontology evaluation are: Gómez-Pérez's proposal [14] [15] [16], Kalfoglou and

colleagues' proposal [22][23], and OntoClean [26]. OntoClean is a method for

cleaning tangled taxonomies founded in philosophical notions as: rigidity, identity,

unity, etc.

Most of the methodologies and methods ([25], [18], [10], [24], etc) for building

ontologies include an evaluation activity. Most of the times, ontology evaluation is

done once the ontology is finished and implemented in a given ontology language.

Methontology [12] proposes to evaluate the ontology during its whole life cycle: it

38

recommends to carry out most of the evaluation of the content at the conceptualisation

activity to prevent the detection of faults in the ontology code. WebODE [8] is the

workbench that gives technological support to some activities of Methontology.

However, Methontology does not propose a set of design principles that guide the

development of taxonomic knowledge and methods to clean tangled taxonomies.

Therefore, given that OntoClean allows cleaning wrong subclass of links in

taxonomies using notions like rigidity, identity and unity, it is an appropriate

complement to be used for building taxonomies at the conceptualisation activity in

Methontology. As a consequence, we integrated OntoClean method in Methontology,

as we presented in [11].

Once the unification at the methodological level was performed, we were in the

appropriate situation to build the software that gives support to OntoClean in

WebODE. We call this software ODEClean. The inclusion of the ODEClean module

would allow the use of the OntoClean method in an efficient way. Indeed, until now,

OntoClean is being used in several industrial and academic settings to evaluate

taxonomies [19]. However it is usually applied by hand.

Our solution also fits with the idea presented in [13], since we have not built an

isolated tool for OntoClean, but a module integrated in an ontological engineering

workbench.

The base of ODEClean is Guarino and their colleagues' top-level level ontology of

universals [20], whose instances are concepts (in contrast with the top-level of

particulars, whose instances are individuals). We have implemented the top level

ontology of universals in WebODE. We enriched this ontology including the meta-
properties (rigidity, identity, unity) and the evaluation rules proposed by OntoClean

method. Then, the ontology was completly translated automatically using WebODE

translators into Ciao Prolog. Thus, ODEClean consults the enriched top-level of

universals and the axioms in Prolog every time that it has to evaluate a given domain

ontology. That is, the main advantage of the ODEClean module is that the
knowledge used to evaluate ontologies is declaratively expressed through an
ontology inside our ODEClean module. The user could relax or to stress the
evaluation just clicking on more or less meta-properties

 Section 2 will present OntoClean, section 3 will present the top-level ontology of

universals, section 4 will show ODEClean's ontology (enriched top-level of

universals), section 5 will present WebODE, section 6 will show the ODEClean plug-

in, its functions and how we have developed it, and, finally, section 7 will be devoted

to conclusions and future lines.

2 OntoClean method
OntoClean has been elaborated by the Ontology Group of the LADSEB-CNR in

Padova (Italy). It is a method to clean taxonomies according to notions such as:

rigidity, identity and unity. Let us see these notions [17]:

• Rigidity. This notion is defined based on the idea of essence. A property is

essential to an individual if and only if necessarily holds for that individual. Thus,

a property is rigid (+R) if and only if is necessarily essential to all its instances. A

property is non-rigid (-R) if and only if it is not essential to some of its instances,

and anti-rigid (~R) if and only if it is not essential to all its instances. For

39

example, the concept person is usually considered rigid, since every person is

essentially such, while the concept student is not normally considered anti-

rigid, since every student can possibly be a non-student a few years later.

• Identity. A property carries an identity criterion (IC) (+I) if and only if all its

instances can be (re)identified by means of a suitable “sameness” relation. A

property supplies an identity criterion (+O) if and only if such criterion is not

inherited by any subsuming property. For example, person is usually considered

a supplier of an identity criterion (for example the fingerprint), while student

just inherits the identity criterion of person, without supplying any further

identity criteria.

• Dependency. An individual x is constantly dependent on y if and only if, at any

time, x cannot be present unless y is fully present, and y is not part of x. For

example, a hole in a wall is constantly dependent on the wall. The hole cannot be

present if the wall is not present. A property P is constantly dependent if and only

if, for all its instances, there exists something they are constantly dependent on.

For instance, the concept hole is constantly dependent because every instance of

hole is constantly dependent.

• Unity. We can say that an individual is a whole if and only if it is made by a set

of parts unified by a relation R. For example, the enterprise Iberia is a whole

because it is composed by a set of people that are linked by the relation having
the same president. A property P is said to carry unity (+U) if there is a

common unifying relation R such that all the instances of P are wholes under R1
.

For example, the concept enterprise-with-president carries unity

because every enterprise with president is made up people linked through the

relation having the same president. A property carries anti-unity (~U)

if all its instances can possibly be non-wholes. Properties that refer to amounts of

matter, like gold, water, etc., are good examples of anti-unity.

Note that the definition of these notions refer to properties of properties. For example,

rigid is a property that can take different values in different properties (yes in

person, no in student, etc.). Another example is carries an identity criterion,

since it can also take different values in different properties (yes in person, no in

student, etc.). These properties of properties are called meta-properties, and to

indicate their values, special symbols are used. For example, +R means that the meta-

property rigid has the value yes. The meta-properties are useful to detect wrong

subclass of relations. For example, person cannot be subclass of student because

the former one is rigid and the later one not. In fact, if we had this link, what would it

happen if a person was not student any more?

According to LADSEB-CNR's proposal, the specific steps to clean the wrong

subclass of links in a taxonomy are (based on [26] and interviews with LADSEB-

CNR's group):

1) Put tags to every property assigning meta-properties. This eases the analysis,

because all the meta-properties are simultaneously visible.

1
 In the actual definition, the authors use essential wholes instead of wholes. We will

sometimes sacrifice the accuracy to make clear the ideas of this paper to people still

non very familiarised with Formal Ontology.

40

2) Focus just on the rigid properties. A taxonomy without rigid properties is called

backbone taxonomy. It is the base of the rest of the taxonomy, that is, the

essential part.

3) Evaluate the taxonomy taking into account principles based on the meta-
properties. For instance, a rule suggested in OntoClean is “a property carrying

anti-unity has to be disjoint of a property carrying unity”. As a consequence, “a

property carrying unity cannot be a subclass of a property carrying anti-unity”.

Therefore, bronze statue (it carries unity) cannot be a subclass of bronze

(it carries anti-unity), for example.

4) Consider non-rigid properties. When the backbone taxonomy has been

examined, the modeller has to evaluate the non-rigid properties. One of the

proposed rules is: “a rigid property and an anti-rigid property are ever disjoint”.

As a consequence, “a non anti-rigid property cannot be a subclass of an anti-rigid

property”. Therefore, person (rigid) cannot be a subclass of student (anti-

rigid).

5) Complete the taxonomy with other concepts and relations. There can be several

reasons to introduce new concepts. One of them is the transformation of concepts

in relations, for example, student could be transformed into a relation between

person and university.

OntoClean has been used by IBM, OntologyWorks
2
, Document Development

Corporation
3
. At the Italian National Research Council Laboratories (LADSEB-CNR

and ITBM-CNR), in Padova and Rome, OntoClean is in use in several projects

including the development of an upper-level ontology based on a restructuring of

WordNet, and the development of a core ontology for financial knowledge

interchange [19].

3 Top level Ontoloy of Universals
The LADSEB-CNR’s Ontology Group (in Italy) has built two top-level ontologies, as

presented in figure 1: one of universals, and another of particulars. Universals are

concepts like car or computer, etc. and individuals are instances of these concepts,

like my car or my computer, etc. Thus, for example, the particular my car is an

instance of the universal car.

Top Level Ontology of Universals (TPU) is made up by meta-concepts like type

or role, for example (see figure 2) [20]. The instances of such meta-concepts are

concepts (universals). Concerning Top Level Ontology of Particulars (and every

domain ontology) it is made up by concepts (universals) whose instances are

particulars. That is, the tag "universals" or "particulars" associated to the names of the

two CNR's ontologies are given by the kind of instances that they can contain.

2
 www.ontologyworks.com

3
 www.docdev.com

41

Fig. 1. Relationship between particulars and universals

Fig. 2. Class taxonomy of the top-level ontology of universals

4 ODEClean's ontology
LADSEB-CNR's group continues its research in defining well-defined criteria for

cleaning taxonomies, therefore, the proposed axioms can be modified and extended.

top level of particulars

car traveler

my car Jonh Smith

instance of instance of

PARTICULARS

UNIVERSALS

subclass ofsubclass of

instance ofinstance of

type role

top level of universals

42

That is, every tool that implements OntoClean should be flexible. Consequently, we

have taken a declarative approach to implement the knowledge used to clean

taxonomies in ODEClean. Moreover, the representation of OntoClean rules to clean

taxonomies also requires the representation of knowledge about meta-properties

(rigid, carries an identity criterion, etc.). Because of this, ODEClean uses the top-

level ontology of universals [19] enriched with LADSEB-CNR's meta-properties [17]

and evaluation axioms [26].

To build ODEClean's ontology in WebODE, we mixed the following components:

1) The top level of universals. We introduced the taxonomy that appears in figure 2,

which was obtained from [20].

2) Meta-properties. They were introduced as instance attributes of the root of TPU

(property) according to WebODE knowledge model. Figure 3 shows the meta-

concept property and its attributes.

3) OntoClean axioms. The OntoClean axioms to evaluate ontologies that appear in

[26] were also included in TPU using the WebODE WAB module. Figure 4 shows

the axiom that says : “a non anti-rigid property cannot be a subclass of an anti-

rigid property”.

During its working, ODEClean automatically links every concept inserted in the

ontology into the root of its ontology through the relation instance of, as we can see in

figure 3. Consequently, the TPU ontology meta-properties will be meta-attributes

(class attributes) of every concept of the ontology to be cleaned. Hence, the user can

assign values to the meta-properties in every concept of the ontology that (s)he is

building.

Fig. 3. Links between the top-level of universals and the ontology in process of development

TOP LEVEL OF UNIVERSALS

PROPERTY

Carries identity criterion: boolean

Supplies identity criterion: boolean

Carries anti-unity: boolean

Carries unity: boolean

Is dependent: boolean

Is anti rigid: boolean

Is rigid: boolean

The rest of

the top level

of universals

APPLE

Carries identity criterion: yes

Supplies identity criterion: yes

Carries anti-unity: no

Carries unity: yes

Is dependent: no

Is anti rigid: no

Is rigid: yes

Instance of

FOOD

Carries identity criterion: yes

Supplies identity criterion: no

Carries anti-unity: yes

Carries unity: no

Is dependent: yes

Is anti rigid: yes

Is rigid: no

Instance of

Subclass of

ONTOLOGY IN PROCESS OF
DEVELOPMENT

43

Fig. 4. OntoClean axiom in WebODE

In the current version of ODEClean the complete TPU hierarchy is not necessary,

since OntoClean meta-properties are defined in a single meta-concept. However, the

complete TPU hierarchy will be very useful. On the one hand, the values that the

meta-properties take in the domain ontologies could be used to automatically classify

the domain ontology concepts as instances of the meta-concepts of the TPU ontology

(role, type, etc.). In fact, each TPU meta-concept has values associated to different

meta-properties. For example, every role is anti-rigid, dependent, etc. On the other

hand, TPU is already a part of OntoClean [26]. When the ontologist has to assign

meta-property values to a domain concept, (s)he can take into account if that domain

concept (for example, food) is a role, a type, etc. Indeed, some meta-properties

values in the domain concepts could be deduced from the links between the domain

ontology and TPU.

Nowadays, the problem to use TPU as a part of OntoClean is to know which meta-

concept is each domain ontology concept instance of. Even more, depending on the

point of view adopted by the modeller, the same concept can be, for example, a role

or a type. In any case, ODEClean already includes the different meta-property values

through all its ontology. Thus, for example, the meta-property anti-rigid takes the

value yes in the meta-concept role. In this way, ODEClean is already prepared to

help, in the future, in meta-property value inference.

5 WebODE
WebODE is a scalable, integrated workbench for ontological engineering that eases

the representation of ontologies, the reasoning with ontologies and the exchange of

ontologies with other ontology tools and ontology-based applications [8]. It has been

developed by the Ontology Group of the Technical University of Madrid. The

WebODE’s knowledge model [6] is based on the intermediate representations

proposed in Methontology [10]. Hence, it allows modelling concepts and their

attributes (both class and instance attributes), taxonomies of concepts, disjoint and

44

exhaustive class partitions, ad-hoc binary relations between concepts, properties of

relations, constants, axioms and instances of concepts and relations.

WebODE is built according to a four-tier architecture: client, presentation,

business logic, and database tiers. In all these tiers, we have used standard technology.

The client tier uses HTML, XML, CSS, JavaScript and Java applets. The presentation

tier uses servlets and JSPs. The business logic tier uses Java and RMI-IIOP. Finally,

the database tier uses JDBC and Oracle. The main WebODE services are:

• The WebODE Ontology Editor. It allows the collaborative construction of

ontologies at the knowledge level. It provides a default form-based web user

interface to create ontologies according to the knowledge model aforementioned.

The WebODE Ontology Editor also includes OntoDesigner, a visual tool that

aids in the construction of concept taxonomies and ad-hoc relations between

concepts.

• WebODE Axiom Builder (WAB) . WAB is an axiom and rule editor that is

integrated in the WebODE Ontology Editor. It allows creating first order logic

axioms and rules using a graphical user interface. It also provides a library of

built-in axioms, which can be reused for creating other axioms, rather than

building them from scratch.

• WebODE's inference engine service. WebODE includes an OKBC-based

inference engine. This inference engine reasons with a subset of the OKBC

protocol’s primitives [7].

• WebODE interoperability services. Ontologies built with WebODE can be easily

integrated in other ontology servers or used in ontology-based applications.

Possible choices for interoperability include WebODE's ontology access API,

which can be accessed by other applications using RMI, and is completely

compliant with the WebODE's knowledge model. Currently, WebODE is able to

export to and import ontologies from: RDF(S), OIL, DAML + OIL, the

XMLization of CARIN and FLogic. It also can export to JESS and Prolog.

• WebPicker [9] is a set of wrappers that allow importing standards of

classification of products and services in the context of electronic commerce into

WebODE (UNSPSC, e-cl@ss and RosettaNet). We are currently extending it to

wrap other sources of information, such as Cyc.

• ODECatalogue is able to generate electronic catalogs from ontologies according

to some parameters. The catalogue generation from an ontology assures a correct

and rich classification of the different products.

• ODEMerge performs a supervised merge of concepts, attributes and relationships

from two different ontologies built for the same domain, according to semantic

criteria and resources used for natural language processing.

• ODEClean plug-in, which will be presented in this paper.

WebODE has been successfully used, with different domains and purposes and by

different groups of people, in the following projects: The European IST project

MKBEEM (IST 1999-10589), the OntoWeb thematic network (IST-2000-29243), the

Spanish CICYT project ContentWeb (TIC-2001-2745), the Spanish CICYT project

on Methodology for Knowledge Management (TIC-980741), etc.

45

6 The ODEClean plug-in of WebODE

To present the plug-in, first of all, we show its functions (section 6.1), and then, we

will describe how ODEClean module has been built (section 6.2). In section 6.2 we

will not describe the integration process of OntoClean in METHONTOLOGY

because it was presented at [11].

6.1 Functions of the ODEClean plug-in of WebODE

The purpose of ODEClean is to allow developers to evaluate taxonomies using

OntoClean method. ODEClean is a plug-in of WebODE and WebODE was designed

taking into account the METHONTOLOGY methodology. When the ontologists

build an ontology in WebODE, it is possible for him to select wheather he wants to

build the taxonomy taking into account the OntoClean principles. It is also possible to

pick up an ontology from WebODE ontology library and to clean its taxonomy just

assigning values of the meta-properties of each concepts. One way to assign meta-

properties to the concepts is through the form-based web user interface of WebODE

(see figure 5). The other way to assign meta-properties is through the visual tool

OntoDesigner (see figure 6). This last way allows the developer to tag the concepts of

the ontology like if (s)he was designing the taxonomy in a blackboard.

Fig. 5. Form-based web for ODEClean

46

Fig. 6. OntoDesigner for evaluating taxonomies following OntoClean (taxonomy taken from

[26], where the authors use it to show how to evaluate ontologies with OntoClean)

The main functions provided by ODEClean are:

1. Establishing the evaluation mode. The user can choose whether the system has to

show the errors every time that it detects a problem in the domain ontology, or

the system only has to show the errors when the user ask for them. This option is

available in the button Change Evaluation Mode of the form-based web (see top

figure 5), whereas it is available in the signal Evaluation (figure 6) of

OntoDesigner.

2. Assigning meta-properties to concepts. The user will be able to set up meta-

properties concerning identity, unity, dependency and rigidity. If the form-based

web is used, then a change in the value of a meta-property can provoke an

automatic change in the value of other meta-property. For example, if you click

in yes in supplies an identity criterion, then the value of carries an identity
criterion is automatically established as yes. On the other hand, the assignment of

values to the meta-properties using the OntoDesigner is performed tagging each

concept with the OntoClean classical symbols introduced in section 2 (~R+I-O,

etc.). A user that does not wish to see the meta-properties with OntoDesigner can

47

hide them clicking in Metaproperties.

3. Focusing on rigid properties. The user can decide whether to show or not the

non-rigid properties. As you can see in section 2, one of the step of OntoClean is

to focus on rigid properties.

4. Evaluation according to the taxonomic constraints. If the user order to evaluate

the ontology, then the found errors are shown. Each error message describes the

violation of a OntoClean axiom (see [26]) in a link subclass of between two

concepts. The first error that appears in figure 7, for example, shows that the

concept food is anti-rigid whereas apple (a subclass of food) does not. This

is a violation of OntoClean axioms.

Fig. 7. Errors detected by ODEClean

6.2 How we have built ODEClean

To develop ODEClean, we firstly built TPU using the WebODE Ontology Editor. We

enriched it with the necessary meta-properties for OntoClean. Then, using WAB, we

added the LADSEB-CNR's rules into the top level of universals. Then, we translated

this ODEClean's ontology into Prolog using the WAB service of WebODE. Such

Prolog ontology is the base of our system.

Thus, the particular steps that we have carried out to develop ODEClean are (see

figure 8):

1. ODEClean's ontology building. As we have said in section 4, we made an

ontology that contains OntoClean knowledge, useful for taxonomy cleaning.

2. Translating into Prolog of ODEClean's ontology. The purpose of this step was to

generate a code with inference engine available. We used the WebODE translator

that generates Prolog. WebODE translator into Prolog uses OKBC primitives.

The use of OKBC primitives could ease the interaction with other systems.

48

3. Building the rest of the system. Taking the Prolog ontology, we built the rest of

the modules of ODEClean: the user interface and the communication with the

rest of WebODE.

Fig. 8. The development of ODEClean

Concerning the internal behaviour of the system, WebODE's inference engine

makes use of Ciao Prolog [21]), as a consequence, the inference engine that applies

the OntoClean rules uses Ciao Prolog.

7 Conclusions
In this paper we have presented the plug-in of WebODE that imp lements OntoClean,

the method to clean ontologies elaborated in the LADSEB-CNR of Padua (Italy).

WebODE is the ontology development platform developed by the Ontology Group of

the Technical University of Madrid. This plug-in allows the developer to assign meta-

properties to concepts, focus on non-rigid properties, automatically check errors, etc.

The user can visualise the ontolology either through a form-based web user interface

or graphically with OntoDesigner.

This plug-in is not only the product of software development, but also a work at

the ontology development methodological level. That is, first of all, we integrated

OntoClean in METHONTOLOGY. Then, we made the ODEClean plug-in integrated

in WebODE, the METHONTOLOGY software support.

Top level of

Universals

+

Meta-properties

+

Evaluation axioms

Step 1. ODEClean’s ontology building

Step 2. Translation into Prolog of
ODEClean’s ontology

ODEClean’s

ontology in

Prolog

ODEClean’s

ontology

User interface

Communication

with the rest of

WebODE

Step 3. Building of the rest of the system

ODECLEAN

49

The plug-in has been built using as base LADSEB-CNR's top-level ontology of

universals translated to Prolog. We have used the WebODE WAB plug-in to add it

the OntoClean evaluation rules before translating it to Prolog.

The main contributions of our work are:

1. The new module is a consequence of the integration of an evaluation method in a

development methodology. That is, we have carried out an integration at the

methodological level before performing it at the software level.

2. We have built the first tool integrated in a ontology development platform that

supports the method OntoClean.

3. An ontology built by a group that has not participated in the development of

WebODE has been introduced in WebODE. Moreover, the ontology enriched

with meta-properties and axioms coded in Prolog is thought to be reusable in

other platforms or tools different to WebODE.

Kalfoglou and colleagues' evaluation of applications is also based on the use

of ontologies. However, their approach is more focussed on the use of an

ontology as the formal a specification of the application that they are going to

evaluate.

4. The knowledge used to evaluate ontologies is declaratively specified,. which

means that:

• New meta-properties could be added easily, just introducing new attributes in

ODEClean's ontology.

• New axioms could be added or modified using WAB.

According to our experience developing this plug-in, if the future evaluation tools

are declaratively developed, they will be flexible.

Acknowledgements

This work is supported by the project "ContentWeb: Plataforma tecnológica para la

web semántica: ontologías, lenguaje natural y comercio electrónico
4
" (TIC-2001-

2745), and by the project "Esperonto Services" (IST-2001-34373). This work would

not have been possible without the help of Emilio Raya.

References

1. T. Berners-Lee, J. Hendler and O. Lassila. A new form of Web content that is meaningful

to computers will unleash a revolution of new possibilities. Scientific American, 2002, cf.

http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html.

2. EU IST-1999-10132 project “On-To-Knowledge: Content-driven knowledge management

tools through evolving ontologies”, cf. http://www.ontoknowledge.org.

3. US DARPA project “DARPA Agent Markup Language (DAML)”, cf.

http://www.daml.org.

4. EU IST-2000-29243 thematic network “OntoWeb: Ontology -based Information Exchange

for Knowledge Management and Electronic Commerce”, cf. http://www.ontoweb.org.

4
 ContentWeb: Platform for the Semantic Web: ontologies, natural language and e-

commerce

50

5. A survey on ontology tools. Deliverable D13. IST OntoWeb Thematic Network. May

2002.

6. Arpírez, J.C.; Corcho, O.; Fernández-López, M.; Gómez-Pérez, A. WebODE: a scalable

ontological engineering workbench. First International Conference on Knowledge Capture

(K-CAP 2001). Victoria, Canada. October, 2001.

7. Chaudhri V. K.; Farquhar A.; Fikes R.; Karp P. D.; Rice J. P. The Generic Frame Protocol

2.0. Technical Report, Stanford University.1997.

8. Corcho, O., Fernández-López, M., Gómez-Pérez, A., Vicente, O. WebODE: an integrated

workbench for ontology representation, reasoning and exchange. 13th International

Conference on Knowledge Engineering and Knowledge Management EKAW02. 2002.

9. Corcho, O.; Gómez-Pérez, A. WebPicker: Knowledge Extraction from Web Resources.

6th Intl. Workshop on Applications of Natural Language for Information Systems

(NLDB'01). Madrid. June, 2001.

10. Fernández-López, M.; Gómez-Pérez, A. “Overview and analysis of methodologies for

building ontologies”. Knowledge Engineering Representation (to be published).

11. Fernández-López, M.; Gómez-Pérez, A.; Guarino, N. 2001. “The Methontology &

OntoClean merge”. Technical Report, OntoWeb special interest group on Enterprise-
standards Ontology Environments . Amsterdam. 2001.

12. Fernández-López, M.; Gómez-Pérez, A.; Pazos, J.; Pazos, A. Building a Chemical

Ontology using methontology and the Ontology Design Environment. IEEE Intelligent

Systems and their applications. #4 (1):37-45. 1999.

13. Gómez-Pérez, A. A proposal of infrastructural needs on the framework of the semantic
web for ontology construction and use. FP6 Programme Consultation Meeting 9. April

27
th

, 2001.

14. Gómez-Pérez, A. Evaluation of Ontologies. International Journal of Intelligent Sy stems.

16(3). March, 2001.

15. Gómez-Pérez, A. Some ideas and Examples to Evaluate Ontologies. Technical Report

KSL-94-65. Knowledge System Laboratory. Stanford University. Also in Proceedings of

the 11
th

 Conference on Artificial Intelligence for Applications. CAIA94. 1994.

16. Gómez-Pérez, A. From Knowledge Based Systems to Knowledge Sharing Technology:

Evaluation and Assessment. Technical Report. KSL-94-73. Knowledge Systems

Laboratory. Stanford University. December 1994.

17. Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A. 2001. Understanding top-level

ontological distinctions. Proc. of IJCAI 2001 workshop on Ontologies and Information

Sharing .

18. Grüninger, M.; Fox, M. S. 1995. “Methodology for the design and evaluation of

ontologies.” Workshop on Basic Ontological Issues in Knowledge Sharing. Montreal

(Canada).

19. Guarino, N. and Welty, C. 2002. "Evaluating Ontological Decisions with OntoClean".

Communications of the ACM, 45(2): 61-65.

20. Guarino, N. and Welty, C. 2000. A Formal Ontology of Properties. In R. Dieng and O.

Corby (eds.), Knowledge Engineering and Knowledge Management: Methods, Models

and Tools. 12th International Conference, EKAW2000. Springer Verlag: 97-112.

21. Hermenegildo, M., Bueno, F., Cabeza, D., Carro, M., García, M., López, P., Puebla, G.

The Ciao Logic Programming Environment. International Conference on Computational

Logic (CL2000). July, 2000.

22. Y.Kalfoglou, D.Robertson. "Managing Ontological Constraints", In Proceedings of the

IJCAI-99 workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm,

Sweden, August 1999.

23. Y.Kalfoglou, D.Robertson,"Use of Formal Ontologies to Support Error Checking in

Specifications" In Proceedings of the 11th European Workshop on Knowledge

Acquisition, Modelling and Management (EKAW99), Dagsthul, Germany, May 1999.

51

24. Staab, S.; Schnurr, H.-P.; Studer, R.; Sure; Y. “Knowledge Processes and Ontologies”,

IEEE Intelligent Systems, 16(1), January/February 2001.

25. Uschold, M. King, M. 1995. “Towards a Methodology for Building Ontologies”.

Workshop held in conjunction with IJCAI on Basic Ontological Issues in Knowledge
Sharing.

26. Welty, C.; Guarino, N. Supporting Ontological Analysis of Taxonomic Relationships. Data

and Knowledge Engineering. September 2001.

52

Ontology Evolution within Ontology Editors

L. Stojanovic, B. Motik

FZI - Research Center for Information Technology at the University of Karlsruhe,
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

{Ljiljana.Stojanovic, Boris.Motik}@fzi.de

Abstract. An ontology over a period of time needs to be modified to reflect
changes in the real world, changes in the user’s requirements, drawbacks in the
initial design, to incorporate additional functionality or to allow for incremental
improvement. Although changes are inevitable during the development and
deployment of an ontology, most of the current ontology editors unfortunately
do not provide enough support for efficient copying with changes. Since
changes are the force that drives the evolution process, in this paper we discuss
the requirements for the ontology editors in order to support ontology evolution.

1 Introduction

Ontologies aim at capturing domain knowledge in a generic way, and provide a
commonly agreed understanding of a domain, which may be reused and shared across
applications and groups. Although there are several approaches for a semi-automatic
ontology development ([6], [8]), most of the existing ontologies are created manually
using ontology editors.

Ontology editors are tools that enable inspecting, browsing, codifying, and
modifying ontologies and support in this way the ontology development and
maintenance task [11]. Existing editors vary in the complexity of the underlying
knowledge model, usability, scalability, etc. Nevertheless, all of them provide enough
support for the initial ontology development. However, ontology development is
necessarily an iterative and a dynamic process [1]. Very seldom is an ontology perfect
the first time it is made, and then continues, without change, to be as useful over time
as it was when it was first deployed. The reasons for changes are inherent in the
complexity of reality and in the limited ability of humans to cope with this
complexity. Thus, ontologies must be able to evolve for a number of reasons,
including the following:
• Ontologies often contain “design error” and sometimes do not immediately meet

the requirements of its users;
• The environment in which the ontology operates can change unpredictably,

thereby invalidating the assumptions that were made when the ontology was
built;

• Users’ requirements can change after the ontology is initially built, requiring that
the existing ontology evolve to meet the new requirements.

The necessity to support change management can be derived from many real-word
applications, since they typically operate in changeable environments. A typical

53

example is MEDLINE database containing over 11 million references to articles from
4,600 worldwide journals in life sciences. It is in the irregular operation in November
and December as NLM makes the transition to a new year of Medical Subject
Headings1 (MeSH), somewhere called medical ontology. Another example is
UNSPSC2 classification of products currently consisting of the hierarchy of about
16.000 product categories. Every two weeks, a change is performed, which alters
between 100 and 600 concepts. This causes serious problems for companies that use it
to classify their product data to allow e-commerce [4].

Therefore, the methods and tools for the ontology evolution enabling coping with
the changes in a more systematic way have become an essential requirement for an
ontology-based application [1]. The ontology evolution [4] is the timely adaptation of
the ontology as well as the consistent propagation of these changes, because a
modification in one part of the ontology may generate subtle inconsistencies in other
parts of the same ontology, in the instances, depending ontologies and applications.

The ontology evolution is becoming more important nowadays. The major reason
for this is the increasing number of ontologies in use and the increasing costs
associated with adapting them to changing requirements. Developing ontologies and
their applications is expensive, but evolving them is even more expensive. However,
even though evolution over time is an essential requirement for useful ontologies [11],
appropriate tools and strategies for enabling and managing evolution are still missing.
This level of ontology management is necessary not only for the initial development
and maintenance of ontologies, but is essential during deployment, when scalability,
availability, reliability and performance are absolutely critical [1].

Since an ontology is usually developed using an ontology editor, many
requirements for the ontology evolution have to be part of the ontology editors. An
ontology editor must provide an interface that allows the knowledge engineer to
modify the underlying ontology. The interface is based on the set of available
ontology changes. Moreover, there are many features which can significantly improve
the usability of an ontology editor and enhance its functionality regarding the
ontology evolution. In this paper, we discuss the most critical requirements for
ontology editors in order to be more robust to a changing environment.

The paper is organised as follows: In the second section, we elaborate a set of
requirements for an ontology editor to be able to support ontology evolution. The
evaluation of the some ontology editors in terms of these requirements is given in
section 3. Section 4 contains concluding remarks.

2 Requirements for the Ontology Evolution

Ontology development is a dynamic process [7] starting with an initial rough
ontology, which is later revised, refined and filled in the details [5]. Consequently, an
ontology almost certainly should be evolved3 in order:

1 MeSH is a controlled vocabulary thesaurus used to index the articles

[http://www.nlm.nih.gov/pubs/factsheets/medline.html]
2 http://eccma.org/unspsc/
3 IEEE 1219 1993

54

• to fix “bugs” in the initial design (corrective maintenance);
• to adapt itself to the changes in the environment (adaptative maintenance);
• to improve itself after it has become operational (perfective maintenance);
• to avoid future changes and to alleviate maintenance (preventive maintenance).

Moreover, ontology evolution has to be supported through the entire lifecycle [11].
Since ontology editors are the main tools for ontology development, the support for
evolution should be a required facility in an ontology editor. In other words, the
functional specification of an ontology editor has to incorporate requirements for the
ontology evolution. In this paper, we have identified a set of requirements for
ontology editors to allow users to be able to alter an ontology in a more efficient and
convenient manner. These requirements can be divided in several groups:
• Functional requirement specifies all evolution changes that must be supported;
• User’s supervision requirement enables the user-driven process of change

resolving;
• Transparency requirement deals with providing control of the evolution process

through an insight into the scope of an evolution operation before the operation is
applied;

• Reversibility requirement states how the effect of evolution changes can be
undone;

• Auditing requirement is related to the management of the ontology change
history;

• Ontology refinement requirement provides support for continual ontology
improvement;

• Usability requirement allows the user to manage changes more easily by finding
ontology inconsistencies and providing the explanation to solve them.

In the rest of this section, we elaborate these requirements in more details.

2.1 Functional requirement

The functional requirement specifies which functionality must be provided for the
ontology development and evolution. This functionality heavily depends on the
underlying ontology model. The more powerful and expressive model requires a
richer set of modelling primitives. Thus, before speaking about functional
requirements, the notion of an ontology itself has to be clarified. Corresponding to the
variety of ontology models in use4, there is no standard ontology model. However, an
attempt to provide the standard for ontology structure5 is on the way.

Due to differences in ontology models, we concentrate on the “common” features
of ontology models, namely concepts, properties, instances, as well as concept
inheritance. Each of these ontology entities can be updated by one of the meta-change
transformations: add, remove, modify [3]. A full set of changes (Tab. 1) can thus be
defined by the cross product of the set of entities of the ontology model, which form
meta schema, and the set of meta-changes.

4 http://www.ontoknowledge.org/oil/, http://www.daml.org/2001/03/reference.html
5 http://www.w3.org/2001/sw/WebOnt/

55

Table 1. Changes in the ontology

Meta changes
Meta enitities

Add Remove Modify

Concept Add concept Remove concept Rename concept
Concept hierarchy Add subConceptOf

relationship
Remove subConceptOf
relationship

Set subConceptOf
relationship

Property Add property Remove property Rename property
Property Domain Add property domain Remove property

domain
Set property domain

Property Range Add property range Remove property
range

Set property range

Instance Add instance Remove instance Rename instance
Property Instance Add property instance Remove property

instance
Set property instance

The existence of the “modify” change causes the set of primitives not to be

minimal with respect to completeness. However, this change adds some important
semantic variations to the set of changes, since a modify change is not equivalent to a
removal followed by an addition [3]. The difference is that the modification of an
entity (i.e. renaming a concept) maintains its identity, while removing and adding
loses its identity.

The previously mentioned changes are called elementary changes, since they
cannot be decomposed into simpler changes. The basic functionality of each ontology
editor from the ontology evolution point of view is specified as a set of elementary
ontology changes derived from the corresponding ontology model.

Elementary changes in the ontology specify fine-grained changes that can be
performed in the course of ontology evolution. However, this granularity of ontology
evolution changes is not always appropriate. Often, the intent of the changes may be
expressed on a higher level. Composite changes [9] specify coarse-grained changes
that can be performed to improve the ontology structure according to some criteria.
They are more powerful, since the designer does not need to go through every step of
the sequence of basic changes to achieve the desired effect.

Moreover, composite changes often have more meaningful semantics. For
example, the semantics of moving the concept from one parent concept to another is
clearly different from the semantics of removal and addition of a subConceptOf
relation. While “move” as a composite change maintains the identifiers of a
subConceptOf relation and preserves all properties and instances, the removal and
subsequent addition create a new identifier for a subConceptOf relation and cause the
loss of much information (e.g. at the instance level).

All valid changes to manipulate an ontology can be specified by one elementary or
composite change or by a sequence of changes. Changes can be applied to an
ontology in a valid state, and after all changes are performed, the ontology and
dependent artefacts must transition to another valid state. It means that every change
is guaranteed to maintain some constraints. We have identified the following set of
system integrities that have to be maintained during resolution in order to achieve the
soundness:

56

• Consistency – A consistent ontology is one that satisfies all invariants of the
ontology model. Invariants are constraints that must hold in every quiescent state
of an ontology. For example, the concept hierarchy is a direct acyclic graph;

• Validity – We distinguish between syntax and semantic validity [9] of an
ontology. Syntax invalidity arises when undefined entities are used or model
constraints are invalidated. Semantic invalidity arises when the meaning of an
ontology entity is modified. On the other hand, a valid instance is one that
conforms to the constraint specified in an ontology;

• Well-formedness - A well-formed ontology and instances are those, which
syntactically conform to the language specification.

2.2 User’s supervision requirement

The ontology evolution is a process of changing an ontology while maintaining its
consistency. The goal of the ontology evolution is thus to evolve an ontology from
one consistent stage to the next. However, there are many ways to achieve
consistency after a change request. For example, when a concept from the middle of
the hierarchy is being deleted, all subconcepts may either be deleted or reconnected to
other concepts [9]. If subconcepts are preserved, then properties of the deleted
concept may be propagated, its instances distributed, etc. Thus, for each change in the
ontology, it is possible to generate different sets of additional changes, leading to
different final consistent states.

Hence, a mechanism is required for users to manage changes resulting not in an
arbitrary consistent state, but in a consistent state fulfilling the user’s preferences. In
order to enable the user to obtain the ontology most suitable to her needs, an ontology
editor should allow the customisation of the ontology evolution process. One mean is
to enable the user to set up one of evolution strategies that are used for resolving the
changes.

An evolution strategy unambiguously defines the way how elementary and
composite changes will be resolved. Typically, a particular evolution strategy is
chosen by the user at the start of the ontology evolution process. Thus, an evolution
strategy defining a common policy must be chosen to specify how to handle each of
the following situations:
• how to handle orphaned concepts - those concepts that don't have parents any

more;
• how to handle orphaned properties - those properties that don't have parents any

more;
• how to propagate properties to the concept whose parent changes;
• what constitutes a valid domain of a property;
• what constitutes a valid range of a property;
• whether a domain (range) of a property can contain a concept that is at the same;

time a subconcept of some other domain (range) concept;
• the allowed shape of the concept hierarchy;
• the allowed shape of the property hierarchy;
• must instances be consistent with the ontology.

57

For each of these situations, there is a set of possible options, e.g. in case of the
first issue, orphaned subconcepts of a concept may be connected to the parent
concept(s) of that concept, connected to the root concept of the hierarchy or deleted as
well.

2.3 Transparency requirement

A change in one part of an ontology may have far reaching consequences on other
parts of the ontology and associated instances. If an ontology is large, it may be
difficult to fully comprehend the extent and meaning of each change. To improve
understanding of effects of each change, the ontology evolution should provide
maximum transparency into details of each change being performed. Transparency
should provide a human-computer interaction for evolution by presenting change
information in an orderly way, allowing easy spotting of potential problems and
alleviating the understanding of the scope of the change.

Before any change is applied to the ontology, a list of all implications must be
generated and reported to the user. The ontology engineer should be able to
comprehend the list, and approve or cancel the change. If the changes are cancelled,
the ontology should remain intact. The presentation of changes has to follow the
progressive disclosure principle: related changes have to be grouped together and
organised in a tree-like form. The user can initially see only the general description of
changes. If she is interested in details, she can expand the tree and view complete
information. She may cancel the operation before it is actually performed.

2.4 Reversibility requirement

As mentioned, the transparency requirement was introduced to help the ontology
engineers comprehend the effect of a change. If properly done, this can help in
reducing the number of accidental ontology changes, and can even guide the ontology
refinement process. However, there are numerous circumstances where it may be
desired to reverse the effects of changes. The reversibility requirement states that an
ontology editor has to allow undoing changes at the user’s request. Consequently, the
user can control changes and make appropriate decisions.

It is important to note that reversibility means undoing all effects of a change,
which may not be the same as simply requesting an inverse change manually. For
example, if a concept is removed from a concept hierarchy, its subconcepts will be
modified (e.g. attached to the root). Reversing such change is not equal to recreating
the deleted concept – one also needs to revert the concept hierarchy into an original
state.

To support the undo-redo in a usable fashion, undoing an action must be
accompanied by restoring the state of the UI to what it was before the action was
performed. For example, if a concept in the concept-hierarchy tree was selected and
then deleted, when the change is undone, the same concept must be selected. If the
tree was scrolled in the meanwhile, the original scroll position of the tree must be
restored (or at least the node must be made scrolled into view). For the navigation in

58

an application, users often rely on the visual features of the application. When an
operation is undone, it is essential to restore the previous visual state of the
application as close as possible, allowing the users to quickly recognise a familiar
state and proceed with their work. If the visual state of the application is not restored
well, although the action is undone, the user may not realise this, and may mistakenly
request another undo operation.

2.5 Auditing requirement

As business applications of ontologies proliferate, so do the needs for auditing
ontology evolution. Changes to business information are often accompanied with
responsibility for their effects on the business. Auditing is therefore a typical
component of business systems, and must be reflected in the ontology evolution as
well.

The ontology evolution auditing involves the following aspects:
• Keeping a detailed log of all performed changes allowing later reconstruction of

the events that led to the current state of the ontology;
• Associating meta-information with each log change, such as textual change

description, cost of change, time of change etc.;
• Tracking the identity of the change author.

The auditing requirement is also related to the reversibility requirement, since the

auditing log is typically used to provide reversibility. The auditing log can also serve
as a source for information mining about change trends.

2.6 Ontology refinement requirements

This requirement states that potential changes improving the ontology may be
discovered semi-automatically from the ontology-based data and through the analysis
of the user’s behaviour. We distinguish (i) structure-driven, (ii) data-driven and (iii)
usage-driven change discovery [10].
(i) The structure-driven change discovery identifies the following set of heuristics to
improve an ontology based on the analysis of the structure of the ontology:
• If all subconcepts have the same property, the property may be moved to the

parent concept;
• A concept with a single subconcept should be merged with its subconcept;
• If there are more than a dozen subconcepts for a concept, then an additional layer

in the concept hierarchy may be necessary;
• The concept without properties is a candidate for deletion;
• If a direct parent of a concept can be achieved through a non-direct path, then the

direct link should be deleted.
(ii) The data-driven change discovery states that some changes are implicit changes in
the domain, reflected in its instances and can be discovered only through their
analysis. We have found the following set of heuristics:
• A concept with no instances may probably be deleted;

59

• If no instance of a concept C uses any of the properties defined for C, but only
properties inherited from the parent concept, we can make an assumption that C
is not necessary;

• A concept with many instances is a candidate for being split into subconcepts and
its instances distributed among newly generated concepts.

(iii) The usage–driven ontology evolution takes into account the usage of the ontology
in the knowledge management system [10]. It is based on the analysis of the users’
behaviour in two phases of a knowledge management cycle: in providing knowledge
by analysing the quality of annotations, and in searching for knowledge by analysing
the users’ queries and the responses from the knowledge repository. For example, by
tracking when the concept was last retrieved by a query, it may be possible to
discover that some concepts are out of date and should be deleted or updated.

2.7 Usability requirement

An ontology editor addresses the issue of presenting ontologies and allowing the user
to operate on ontologies in a consistent way. It also addresses how different functions
are integrated into the system in a way natural to the user. An ontology editor has to
have an interface that enables the user to create and maintain ontologies, one that is
easily understood and allows the user to work efficiently with all the complexities
inherent in an ontology editor.

However, the real usability of an ontology editor cannot be achieved only through
the graphical means for the creation/modification of ontology entities which relieve
the user of the necessity to perform this task manually. An ontology editor has to
guide the user through the ontology development process by providing additional
information, such as why the user’s activity did not succeed, or what else she has to
do in order to finish the current activity.

Moreover, a good ontology editor must provide capabilities for identifying
inconsistencies. When such conflicts arise, an editor must assist the user in identifying
the source of the problem and resolving it. Furthermore, the usability of an ontology
editor can be significantly increased by incorporating validation. Validation concerns
the truthfulness of an ontology with respect to its problem domain - does the ontology
represent a piece of reality and the users' requirements correctly? One technique for
supporting validation is generating explanation.

3. Evaluation

Ontology editors are tools that allow users to visually manipulate ontologies. The
number of tools for building ontologies developed in the last years is high6. In this
section, we evaluate three ontology editors which are most frequently used in the
Semantic Web community, in terms of the requirements for the ontology evolution.
Table 2 shows the result of comparison.

6 http://www.ontoweb.org/download/deliverables/D13_v1-0.zip

60

Table 2. Evolution support within ontology editors. Description: “-“ means that there is
no support, “<>” states that support is partial and “+” corresponds to the full support.

Editors/
Requirements

Protege7 OntoEdit8 OilEd9

Functionality
elementary + + +

composite - <> -
Supervision - - -
Transparency - <> -
Reversibility <> <> -
Auditing <> - <>
Refinement - - -
Usability

user-friendly + + +
verification <> <> <>

validation - - -

The basic functionality of each ontology editor is specified as a set of elementary

ontology changes. Thus, all editors allow such modifications. Even though composite
changes allow an ontology engineer to update an ontology without having to find the
right sequence of elementary modifications, most of the existing ontology editors do
not include composite changes. Only OntoEdit provides support for some composite
changes (move and copy).

Most of the existing systems for the ontology development provide only one
possibility for realising a change, and this is usually the simplest one. For example,
the deletion of a concept always causes the deletion of all its subconcepts. It means
that users are not able to control the way changes are performed (supervision).

Moreover, users do not obtain explanations why a particular change is necessary
(transparency). In OntoEdit, the user only obtains the information about numbers of
induced changes, but without providing more details.

Furthermore, there is no possibility to undo effects of changes (reversibility).
Protégé and OntoEdit have Edit menu with Undo/Redo options, but they are disabled.

Regarding the auditing requirement, OilEd has the activity log. However, it records
connections to the reasoner, not all ontology modifications. Protégé also has the
command history option, but it is useless, since it is disabled.

As known to authors, none of the existing systems for ontology development and
maintenance offer support for (semi-)automatic ontology improvement, even though
it makes the ontology easier to understand and cheaper to modify.

Most of the existing ontology editors have a very similar layout. They are
ergonomically correct to minimise human errors. They enable operating “quickly”
enough, as this is often considered being one of the most important easy-for-use

7 http://protege.stanford.edu/
8 http://www.ontoprise.de/com/co_produ_tool3.htm
9 http://oiled.man.ac.uk/

61

issues. Moreover, all editors can detect logical conflicts (verification), but they do not
provide enough information to analyse the sources of conflicts. However, none of the
existing editors provide the means to answer to the questions such as how, why, what
if, etc. (validation).

4. Conclusion

In order to enable the user to obtain the ontology most suitable to his or her needs, we
investigate the requirements for an ontology editor in order to customise the ontology
evolution process. We identify several means to do that: to enrich the list of possible
changes; to enable the user to set up one of the evolution strategies that are used for
resolving the changes; to inform her about all effects of a change; to allow undoing
changes; to allow inspecting the performed changes; to suggest the user to generate a
change and to identify inconsistency and to provide answers to the questions such as
how, why, what if, etc.

We believe that an ontology editor that fulfils these requirements will enable
maintaining an ontology more easily and according to the user’s preferences.

References

1. A. Das, W. Wu, D. McGuinness, Industrial Strength Ontology Management', The
Emerging Semantic Web, IOS Press, 2002.

2. D. Fensel, Ontologies: Dynamics Networks of Meaning, In Proceedings of the the 1st
Semantic web working symposium, Stanford, CA, USA, July 30th-August 1st, 2001.

3. W. Huersch, Maintaining Consistency and Behaviour of Object-Oriented Systems
during Evolution, PhD thesis, College of CS, Northeastern University, Boston, 1995.

4. M. Klein and D. Fensel, Ontology versioning for the Semantic Web, Proc.
International Semantic Web Working Symposium (SWWS), USA, 2001.

5. N. F. Noy, D. McGuinness, Ontology Development 101: A Guide to creating your
first Ontology, Stanford KSL Technical Report KSL-01-05, 2000.

6. A. Maedche and S. Staab, Ontology Learning for the Semantic Web, IEEE Intelligent
Systems, 16(2), March/April 2001. Special Issue on Semantic Web, 2001.

7. S. Staab, H.-P. Schnurr, R. Studer and Y. Sure, Knowledge Processes and
Ontologies, IEEE Intelligent Systems. 16(1), Special Issue on KM, 2001.

8. L. Stojanovic, N. Stojanovic and R. Volz, Migrating data-intensive Web Sites into the
Semantic Web, In ACM Symposium on Applied Computing SAC, 2002.

9. L. Stojanovic, A. Maedche, B. Motik, N. Stojanovic, User-driven Ontology Evolution
management, In Proceedings of the 13th European Conference on Knowledge
Engineering and Knowledge Management EKAW, Madrid, Spain, 2002.

10. N. Stojanovic, L. Stojanovic, An Approach for the Evolution of Ontology-based
Knowledge Management Systems, EKAW'2002 Workshop on Knowledge
Management through Corporate Semantic Webs, 2002.

11. Y. Sure, On-To-Knowledge -- Ontology based Knowledge Management Tools and
their Application, In: German Journal Kuenstliche Intelligenz, Special Issue on
Knowledge Management (1/02), 2002.

62

Assessment of Ontology-based Tools: A Step Towards
Systemizing the Scenario Approach

Alain Giboin, Fabien Gandon, Olivier Corby, and Rose Dieng

INRIA Sophia Antipolis, Acacia Project,
2004 route des Lucioles, B.P. 93,

06902 Sophia Antipolis Cedex, France
�JLERLQ_JDQGRQ_FRUE_GLHQJ`#VRSKLD�LQULD�IU

KWWS���ZZZ�LQULD�IU�UHFKHUFKH�HTXLSHV�DFDFLD�HQ�KWPO

Abstract. Scenarios have been already used for designing and evaluating on-
tology-based tools. For example, the so-called “motivating scenarios” are a
core component of the TOVE ontological engineering method elaborated by
Grüninger and Fox (1995; Uschold and Grüninger, 1996). We ourselves used a
“scenario approach” for designing and evaluating CoMMA, a corporate mem-
ory computer platform based on ontologies and agents; the approach was in-
spired by the scenario approaches proposed in the HCI and CSCW communi-
ties, which we consider more user-oriented than the “motivating scenarios”
approach. In this paper, we account for our CoMMA experience and its major
lesson: the necessity to apply the scenario approach more systematically for
assessing the usability and utility of ontology-based tools.

1 Introduction

In “Some Ideas and Examples to Evaluate Ontologies,” Asunción Gómez-Pérez
[17] made the distinction between evaluation and assessment of knowledge sharing
technology (KST), which include ontology-based tools (OBTs): “Evaluation means
to judge technically the features of KST, and assessment refers to the usability and
utility of KST in companies” – more precisely, as stated elsewhere by Gómez-Pérez
[18], assessment refers to “the usability and utility of the ontologies, software envi-
ronment, and their documentation when they are used within a given organization or
by software agents.”

The ontology community seems to be more concerned with the evaluation of
OBTs, and with providing technological evaluation criteria such as interoperability,
“turn around ability,” performance, memory allocation, scalability, or integration
into frameworks (see, e.g., [1]). In this paper we will rather focus on assessment of
ontology-based tools, and on providing usability and utility criteria motivated by
scenarios of use. Why? Our own experience of OBT design makes us think that we
would not neglect assessment if we want to get “a consistent level of quality and
thus acceptance” of OBTs by industry.

63

A way to give its place to assessment, we claim, is to make a more systematic use
of user-centered scenarios, or to apply a scenario approach more systematically.
This claim rests on, and is a major lesson of, our experience of the design and as-
sessment of CoMMA, a corporate memory computer platform based on ontologies
and agents [6][12][13], and on Corese, a semantic search engine designed in our
research team [7][8]. In this paper, we will account for our CoMMA experience, and
introduce some considerations about the systemizing of the scenario approach to
ontology-based tool design and assessment.

2 Limitation of the “Motivating Scenarios” Approach Familiar to
the Ontology Engineering Community

From February 2000 to January 2002, we participated to the IST European CoMMA
project aimed at designing the CoMMA platform. The CoMMA project gave us the
opportunity to apply a scenario approach to both requirements analysis (design) and
assessment (evaluation) of the CoMMA platform – requirements analysis and
evaluation being interleaved: “For requirements analysis, the aim is to ‘get at’ the
user needs; for evaluation the aim is to ‘tune’ the system to make sure that it really
does meet those needs” [25].

The requirements analysis of CoMMA was initially oriented by the two following
scenarios: (1) NEI Scenario: The “integration of new employees” in a company; it
concerns the new employees who need to handle a lot of new information about
their enterprise in a very short time, to be rapidly efficient; (b) TM Scenario: the
diffusion of innovative ideas among employees particularly when dealing with
“technology monitoring activities;” it concerns the necessity for each enterprise to
access in a very effective way to information concerning technology movement
through the Internet that could contribute to its development. These scenarios were
originally committed to the two industrial partners of the CoMMA project – a Ger-
man and an Italian telecommunication company – who took the role of the applica-
tion end-users.

Because the two scenarios were very abstract and vague, we needed to specify
them to get requirements that could be converted into operational system specifica-
tions. How did we achieve this? We could have applied the “motivating scenario”
approach, now classical within the ontology engineering community, and which
underlies the TOVE ontological engineering method elaborated by Grüninger and
colleagues [10][19][20].

Motivating scenarios are a core component of the TOVE method. The notion of a moti-
vating scenario refers to a “detailed narrative about the enterprise where emphasis is
placed on the problems that the enterprise is facing or the tasks it needs to perform to solve
the problems” (e.g., improving enterprise planning and scheduling). Ontology engineers
use these problems to define an ontology's requirements in the form of competency ques-
tions that an ontology must be able to answer (e.g., What sequence of activities must be
completed to achieve some goal? At what times must these activities be initiated and ter-

64

minated?). The competency of the ontology is tested by proving completeness theorems
with respect to the competency questions.

We however found a main limitation to the “motivating scenarios approach:” the
informality and user-orientation present in the first steps of the OBT design process
were lacking in the evaluation step. We needed a more user-centered approach.
Hence we turned towards the scenario approaches proposed by the Hu-
man-Computer Interaction (HCI) and Computer-Supported Cooperative Work
(CSCW) communities, e.g., the approach of Carroll and his colleagues [4][5].

3 Exploiting Scenario Approaches Familiar to the HCI and
CSCW communities

The scenario approaches have been introduced in the HCI and CSCW communities
to fill the gap that the “traditional approach” to design created by imposing a tech-
nological orientation, abstraction, and other “user-distant” features. The scenario
approaches allowed a design team to reintroduce the user’s viewpoint in the design
cycle, and to take into account her need of speaking of the system in terms of the
work she has to achieve, using concrete and specific terms, and so on. In Carroll and
colleagues approach, for example, scenarios of use are defined as descriptions, often
narratives, of what people (could) do and experience (e.g., problems) when using
computer systems. Scenarios can be developed through direct observation of users
performing tasks in their work environment (observed scenarios), or through ab-
stractions from theories of human activities (envisioned scenarios).

By exploiting the scenario approaches of the HCI and CSCW communities, our
aim was to balance technology-orientation (prevalent in the ontology engineering
community) with user-orientation (recommended by the HCI and CSCW communi-
ties), and, more specifically, to balance formality (which is a strong standard within
the ontology engineering community) with informality (which is a HCI and CSCW
requirement for not losing touch with the user, see e.g. [3]).

Scenarios are a meaningful way of accounting for users’ needs. They embody
properties, qualities or criteria that must be “put” in the system so that the system be
accepted by its intended users. Scenarios embody criteria that must be found when
assessing the system. Scenarios are both requirements and assessment scenarios.
This two-sided aspect of scenarios would need to be systemized.

65

4 Eliciting Scenarios for Requirements Analysis

Applying a Scenario Approach Supposes To Have a Model of Scenario. The
scenario formats an techniques proposed by the HCI and CSCW communities are
multiple: e.g., scenarios, use cases, examples, stories, narrative descriptions of
context, mock-ups, etc. We did not privilege a particular technique or format, but
collected from the existing ones the elements that could help us answer
methodological questions like: Which types of scenarios did we want to produce?
Which contents shall we give to these scenarios? Which procedures are worth to
follow to fill the scenario slots? As a result, in collaboration with the industrial
partners, we elaborated a scenario grid to be used for requirements analysis by the
partners (see Table 1).

Table 1. The CoMMA scenario elicitation grid

CHARACTERISTICS REPRESENTATIONS FACETS

Goal:

Before:
After:

Scope:

Scenario
 Sub-Scenario:

Generic
Specific
Example

Relevance life-
time

Exceptions
Counter examples

Textual :
Graphical :

Informal :
Formal :
 (e.g., UML)

In one scenario
description,
several types
of representations

 may be used.

Actors
 Profile
 Role

 Individual goal
 Task
 Action

Interaction

Logic & Chronology
Processes

 Decomposition
 Sequential/Parallel/
 Non-deterministic

 Loops & Stop conditions
 Alternatives & Switches
 Compulsory/Optional

Functionalities & Rationale
 Functionalities description
 Motivation, necessity

 Advantages & Disadvantages

Resources
Nature
Services
Constraints

Flows
Inputs
Outputs
Paths

Environment
Internal
 Organization

 Acquaintance
 External

In the grid, “Characteristics” and “Representations” allow to specify the type of
scenario to elicit, e.g., a scenario informally describing, in a textual format, a spe-
cific existing situation. “Facets” refer to the contents of the scenario: the actors
involved in the scenario, having certain roles, using certain resources, performing a
certain task in a certain way, and so on. To each of the elements of the scenario grid,
we associated definitions and examples, and also questions to help industrial part-
ners elicit relevant knowledge. For example, to the “Actors Interaction” facet, we
associated the questions: Who helps you to perform your job? Which persons do you
consult to get information ... / to get that ... done?

66

Document View EAT Simulation Contact

DRS

query

Run query

Save as a favourite

Add / remove concept

Query Template Panel

Author : Robert Smith

AnyAnnotator :

Co-author : employee listGet all

Genre : doc genre listGet all

View Point: anyGet all

Activity : activity listGet all

AnyExt-co-author :

http://www.w3.org/doc.htmlURI :

My_TemplateTemplate Name :

My_InstanceInstance Name :

Get all query templates

EAT List

Ontology Browser Panel

Get all ontologies

Ontology List

Instance

EMIP Panel

Query_Result_Panel

Doc_1

Doc_2

Doc_3

Doc_PopUp_Menu

content

annotation

rating

(a)

(b)

Fig. 1. The first CoMMA interfaces. Example of the Document Retrieval System (DRS) for
the Technology Monitoring scenario: (a) as designed; (b) as implemented (Left: the
“Ontology Browser Panel;” Right: the “Entry Query Template” corresponding to the selection
of a concept into the Ontology Browser Panel)

To each of the scenario elements, we also associated techniques and potential
corporate sources that can be exploited to answer the questions. The grid was given
to the industrial partners who found them helpful for requirements analysis. A num-
ber of scenarios significant to end-users were thus elicited.

67

Applying a Scenario Approach Supposes a Continuous Focus on Scenarios. The
CoMMA project was divided into two phases, each one ending with a trial at each
industrial partner site. We must admit that, during the first phase, after requirements
analysis, we lost sight of the scenarios, and that we consequently lost touch with the
end-users. There were two reasons to this: (1) end-user partners were not truly
available for the trial preparation and execution (one of them even withdrew from
the Consortium, and was replaced by another partner belonging to another industrial
sector: construction); (2) the priority of the research partners in the first phase was to
perform and test the integration of new technologies, not really to meet end-users’
needs. The result of this distance from users was foreseeable: immersed in
technology, abstraction, and formality, the Consortium designed interfaces for
developers and ontologists, and not interfaces for end-users. Figure 1 gives an idea
of these interfaces for technologists. So it is not enough to have an early focus on
scenarios of use and on users, it is necessary to have a continuous focus on them.

4 Using Scenarios for Tool Assessment

Using Scenarios to Assess Functionalities with Users. As a consequence of the
distance from users, our interfaces were definitely not usable by end-users, and
direct usability testing of these interfaces by end-users was impossible. Being
however convinced that developing an OBT was a promising solution for supporting
corporate memory management, we decided not to give up, and to show the interest
of the CoMMA solution to potential end-users by making the CoMMA
functionalities tangible through scenarios familiar to users. The goal was to describe
the functionalities in terms of the work users will perform with the system.

We illustrated the functionalities of CoMMA through various scenario formats, in
particular storyboards – a scenario format mixing text and images – of actual infor-
mation-seeking newcomers’ activities within the intranet of one end-users' company.
These scenarios allowed to identify specific processes likely to be performed when
using the system, e.g.:

“Travel Expenses Refund” scenario (excerpt). A newcomer was seeking instructions in
the intranet of his company for the refunding of his travel expenses. During the informa-
tion-seeking process, the newcomer proposed different keywords to the successive search
engines he utilized, or he followed various links related to “Travel expenses.” Table 2 pro-
vides the sequence, and the transformation, of keywords entered and links followed by the
newcomer during his activity. The contents of Table 2 illustrates a user’s continuously
changing process that we can call “term/concept shifting” (further discussed below).

68

Table 2. The series of transformations of the keywords used by a new employee searching for
instructions for the refunding of his travel expenses

GERMAN KEYWORDS OR LINKS USED ENGLISH TRANSLATION
R e i s e k o s t e n a b r e c h n u n g T r a v e l e x p e n s e s a c c o u n t
R e i s e k o s t e n r i c h t l i n i e T r a v e l e x p e n s e s g u i d e l i n e
R e i s e k o s t e n r i c h t l i n i e
 (R r e f e r s t o :
 R e i s e k o s t e n r i c h t l i n i e) T r a v e l e x p e n s e s g u i d e l i n e
R e i s e k o s t e n a n t r a g T r a v e l e x p e n s e s r e q u e s t
R e i s e a n t r a g T r a v e l r e q u e s t

(Convention: The part of the keyword which did not change from the previous turn to the
current turn is printed in gray.)

Going back to the scenario approach, and consequently getting again in touch
with end-users, we can show that end-users found the functionalities very useful,
and suggest refinements and extensions to these functionalities (e.g., term/concept
shifting illustrated in Table 2).

Using Scenarios to Assess Interfaces without Users. Using two scenario-based
techniques – namely, Heuristic Evaluation [23] and Cognitive Walkthrough [27] –,
we were all the same able to assess the CoMMA interfaces without users, but by
putting ourselves in the users’ shoes. This indirect assessment permitted us to
identify usability problems, to propose recommendations for overcoming them, and
to suggest interface specifications based on these recommendations (for details, see
[15][16]). The two scenario-based methods have the following advantages:

Contextualizing Assessment Criteria through Scenarios. The Heuristic Evaluation
technique consists for the evaluator in looking for violations of common usability
principles or heuristics, such as Flexibility and efficiency of use: “Accelerators –
unseen by the novice user – may often speed up the interaction for the expert user
such that the system can cater to both inexperienced and experienced users. Allow
users to tailor frequent actions.” The usability inspection is greatly facilitated when
evaluators are provided with scenarios: the criteria being affected by the context of
use (i.e., user's characteristics, task, environment), scenarios allow to contextualize
the criteria, and to make them meaningful. For example, “concept/term shifting” of
“Travel Expenses Refund” scenario can be related to a Flexibility issue.

Justifying Scenarios with Activity Models. The Cognitive Walkthrough technique
consists for the evaluator in “walking through” the interface, trying to act as a user.
The walkthrough process involves examining each individual action step and trying
“to tell a believable story” (scenario) about why the prospective user would choose
an action. Scenarios in Cognitive Walkthrough are based on, and justified by, a
model of exploratory learning of the system, which describes human-computer in-
teraction in terms of four steps:

69

1. The user sets a goal to be achieved with the system (for example, “I am
searching for corporate instructions for the refunding of my travel ex-
penses”).

2. The user searches the interface for currently available actions (menu items,
buttons, ontology browsing, etc.).

3. The user selects the action to progress toward the goal (e.g., browse the lists
of concepts/terms for the concept/term “Travel expenses guideline”).

4. The user performs the selected action and evaluates the system's feedback for
evidence of her progress (e.g., “I see that the term ‘guideline’ doesn't exist to
refer to the concept of ‘instructions,’ but a synonymous term exists, that I can
use to access to the corporate document I need”).

If we admit that the strength of an assessment method like the Cognitive Walk-
through depends on the relevance of its underlying model, a further step in the sys-
temizing of the scenario approach would be to propose other models of human ac-
tivity to justify the scenarios, e.g., models of the users’ linguistic activity. For ex-
ample, the “Travel Expenses Refund” scenario could be explained by the notion of
“concept drift” used in the Machine Learning community [22]. It can be also ex-
plained by the “vocabulary problem” model [11].

The models we spoke about so far are models of a user's individual activity,
which are the most familiar to the HCI community. If we consider OBTs as tools
supporting collective activities (e.g., elaborating a common terminology, sharing
knowledge, etc.), we will need to refer also to models of collective activity, which
are most familiar to the CSCW community. For example, the “Travel Expenses
Refund” scenario could be justified by models like “lexical entrainment” [2],
“concept and terminology co-ordination” [14], or “ontological drift” [24].

(a) (b)

Fig. 2. The second CoMMA interfaces. Example of the Document Retrieval System (DRS)
for the New Employee scenario: (a) as designed (with PowerPoint); (b) as implemented

70

Using Scenarios to Assess Interfaces With Users. For the second phase of the
CoMMA project, we indeed made the necessary arrangements for not losing sight of
the scenario approach, and not losing touch with the end-users. Among the
arrangements we made were the following ones: (a) creating a HCI group,
including, among others, end-users, interface developers, and human factors
specialists; (b) involving the group in an iterative cooperative design/evaluation
process; (c) inciting the group members to use scenario-based representations to
discuss about the design and evaluation of the new interfaces. . As a result, we got
simplified interfaces, that made sense to the users, and which users found this time
usable (see Figure 2; for details of Trial 2, see [9]). However the process was very
time-consuming.

5 Conclusion

In their “Whitepaper: Evaluation of Ontology-based Tools,” Angele and Sure [1]
encourage the ontology engineering community, and more broadly the semantic web
community, “to enforce their research efforts by developing further standard criteria
[...] and tools that implement these criteria to evaluate ontologies and related tech-
nologies.” Through the present paper, we tried to contribute to these efforts, show-
ing for example that criteria development cannot be considered in isolation from
situations in which the ontology-based tools will be used: to be meaningful and
relevant, criteria need to be connected to scenarios of use, and these scenarios to be
explained and further analyzed need to be connected to activity models. Put in other
words, we claimed in this paper for a balance between usage and technology, and
between formality and informality; in fact we advocated for avoiding premature
formalization (as pointed out by Buckingham Shum [3]), or reinstalling informality
when interacting with end-users.

Through this paper we invite the community to bring some efforts to bear on
systemizing the scenario approach to assessment (and design), an approach more
developed in the HCI and CSCW communities than in the ontology engineering
community. It would be desirable to discuss also how to systemize the scenario
approach for technical evaluation; the work by Kazman and his colleagues [21] on
scenario-based evaluation of architectures is worth considering in such a discussion.

Acknowledgements. We would like to thank our colleagues of the CoMMA Consortium for
their involvement in the assessment of the COMMA platform, especially: Sabine Delaître
(CSTB), Bruno Fiès (CSTB), Karim de Fombelle (Atos Integration), Joachim Hackstein
(T-Systems Nova), Hervé Karp (Atos Integration), Jérôme Leytier (INRIA), Emmanuelle
Loyson (CSTB), Philippe Pérez (Atos), and Marie Soleilhet (Atos Integration). We would also
like to thank two anonymous reviewers for their comments on a previous version of this pa-
per.

71

References

1. Angele, J., Sure, Y.: Whitepaper: Evaluation of Ontology-based Tools. Excerpt from the
IST-2001-29243 Report, OntoWeb. D1.3. Tools. (2001). Available at:
http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/eon2002_whitepaper.pdf

2. Brennan, S. E.: Lexical entrainment in spontaneous dialog. Proceedings of the 1996 Inter-
national Symposium on Spoken Dialogue, Philadelphia, PA: ISSD-96 (1996) 41-44. Avail-
able at : http://www.psy.sunysb.edu/sbrennan/papers/brenISSD.pdf

3. Buckingham Shum, S.: Balancing Formality with Informality: User-Centred Requirements
for Knowledge Management Technologies. AAAI Spring Symposium on Artificial Intelli-
gence in Knowledge Management (1997), Stanford University, Palo Alto, CA. AAAI Press.
Available at: http://kmi.open.ac.uk/people/sbs/org-knowledge/aikm97/sbs-paper1.html

4. Carroll, J.M.: Making Use: Scenario-Based Design of Human-Computer Interactions. MIT
Press, Cambridge, MA (2000)

5. Carroll, J.M., Mack, R.L., Robertson, S.P. & Rosson, M.B.: Binding objects to scenarios of
use. International Journal of Human-Computer Studies 41 (1994) 243-276.

6. CoMMA Consortium: CoMMA: Corporate memory through agents, Proceedings of
E-Work and E-Business'2000 (2000)

7. Corby, O., Dieng, R., Hébert, C.: A Conceptual Graph Model for W3C Resource Descrip-
tion Framework, Proceedings of ICCS 2000, Darmstadt, Germany (2000)

8. Corby, O., Faron-Zucker, C.: Corese: A corporate Semantic Web engine. Proceedings of the
International Workshop on “Real World RDF and Semantic Web Applications,”
WWW’2002, Hawai. (2002)

9. Fiès, B., (Ed.) (2002). Assessment Report of CoMMA Trial-step 2, CoMMA project Deliv-
erable.

10. Fox, M.S., Grüninger, M..: Enterprise Modelling, AI Magazine (1998) 109-121.
11. Furnas, G.W., Landauer, T.K., Gomez, L.M., and S.T. Dumais.: The Vocabulary Problem

in Human-System Communication, Communications of the ACM 30 (1987) 964-971.
12. Gandon, F.: Ontology Engineering: A Survey and a Return on Experience. INRIA Re-

search Report # RR4396, INRIA, France (2002). Available at: http://www.inria.fr/rrrt/rr-
4396.html

13. Gandon F., Dieng R., Corby O. et Giboin A.: A multi-agent system to support exploiting
an XML-based corporate memory, Proceedings of PAKM’2000, the Third International
Conference on Practical Aspects of Knowledge Management, Basel, Switzerland (2000)

14. Garrod, S. How groups coordinate their concepts and terminology: implications for medi-
cal informatics. Proceedings of the WG6 IMIA Symposium on Concepts and Terminology,
Jacksonville, Fl. (1997) 279-284

15. Giboin, A, Pérez, Ph. (Eds.): Assessment Report of [CoMMA] Trial-step 1. Part 1 Techni-
cal Evaluation, CoMMA Project (IST-1999-12217) Deliverable # COMMA/WP6/D10, 69
pages (2001a)

16. Giboin, A, Pérez, Ph. (Eds): Assessment Report of [CoMMA] Trial-step 1. Part 2 User
Evaluation, CoMMA Project (IST-1999-12217) Deliverable # COMMA/WP6/D10, 156
pages, (2001b)

17. Gómez-Pérez, A.: Some Ideas and Examples to Evaluate Ontologies. Technical Report #
KSL-94-65, Knowledge Systems Laboratory. Stanford University (1994a). Available at:
http://www-ksl.stanford.edu/KSL_Abstracts/KSL-94-65.html

72

18. Gómez-Pérez, A.: From Knowledge Based Systems to Knowledge Sharing Technology:
Evaluation and Assessment. Knowledge Systems Laboratory, Technical Report # KSL-94-
73 (1994b)

19. Grüninger, M., and Fox, M.S.: The Role of Competency Questions in Enterprise Engi-
neering, Proceedings of the IFIP WG5.7 Workshop on Benchmarking – Theory and Prac-
tice, Trondheim, Norway (1994)

20. Grüninger, M., and Fox, M.S.: Methodology for the design and evaluation of ontologies,
Proceedings of the IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing,
AAAI Press, Menlo Park CA, (1995). Available at:
http://www.ie.utoronto.ca/EIL/public/org.ps

21 Kazman, R., Carriere, S. J., Woods, S. G.: Toward a discipline of scenario-based architec-
tural engineering, Annals of Software Engineering 9 (2000) 5-33.

22. Lane, T. and Brodley, C.E.: Approaches to online learning and concept drift for user iden-
tification in computer security. Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining (1998) 259-263.

23. Nielsen, J.: Heuristic evaluation. In: Nielsen, J., and Mack, R.L. (Eds.), Usability Inspec-
tion Methods, John Wiley & Sons, New York, NY (1994)

24. Robinson, M. and L. Bannon: Questioning representations. Proceedings of ECSCW’91, the
Second European Conference on Computer-Supported Cooperative Work, Amsterdam,
The Netherlands (1991). Available at:
http://www.ul.ie/~idc/library/papersreports/LiamBannon/15/QuestFin.html

25. Thomas, P.J. (Ed.): CSCW Requirements and Evaluation, Springer Verlag, London (1996)
26. Uschold, M. and Grüninger M.: Ontologies: Principles, methods and applications. Knowl-

edge Engineering Review 11 (1996). Also available as AIAI-TR-191 from AIAI, The Uni-
versity of Edinburgh.

27. Wharton, C., Rieman, J., Lewis, C., and Polson, P.: The Cognitive Walkthrough method: A
practitioner's guide. In J. Nielsen and R.L. Mack (Eds.), Usability Inspection Methods,
New York: John Wiley & Sons, (1994) 105-141.

73

OntoManager: A Workbench Environment to facilitate
Ontology Management and Interoperability

Adil Hameed, Derek Sleeman, Alun Preece

Department of Computing Science
University of Aberdeen
Aberdeen AB24 3UE

Scotland, U.K.
{ahameed, dsleeman, apreece}@csd.abdn.ac.uk

http://www.csd.abdn.ac.uk/research/

Abstract. The prime motivation for our research is to enable sharing and reuse
of domain knowledge through the engineering and management of ontologies.
We contend that there is a need to reconcile ontologies by harmonising mis-
matches and discrepancies that are present among them. This is a necessary task
before any stakeholders can begin to share and/or reuse the underlying knowl-
edge (re)sources. Our key objective is to detect and resolve these mismatches in
a consistent and verifiable manner. We have evaluated the state-of-the-art in on-
tology management tools and selected the best-in-class techniques and methods.
We propose implementing a workbench that will integrate these tools and en-
able interoperability between them in order to facilitate the management of on-
tologies.

74

1 Introduction

Researchers have identified various kinds of ontological discrepancies [1, 2, 3, 4] and
several types of inconsistencies that are inherent in knowledge and data sources [5, 6].
Also, impediments that are likely to occur during the elicitation of knowledge from
multiple experts have been recognised [7]. Further, suggestions have been made about
classifications and categorisations of such mismatches [2, 3, 6]. Recently, there has
been considerable interest in developing tools and techniques to assist in a variety of
ontology management operations, e.g., mapping, merging, alignment, integration, etc.
[8, 9, 10, 11, 12, 13]. For any of these processes to be carried out successfully, it is
inevitable that mismatches be detected and resolved. None of the available tools tackle
all the types of discrepancies we have identified [3]. Moreover, the various tools oper-
ate on ontologies expressed in different knowledge formalisms. Essentially, since none
of the current approaches are designed to address every type of mismatch, there is a
compelling case for providing interoperability between the tools.

2 Background and Motivation

Our focus has been on the engineering & management of ontologies built from knowl-
edge elicited directly from human experts. We make a distinction between experts’
ontologies (based on inherent conceptualisations) as opposed to artefact ontologies.

1 2 3 4 5

elicit knowledge

construct ontology

formalise ontology
compare ontologies;
detect mismatches;

& determine objective

reconcile mismatches;
merge or align ontologies;

& evolve consensual ontology

E1 PE1
 OE1

 f OE1

(Domain
 Experts)

(Protocols in
Natural Language)

(Ontologies as
Conceptual Graphs)

(RDF/DAML/OWL) f OC (E1E2)

E2 PE2
 OE2

 f OE2
 f OC (E1E2 … En)

 : : : :
 : : : :

En PEn
 OEn

 f OEn

Fig. 1. Stages illustrating our evolutionary approach towards the engineering and management
of Experts’ Ontologies

Knowledge was elicited from domain experts (E1 … E5) (Fig. 1) in the form of natu-
ral language protocols (PE1, PE2, …) which were then analysed by a systematic approach

75

we developed to construct individual expert’s ontologies (OE1, OE2, …) [14]. These
ontologies were represented in a semi-formal notation as conceptual graphs [15]. In
order to aid machine-interpretation and reasoning, it is necessary to formalise the
ontologies and ‘transform’ them into a more expressive representation. We are inves-
tigating the efficacy of standard knowledge representation forms such as RDF,
DAML+OIL, and the evolving OWL [16].

Since we have detected a wide array of mismatches among our experts’ ontologies,
extending from simple syntactic discrepancies to a range of rich semantic inconsisten-
cies [3], we realised that it is not plausible to evolve an all-encompassing solution.
Instead, we propose an approach based on interoperability between various best-in-
class tools. This approach will take into account the type of mismatch and suggest an
appropriate and feasible resolution process. In addition to the acknowledged ap-
proaches in knowledge representation, ontology engineering, and description logics,
we are also investigating novel techniques from areas such as design patterns, fuzzy &
softcomputing, among other promising techniques.

3 Ontology Management: The OntoManager Workbench

We have sought to assess empirically the effectiveness of the state-of-the-art in ontol-
ogy management tools. Key features of prominent tools such as PROMPT, Chimaera,
FCA-Merge, ODEMerge, ONION, OntoView, etc. are being appraised [17]; first with
sample ontologies provided by the respective designers, and then with experts’ on-
tologies from a common domain (PC specification) that were constructed from inde-
pendently elicited knowledge [14].

After experimenting with these tools, we have obtained a clear understanding of
both their strengths and their limitations. An analysis of the limitations has helped us
focus on developing techniques that should address issues/problems that these tools
have not yet tackled. An insight into each of their strengths has also enabled us to
identify particular algorithms and techniques that are currently best-in-class.

We are developing an interactive tool to semi-automate the detection and resolution
of various ontological mismatches. We now plan to extend this tool into a workbench
environment: OntoManager, where different ‘procedures/methods’ can be added to
aid in the resolution of specific kinds of mismatches. It is also anticipated that the tool
itself could work with existing ontology development systems such as Protégé, Onto-
Broker/OntoEdit, WebODE, KAON, ConcepTool, etc. It is envisaged that when these
tools are encompassed within OntoManager, it would be able to employ or at least
recommend the most suitable tool/technique that could help resolve a specific type of
ontological mismatch or discrepancy. The system is being implemented in Java. We
aim to demonstrate the integration of at least two of the above tools, and show how
interoperability can be achieved between the built-in techniques they offer and the
heuristic methods that we have developed.

76

Fig. 2. A schematic diagram of the OntoManager: a workbench environment to facilitate the
management of ontologies

Ontology management and interoperability can provide key solutions to the many

challenges posed by the progressive transformation of the current WWW into the
Semantic Web [18]. Also, the success of the much-advocated Web/Grid Services,
which are predicted to proliferate, will certainly depend on successful reconciliation
among underlying ontologies.

It is therefore conceivable that when this workbench is deployed in a distributed
environment like the Internet, it will provide an innovative and a valuable ontology
and knowledge management service for the Semantic Web/Grid.

Ontology1 Ontology2

COMPARE ONTOLOGIES

DETECT MISMATCHES

CLASSIFY TYPES OF MISMATCHES

SELECT APPROPRIATE RESOLUTION TOOLS OR TECHNIQUES

CONVERT SOURCE ONTOLOGIES TO TOOL-NATIVE REPRESENTATIONS

Protégé-compatible OKBC PowerLoom ODE-compatible DAM L+OIL ER+

(Anchor-) PROMPT Chimaera OntoMorph ODEMerge OntoView ConcepTool

INTEGRATE OUTPUTS AND PRESENT TO USER FOR REVIEW

.

MERGE ONTOLOGIES ALIGN ONTOLOGIES

77

References

1. Hameed, A., Sleeman, D., & Preece, A.: Reconciling Experts’ Ontologies for the Semantic
Web. Presented at the First Int. Semantic Web Conf. (ISWC-2002), Sardinia, Italy (2002).

2. Visser, P.R.S., Jones, D.M., Bench-Capon, T.J.M., & Shave, M.J.R.: An Analysis of
Ontology Mismatches; Heterogeneity vs. Interoperability. AAAI’97 Spring Symposium on
Ontological Engineering, Stanford (1997)

3. Hameed, A., Sleeman, D., & Preece, A.: Detecting Mismatches among Experts' Ontologies
Acquired through Knowledge Elicitation. In R&D in Intelligent Systems XVIII, Proc.
ES2001: 21st SGES Int. Conf. on Knowledge Based Systems and Applied Artificial Intel-
ligence, Cambridge, U.K., Springer-Verlag, London (2001) 9–24. Also, in Knowledge-
Based Systems, 15(5-6) (2002) 265–273

4. Klein, M.: Combining and relating ontologies: an analysis of problems and solutions.
Workshop on Ontologies and Information Sharing, IJCAI’01, Seattle, USA (2001)

5. Ceri, S. & Widom, J.: Managing Semantic Heterogeneity with Production Rules and
Persistent Queues. Proc. 19th Int. Conf. on Very Large Data Bases, Dublin (1993) 108-119

6. Wiederhold, G.: Interoperation, Mediation & Ontologies. 5th Generation Computer Sys-
tems'94 Workshop on Heterogeneous Cooperative Knowledge-Bases, Tokyo (1994) 33-48

7. Shaw, M.L.G., & Gaines, B.R.: Comparing Conceptual Structures: Consensus, Conflict,
Correspondence and Contrast, in Knowledge Acquisition, 1(4) (1989) 341-363

8. Hovy, E.: Combining & standardizing large-scale, practical ontologies for machine trans-
lation & other uses. 1st Int. Conf. on Language Resources & Evaluation, Granada (1998)

9. Pinto, H.S.: Towards Ontology Reuse, in the Proceedings of AAAI99’s Workshop on
Ontology Management, WS-99-13, AAAI Press (1999) 67-73

10. McGuinness, D.L., Fikes, R., Rice, J., & Wilder, S.: An environment for merging and
testing large ontologies, in Cohn, A., Giunchiglia, F., Selman, B. (eds.), KR2000: Princi-
ples of Knowledge Representation and Reasoning, San Francisco (2000) 483-493

11. Noy, N.F. & Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In Proc. AAAI’00, Austin (2000)

12. Mitra, P., Kersten, M., & Wiederhold, G.: Graph-Oriented Model for Articulation of
Ontology Interdependencies, in the Proceedings of the 7th Int. Conf. on Extending Data-
base Technology, Springer-Verlag (2000)

13. Stumme, G. & Maedche, A.: Ontology Merging for Federated Ontologies on the Semantic
Web. Workshop on Ontologies and Information Sharing, IJCAI’01, Seattle, USA (2001).

14. Hameed, A., & Sleeman, D.: Knowledge Elicitation to construct Ontologies in the domain
of PC Specification. AUCS/Technical Report TR0001. Department of Computing Science,
University of Aberdeen (2000)

15. Sowa, J.F., ed.: Conceptual Graphs, draft proposed American National Standard,
NCITS.T2/98-003 (1998)

16. W3C (The World Wide Web Consortium): Requirements for a Web Ontology Language.
W3C Working Draft (2002)

17. Hameed, A.: A Comparative Evaluation of Ontology Management Tools – A state-of-the-
art (work-in-progress). Internal report, Dept. Computing Science, Univ. Aberdeen (2002)

18. Berners-Lee, T., Hendler, J., & Lassila, O.: The Semantic Web. Scientific American, 284
(5) (2001) 28-37

78

NL description on the travelling domain

Let's consider that we are in charge of developing an application for our travel agent in New York, and that we have
decided to make use of an ontology to represent explicitly the knowledge that will be used by it. We will focus to
travelling and Lodging, but leisure time, cultural events, tours, etc., will be considered in further stages of our
ontology.

We know that when a client makes a trip, he chooses: transport and accommodation.

Hence, we start by determining the means of transport that are currently available for a travel agency. We will have
in our ontology the following ones: planes, trains, cars, ferries, motorbikes and ships. There are no other kinds of
transport. From all of them, the travel agency is specially interested in flights, as it is the means of transport mostly
used by its customers. In fact, customers are usually interested in the kind of planes that they will fly on: Is it a
Boeing, or is it an Airbus? Furthermore, they are even interested in the specific model of the plane in which they
will fly (a Boeing 717 or a Boeing 777). We know that each model of transport belongs only to one kind of
transportation (e.g., it’s either a plane, or a bus, or a car, etc.

For each flight, the agency knows: the arrival date, the departure date, the arrival city, the departure city, the arrival
airport, the departure airport, the prices on first class, business class and economy class, the departure time and
arrival time. Time and date will be considered as absolute date.

As for the destinations of customers' travels, they are diverse. Some customers ask for trips to the Statue of Liberty
in New York; other ask for trips to Washington, San Francisco, Seattle. There are customers interested in visiting
Europe: the most common destinations are London, Paris (either the city or Disneyland Paris) and Madrid. Others
are interested in more places, such as Cairo (Egypt). We know that the client can use the following transport to
move inside the city: underground, city buses, taxis, and rental cars.

Concerning hotels, the agency recommends in all the cities: hotels, and Bed and Breakfasts. Hotels rank from 1 star
hotels to 5 star hotels and each hotel belongs to one of these five categories. For all of them, the agency knows their
facilities: address, telephone number, URL, capacity, number of rooms, available rooms, descriptions, dogs allowed,
distance to the beach, distance to skiing, etc. The agency also knows the facilities of the rooms: number of beds,
rates, TV available, Internet connection, etc.

Once we have defined what are the main elements in our domain, we can go further and try to represent some
common sense constraints and deductions that can be performed with them. For instance, we know that it is not
possible to go from America to Europe by train, car, bike nor motorbike. Having this information in our system will
avoid it to search for possible itineraries using these means of transport when a customer wants to travel to Europe.
Another example of this kind of constraint may be related to the distance between the origin and destination of our
trip and the available means of transport. If distance between two cities is between 400 and 800 miles, and there is
no airport close to one of them, the customer will prefer going by car or by train. The customer also prefer to go by
car or train if he hates travel by plane. Distances can be either in km or miles.

Finally, we want to represent knowledge about a concrete trip. John is travelling from Madrid to NY on April 5th,
2002 to see the Statue of Liberty and continuing on to Washington on April 11th. He plans to return to Madrid on
April 15th. He has selected two hotels belonging to the Holiday Inn chain in New York and Washington.

http://www.boeing.com/commercial/717/717technical.html provides Boeing717 technical description.

79

Travelling Domain Experiment:
Preliminary Results for OilEd

Sean Bechhofer
Information Management Group

University of Manchester
Kilburn Building

Oxford Road
Manchester M13 9PL

Introduction
OilEd [Bechhofer01b] is a tool that allows the construction of DAML+OIL ontologies. It is targeted
primarily at ontology construction (rather than knowledge base population), and thus concentrates on
the language constructors related to classes and the relationships between them. A key aspect of OilEd
is its use of the FaCT reasoner which allows the user to produce classification hierarchies and check
classes for inconsistency.

As OilEd is not intended for knowledge base construction, this experiment concentrated primarily on
trying to represent information about the classes that arise in the example scenario, and the
relationships and constraints that appear between them. In addition, as data type support is limited,
little was done to model attributes with concrete ranges. As a result, the model produced only really
covers a small subset of the application domain – additional functionality would certainly be needed if
this were to be used within an application. However, the results demonstrate how we can use
DAML+OIL, in particular axioms and expressive power such as negation, for the representation of
some quite sophisticated constraints.

OilEd is not an application for query or ontology delivery, so it is difficult to assess in a satisfactory
way the model produced in terms of query or use in an application. However, as discussed below, we
can see how definitions in the resulting model might be used in applications.

Building the Model
Building the Model consisted of 3 basic stages:

Knowledge Acquisition: identifying the basic classes and properties;
Definition: identifying the relationships between the basic classes;
Constraints: identifying the constraints that limit the ways in which descriptions can be
formed.

The process was iterative. Once the basic definitions were in place, these were refined and further
elaborated. The reasoner was used regularly throughout the process to assist in organisation of the
model and check for consistency.

Vehicles and Accommodation
The first step was basic knowledge acquisition. The NL description
was examined in order to determine what the major classes
occurring in the model were likely to be. This basically involved
identifying things like the various kinds of Vehicle (Bus, Car etc)
and the kinds of Accommodation (Hotel, B&B). Figure 1 shows a
marked up section of the scenario. The concepts identified were
added to the model as basic primitive classes.

In addition to the concepts, a number of basic relationships and
attributes were identified. In the scenario, many of these are what
DAML+OIL calls datatype properties, for example arrival or
departure dates and times, number of rooms, price etc. The support
for data types in OilEd is minimal. Relationships can be introduced
and asserted to be data type properties and a range can be given, but

no complex data types such as ranges are supported.

Figure 1 KA

80

Once the basic classes had been added, abstract classes were introduced into the model, for example in
order to represent the different kinds of vehicle that can be used. These were introduced as primitives,
e.g. Air Vehicle, Land Vehicle and Water Vehicle. One possible approach would be to model these
as defined classes – for example a Land Vehicle is a vehicle that travels across land. A decision was
taken that this was not necessary (at this point). If it became useful to explicitly represent and model
these properties, these definitions could subsequently be refactored “in place”. An axiom was added
stating that the Vehicle class was covered (disjointly) by the three vehicle types (see the discussion
below about round tripping). This precludes us from including, for example, amphibious vehicles and
asserts that there are no other kinds of Vehicles than the three introduced. Again, for this particular
scenario, this was deemed acceptable.

Places
The notion of a Geographical Location encompasses Countries, Cities and Attractions. A rather
general notion of containment is provided – Geographical Locations can be in other Geographical
Locations. This relationship is transitive, thus an Attraction which is in a City which is in a Country
is also in that Country.

Hotels and B&Bs are kinds of Places to Stay. These have a number of datatype properties (relating
to address, telephone number etc).As discussed above, this particular model makes no attempt to
deal with these relationship other than by simply introducing them.

Particular places (USA, Manchester, EuroDisney) have been introduced as individuals in the model.
Although OilEd is not intended for large scale knowledge base construction, individuals can be
introduced for use in “one-of” expressions. These can then be used in definitions such as a Trip from
Europe to America (as discussed below).

Trips and Journeys
Once the basic artefacts of the model were in place (Vehicles and
Places), concepts representing travel were introduced. A Trip is the
basic atomic unit. Every Trip must have a departure and arrival point.
Trips can use at most one vehicle. Trips can be combined into
Journeys. Ideally a constraint should be in place that the trips that
make up a journey all fit together in a sensible fashion, but this is not
currently represented.

Subclasses of trips can now be defined: for example a Flight is a Trip
that uses an Air Vehicle. A Taxi Ride is a trip using a Taxi. Axioms
are used to constrain the start and end points of Trips. For example,
any Flight must begin and end at an Airport. Similarly, a Sailing (a
Trip using a Water Vehicle) must begin and end at a Sea Port.

Further compositional concepts can now be defined. An Overland
Journey is one which consists solely of trips using Land Vehicles. A
Long Journey is one which involves at least three trips. The expressiveness of DAML+OIL coupled
together with the editing facilities of OilEd allow us to make these definitions without having to
introduce intermediate descriptions. For example, the definitions of Overland Journey as shown in
Figure 2 uses a universal restriction whose filler is an existential restriction.

We can now begin to describe additional constraints on the way in which trips can be put together. For
example, it is impossible to travel from North America to Europe by train, car, bike or motorbike.
This is represented by an axiom which states that any Trip from a place in North America to a place in
Europe cannot use a Land Vehicle.

Discussion
Although this was a small scale experiment, and concentrated on a subset of the described domain,
there were some interesting aspects. The model took around a day to produce, from examining the NL
description to final production of the DAML+OIL model. The classified ontology was also exported as
HTML and vanilla RDFS (including the inferred superclasses found by the classifier), and a plot of the
hierarchy was produced using output from OilEd and dotty1.

1 http://www.research.att.com/sw/tools/graphviz/

Figure 2 Overland
Journey

81

Some Examples & Queries
As discussed above, OilEd is not intended for knowledge base construction, and does not directly
support queries. However, we can use OilEd to define concept expressions which represent queries
which might be posed by an application. These can then be classified against the ontology to check
their consistency and their relationship with other descriptions – this use of the classifier was the key
aspect explored in the experiment.

For example, a Non Flyer is defined as somebody who will only take Journeys that are made up of
Trips that do not use Air Vehicles. A Non Airbus Traveller is someone who will not take a trip that
involves something made by Airbus. An interesting side effect of this definition is the discovery that a
Non Flyer is also a Non Airbus Traveller (as an axiom states that Airbus only make aircraft).

Such definitions will be useful for representing the preferences of travellers in an application. In the
example model, XX Non Flyer is provided as a specialisation of Non Flyer that takes a trip that
includes a Flight. This is spotted as an inconsistency by the classifier.

In a similar vein, the concept XX Europe to America is defined as a Trip from Europe to America
using a Bus. This is again spotted as an inconsistency.

Another simple example of an inconsistency is the concept XX Journey, which is defined as being an
Overland Journey that includes a Flight.

Round Tripping
As discussed in [Bechhofer01a], there can be problems
when “round-tripping” from OilEd in to DAML+OIL and
back again. This was illustrated here by the axioms relating
to Vehicles. In the original model, a covering axiom was
added stating that Land, Water and Air Vehicles formed a
disjoint covering of Vehicle. This is represented in
DAML+OIL using a subClass axiom with a disjointUnionOf
Class description. However, there is no information in the
DAML+OIL
that tells us
how this was
actually
presented in
the original

ontology. When the model is saved and then re-read by
the tool, the information is presented as an explicit
superclass (of Vehicle) and a disjointness axiom. Of
course, the semantics of this ontology are identical to
those of the original, but the information is being
presented in a different way. This is, admittedly, partly
a tools issue – the tool could perhaps do more to try and
preserve the information about the so-called semiotic
information [Euzanet00] in the ontology, through
extensions to the RDF used (although this would also
require mechanisms for grouping and referring to collections of statements in the RDF model).

References
[Bechhofer01a] Sean Bechhofer, Carole Goble, Ian Horrocks. DAML+OIL is not enough. SWWS-1,
Semantic Web working symposium, Stanford (CA), July 29th-August 1st, 2001

[Bechhofer01b] Sean Bechhofer, Ian Horrocks, Carole Goble, Robert Stevens. OilEd: a Reason-able
Ontology Editor for the Semantic Web. Proceedings of KI2001, Joint German/Austrian conference on
Artificial Intelligence, September 19-21, Vienna. Springer-Verlag LNAI Vol. 2174, pp 396--408. 2001.

[Euzanet00] Jerome Euzenat. Towards formal knowledge intelligibility at the semiotic level. In ECAI
2000 Workshop Applied Semiotics: Control Problems, Berlin (DE), pages 59–61, 2000.

Figure 3 Original Axiom

Figure 4 After Round Tripping

82

Travelling Domain Experiment:
Engineering with OntoEdit

York Sure

Institute AIFB
University of Karlsruhe

76128 Karlsruhe, Germany
sure@aifb.uni-karlsruhe.de

1 Introduction
This paper presents the results of using OntoEdit in the context of the experiment on
evaluation of ontology related technologies that was initiated by the Special Interest Group
(SIG) on Enterprise-Standard Ontology Tools of the EU IST-2000-29243 thematic network
OntoWeb (cf. http://www.ontoweb.org/).

OntoEdit [1,2] is a collaborative ontology engineering environment that has been developed
keeping five main objectives in mind: (i) Ease of use. (ii) Methodology-guided [3]
development of ontologies. (iii) Ontology development with help of inferencing. (iv)
Development of ontology axioms. (v) Extensibility through plugin structure [4].

Modelling ontologies using OntoEdit involves modelling at a conceptual level, viz. as
independently of a concrete representation language as possible, and using GUI's representing
views on conceptual structures (concepts, concept hierarchy, relations, instances, axioms)
rather than codifying conceptual structures in ASCII. The conceptual model of an ontology is
stored internally using a powerful ontology model, which can be mapped onto different,
concrete representation languages (e.g. RDF(S) or DAML+OIL). As mentioned above, the
core functionalities of OntoEdit are easily expandable through a flexible plug-in framework.

In order to provide a clearly defined semantics to the knowledge model of OntoEdit, the
knowledge structures of OntoEdit correspond to a well-understood logical framework, viz. F-
Logic [5] (“F” stands for “Frames”). F-Logic allows for concise definitions with object
oriented-like primitives (classes, attributes, OO-style relations, instances) that fit very nicely
with the OntoEdit GUI. Furthermore, it also has PL-1 like primitives (predicates, function
symbols). Furthermore, F-Logic allows for axioms that further constrain the interpretation of
the model. Axioms may either be used to describe constraints or they may define rules, e.g. in
order to define a relation R by the composition of two other relations S and Q. F-Logic rules
have the expressive power of Horn-Logic with negation and may be transformed into Horn-
Logic rules. Unlike Description Logics (DL), F-Logic does not provide means for
subsumption, but (also unlike DL) it provides for efficient reasoning with instances and for
the capability to express arbitrary powerful rules, e.g. ones that quantify over the set of
classes. Cf. [2] for a more elaborated discussion.

Our inference engine Ontobroker [6] comes with several features that makes it adequate as a
backbone for an ontology editor. In particular, it provides: (i) A namespace mechanism: Thus,
several ontologies (or ontology parts) may be syntactically split into modules and processed
by different inference engines. (ii) Switch-off: It is possible to switch of (possibly singleton)
sets of definitions. Thus, one may test interactions and easily distinguish between modules.
(iii) DB Connectors: Thus, one may easily map database tables into predicates via JDBC.
(iv) User-definable built-Ins: Besides of standard built-ins like “multiply”, the user may

83

define his own ones for special purposes. (v) An extensive API: Thus, one may remotely
connect to the inference engine and one may also import and export several standards (e.g.,
RDF(S)).

2 Engineering the Model
For engineering the traveling domain model with OntoEdit we performed the two steps
“Kickoff” and “Refinement” of our methodology.

2.1 Kickoff
In the first step, a semi-formal description of the ontology is created by sketching the most
relevant elements of the domain. The early stages of ontology development are often driven
by brainstorming like knowledge acquisition sessions. In other projects (cf., e.g., [7]) we
made good experiences with creating mindmaps as a first draft of relevant elements for a
domain. Especially domain experts who were not familiar with modeling preferred using a
mindmapping tool instead of directly modeling with an ontology editor. Figure 1 shows the
mindmap created from the natural language description of the domain. We rely on a
commercial tool for the creation of electronically mindmaps, the MindManager 2002
Business Edition (cf. http://www.mindjet.com/).

Fig. 1: MindMap of the traveling domain

When collaborating with domain experts the time needed for knowledge acquisition is
essential, especially in industrial environments. The advantage of using mindmaps is (i) the
quick generation of a graphical representation of relevant domain elements (ii) by using an
intuitive and rather well-known tool. The creation of this mindmap took less than 20 minutes.

84

However, when it comes to terms of a formal model of
the domain, this representation is no longer suitable. This
representation does not clearly distinguish between the
notions of concepts, relations etc.. The only semantics
for connections (branches or directed edges) in a
mindmap is that these elements are “associatively
linked”. Closer related elements are typically marked
with same colors. Typically a mindmap represents the
key concepts and their relationships and to formalize it
into an ontology, the ontology engineer has now to
decide which elements are concepts, how is their
hierarchical “is-a” structure and which elements are other
named relationships. In some cases one might find
prototypical instances, but constraints like the ones given
at the end of the domain description are typically not
found in mindmaps.

Currently the formalization has still to be “sorted out”
manually by ontology engineers. A XML based
exchange between the MindManager and OntoEdit
guarantees interoperability on a syntactical level. For
future versions we plan also to support the decision
making during the formalization.

2.2 Refinement

2.2.1 Concepts and relationships
To formalize the mindmap we followed the steps (i)
creation of an “is-a” hierarchy of concepts, (ii) adding
attributes of concepts and relationships between concepts

other then “is-a”, (iii) including prototypical instances and (iv) adding axioms that represent
constraints and common sense deductions. At several points we needed to introduce further
concepts, that were not obvious at first hand from the domain description but necessary to
build a complete model. E.g. we introduced a concept Journey to combine several trips,
some others are mentioned in the text below. This reflects the fact that the mindmap is
typically covering only the most relevant elements of a domain, but is not intended to
represent more complex relationships in a formally consistent way.

Figure 2 shows the resulting concept hierarchy. When defining a Trip we made the
following assumption to narrow down multiple possible interpretations in the description: Not
only for flights, but for every Trip the arrival/departure date, arrival/departure city is known.
A Flight is a specialization of Trip for which additionally the arrival/ departure airport
and the prices for first/business/economy class are known. The grey shaded relationships
shown in Figure 3 illustrate the inherited relationships for the selected concept Flight, i.e.
the domain of them is Trip. The relationships without shading have as a domain Flight
itself.

Fig. 2: Concepts

85

We made some simple assumptions for defining ranges of the relationships: e.g. the dates are
coded as STRING which directly points to the XML Schema definition for strings
(http://www.w3.org/2001/XMLSchema#String) – same holds e.g. for prices/INTEGER.

Fig. 3: Relationships of „Flight“

The relationship means_of_transport is firstly defined for Flight with the range
Means_of_transport. We then refined it for Flight by specializing the range to
Plane that is a subconcept of Means_of_transport (cf. Figure 4).

Fig. 4: Relationships for „Plane“

Accomodation (cf. Figure 5) has subconcepts Hotel and Bed and Breakfast.
Beside relationships for the facilities mentioned in the description (address, available rooms
etc. ..) one can see relationships to Room and City. To model the star ranking schema for
hotels we added further specializations of Hotel, e.g. One-Star-Hotel (see later in the
subsection about instances how we model a particular hotel as an instance). To model that
each hotel belongs to one star category, we defined Hotel as an “abstract” concept, i.e.
there are no instances of this concept allowed, and all subconcepts like One Star Hotel
as “concrete” concepts (cf. Figure 6). Same holds e.g. for Means of transport and its
subconcepts.

86

Fig. 5.: Relationships of „Accomodation“

Fig. 6: “Abstract” vs. “concrete” concepts

We introduced Place as a superconcept of City (cf. Figure 7). For further axioms on top
we also included Attraction, Country and Continent. The concepts are related via
the located in relationship, e.g. an Attraction is located in a City, a City is
located in a Country and a Country is located in a Continent. As shown later this
relationship is transitive. City and Attraction are also subconcepts of Destination,
i.e. they are multiply inherited. Alternatively one could consider to add Destination as a
subconcept of Place, too. In the current scenario that would have no effect. Modeling it this
way seemed more intuitive to us.

Last but not least, a Journey has potentially many parts, i.e. it can be related via has
part to many instances of Trip that belong to this Journey. For completeness we
included also the inverse relationship part of for Trip with the range Journey and defined
these two relationships as invers (see later subsection on axioms).

87

Fig. 7 : Relationships of “City”

2.2.2 Instances

We modeled several instances, e.g. shown in Figures 8, 9 and 10. Part of them are given in the
first part of the description (e.g. the cities New York, Washington etc. and the attractions
Statue of Liberty and EuroDisney) , others are given in the last section with an
example journey for John (cf. Figure 10). John makes two flights (from Madrid to NY and
from Washington to Madrid) and one trip with a motorcycle (from NY to
Washington).

Fig. 8 : Instances of “City” and “Attraction”

88

Fig. 9: Instances of “Means of transport” and “Three Stars Hotel”

Fig. 10: Instances of “Flight” and “Trip”

2.2.3 Axioms

On top we defined several axioms: located in is transitive (cf. Figure 11), e.g. has
part is inverse to part of (cf. Figure 12), the subconcepts of Hotel are pairwise disjoint
(cf. Figure 13).

Fig. 11: Transitive relationship

89

Fig. 12: Inverse relationships

Fig. 13: Disjoint concepts

A more complex axiom is given in the description by “it is not possible to go from America to
Europe by train, car, bike or motorbike” (without restricting the generality we excluded bike
because it was not given in the previous section for means of transport). We defined a general
axiom in F-Logic that can be used to check whether this constraint holds for all given
instances (see also Figure 14):

FORALL T check("You cannot travel from North-America to Europe
by train, car or motorbike!",T)

<- EXISTS M,D,A
T:Trip[departure_city->>D;

arrival_city->>A;
means_of_transport->>M]

AND D:City[located_in->>"North_America"]
AND A:City[located_in->>"Europe"]
AND (M:Train OR M:Car OR M:Motorbike).

Other given constraints can be formalized similar to this. To perform a check we simply query
for all values of the 2-ary predicate check.

90

Fig. 14: General axiom

2.2.4 Inferencing
OntoEdit (Inferencing Edition) can be connected to the inferenced engine Ontobroker. We are
thereby able to perform queries for concepts, relationships, instances etc.. E.g. we can ask for
all cities and where they are located in. If we enable the axiom for transitivity of the
relationship located in (like shown in Figure 15) we receive as an answer to that query
that e.g. New York is located in USA (an instance of Country) as well as the fact the New
York is located in North America (an instance of Continent).

Fig. 15: Inferencing in OntoEdit

3 Conclusion
We illustrated the modeling process for engineering the traveling domain with OntoEdit. We
were able to formalize the given natural language description. Our aim was to model the
domain as close as possible to the given domain description, i.e. we tried to add only those
concepts and relationships that were mentioned. On top we defined axioms that reflect
constraints given in the description.

91

4 References
[1] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer and D. Wenke. OntoEdit: Collaborative

Ontology Engineering for the Semantic Web. In: Proceedings of the first International
Semantic Web Conference 2002 (ISWC 2002), June 9-12 2002, Sardinia, Italia, Springer,
LNCS 2342, pages 221-235.

[2] Y. Sure, S. Staab, J. Angele. OntoEdit: Guiding Ontology Development by Methodology

and Inferencing. In: Proceedings of the International Conference on Ontologies, Databases
and Applications of SEmantics (ODBASE 2002), October 28 - November 1, 2002, University of
California, Irvine, USA, Springer, LNCS.

[3] S. Staab, H.-P. Schnurr, R. Studer, and Y. Sure: Knowledge Processes and Ontologies. In:

IEEE Intelligent Systems 16(1), January/Febrary 2001, Special Issue on Knowledge
Management.

[4] Siegfried Handschuh. Ontoplugins –a flexible component framework. Technical report,

University of Karlsruhe, May 2001.

[5] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based

languages. Journal of the ACM, 42:741–843, 1995.

[6] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based access to

distributed and semi-structured information. In: R. Meersman et al., editor, Database
Semantics: Semantic Issues in Multimedia Systems. Kluwer Academic, 1999.

[7] Th. Lau and Y. Sure. Introducing Ontology-based Skills Management at a large

Insurance Company. In: Proceedings of the Modellierung 2002, Modellierung in der Praxis -
Modellierung für die Praxis, Tutzing, Deutschland, 25.-27. März 2002.

92

Travelling Domain Experiment:
Results for Loom

Aldo Gangemi

Research Scientist
Ontology and Conceptual Modeling Group

ISTC-CNR (Istituto di Scienze e Tecnologie della Cognizione)
Institute of Cognitive Sciences and Technologies, C.N.R.

Viale Marx 15, 00137
Roma Italy

gangemi@acm.org

For this experiment, we have tried to apply OntoClean and ONIONS methodologies, by
analysing the intended meaning of the requirements provided in the natural language description
of the domain with a basic linguistic and cognitive bias. This results into merging the domain
ontology with the foundational concepts and relations provided by an early version of DOLCE
(cf. WonderWeb EU Project Deliverable D17, http://www.wonderweb.semanticweb.org).

Not all axioms of DOLCE have been explicitly imported in the domain ontology, both for
expressivity lack, for efficiency reasons (the requirements seem to address an application rather
than a reference domain ontology), and because the experiment is a quick and preliminary one.

We have used the Loom KRS that implements a very expressive DL with important extra-logical
features, but has a drawback consisting in having an incomplete reasoner. Another problem with
Loom has been the unavailability of a Loom to RDF translator. We provide here (besides the
Loom code) a KIF translation as well. A possible path to RDF could be translating Loom into
FaCT DL and then feeding OILed tool with the FaCT code and obtaining a DAML+OIL version.
This and other solutions can be tried in a short time.

We tried to avoid overloading the ontology with unnecessary axioms, then we add axioms and
taxonomical fillings only when a clarification has to made concerning the soundness of the
domain ontology compared to the feature of DOLCE foundational ontology.

A more extensive description and evaluation of the experiment will be provided at the WKS.

The domain ontology currently consists of:

86 (domain) concepts
38 (domain) relations
33 (domain) individuals
7 (domain) rules

Axiomatizing relations has been the most idiosyncratic part of the work: in order to anticipate
(and prevent) the low expressivity of the final requested RDF translation, which does not support
role chaining and n-ary relations, we have provided analytical definitions of complex domain
relations by using the :compose Loom construct. This allows the low-end version of the ontology

93

to maintain the conceptual map developed by means of rigorous methodologies; in other words,
an application-oriented version of the ontology can be used without loosing the history and
motivation of its development that are computable (not at runtime) through the reference version
of it.

For bridging some gaps between DOLCE and domain ontology, we have used a refined version
of WordNet hyperonymy hierarchies. Here we include the four taxonomies obtained by
navigating the four basic branchings of DOLCE down to the domain level.

In the domain ontology the meta-property assignment is still lacking.

Object branching hierarchy:

OBJECT
: ABSTRACT-OBJECT
: : MENTAL-OBJECT
: : SOCIAL-OBJECT
: : : COUNTRY
: : : GROUP
: : : INFORMATION
: : : : EXPRESSION
: : : : : MEASUREMENT-UNIT
: : : : Plan
: : : : STATEMENT
: : : : TEXT
: : : PERSON
: : : : NATURAL-PERSON
: : : : : CLIENT
: : : : SOCIALLY-CONSTRUCTED-PERSON
: : : : : LEGALLY-CONSTRUCTED-PERSON
: : : : : : ORGANIZATION
: : : : : : : ENTEPRISE
: : : : : : : ENTERPRISE
: : : : : : : : FLIGHT-COMPANY
: : : : : : : : HOTEL-CHAIN
: : : : : : : : TRAVEL-AGENCY
: : : SERVICE-PROVIDER
: PHYSICAL-OBJECT
: : BODY
: : ORDINARY-OBJECT
: : : ARTIFACT
: : : : CONSTRUCTION
: : : : DEVICE
: : : : FACILITY
: : : : : AIRPORT
: : : : INSTRUMENT
: : : : : EQUIPMENT

94

: : : : : : ELECTRONIC-EQUIPMENT
: : : : : : : RECEIVER
: : : : : : : : TV
: : : : : FURNITURE
: : : : : : BED
: : : : : INTERNET-CONNECTION
: : : : : MEAN-OF-TRANSPORT
: : : : : : BIKE
: : : : : : CAR
: : : : : : : RENTAL-CAR
: : : : : : : TAXI
: : : : : : CITY-TRANSPORT
: : : : : : : CITY-BUS
: : : : : : : RENTAL-CAR
: : : : : : : TAXI
: : : : : : : UNDERGROUND
: : : : : : FERRY
: : : : : : MOTORBIKE
: : : : : : PLANE
: : : : : : : AIRBUS-PLANE
: : : : : : : BOEING-PLANE
: : : : : : : : BOEING-717
: : : : : : : : BOEING-777
: : : : : : SHIP
: : : : : : TRAIN
: : : : STRUCTURE
: : : : : HOUSING
: : : : : : LIVING-QUARTERS
: : : : : : : ACCOMMODATION
: : : : : : : : B&B
: : : : : : : : HOTEL
: : : : : : : : : FIVE-STAR-HOTEL
: : : : : : : : : FOUR-STAR-HOTEL
: : : : : : : : : ONE-STAR-HOTEL
: : : : : : : : : THREE-STAR-HOTEL
: : : : : : : : : TWO-STAR-HOTEL
: : : : : ROOM
: : : : : : HOTEL-ROOM
: : : : VEHICLE

95

Occurrence branching hierarchy:

OCCURRENCE
: ACCOMPLISHMENT
: : Action
: : : ACTIVITY
: : : : ARRIVAL
: : : : DEPARTURE
: : : : LODGING
: : : : REQUEST
: : : : TRAVEL
: : : : : CITY-TRAVEL
: : : : : EUROPE-AMERICA-TRAVEL
: : : : : FLIGHT
: : : : : : ONE-WAY-FLIGHT
: : : : : : OUTWARD-FLIGHT
: : : : : : RETURN-FLIGHT
: : : : : : ROUND-TRIP-FLIGHT
: : : : : OVERNIGHT-TRAVEL
: : : : WORK
: : : : : SERVICE
: : : : : : FLIGHT
: : : : : : : ONE-WAY-FLIGHT
: : : : : : : OUTWARD-FLIGHT
: : : : : : : RETURN-FLIGHT
: : : : : : : ROUND-TRIP-FLIGHT
: : : : : : FLIGHT-SERVICE
: : : : : : HOSTING
: : : TRANSACTION
: ACHIEVEMENT
: FLUX
: NON-RELATIONAL-OCCURRENCE
: PHENOMENON
: PROCESS
: RELATIONAL-OCCURRENCE
: STATE
: : COGNITIVE-STATE
: : : EMOTION
: : : : HATE

96

Quality branching hierarchy:

QUALITY
: ABSTRACT-QUALITY
: : ACCOMMODATION-QUALITY
: : ABSTRACT-LOCATION
: : : URL
: PHYSICAL-QUALITY
: : COLOR
: : DISTANCE
: : SHAPE
: : SPATIAL-LOCATION
: : : ADDRESS
: : : GEOGRAPHIC-AREA
: : : : BEACH
: : : : CITY
: : : : CONTINENT
: : : : NATION
: : : : RESORT
: : : : SKIING-AREA
: : VOLUME
: TEMPORAL-QUALITY
: : DATE
: : INTERVAL
: : TEMPORAL-LOCATION

97

Quality Space branching hierarchy:

QUALITY-SPACE
: ABSTRACT-QUALITY-SPACE
: : BOOLEAN
: DIMENSION
: PHYSICAL-QUALITY-SPACE
: : COLOR-SPACE
: : SHAPE-SPACE
: : SPATIAL-REGION
: : : GEOGRAPHIC-SPACE
: : VOLUME-SPACE
: QUALE
: : ABSTRACT-VALUE
: : : PRICE-VALUE
: : : : BUSINESS-CLASS-PRICE-VALUE
: : : : ECONOMY-CLASS-PRICE-VALUE
: : : : FIRST-CLASS-PRICE-VALUE
: : SPATIAL-VALUE
: : : METRIC-VALUE
: : TEMPORAL-VALUE
: : : DATE-VALUE
: : : TIME-VALUE
: TEMPORAL-QUALITY-SPACE
: : TEMPORAL-REGION

98

OntoWeb Travelling Domain Experiment
Results for OpenKnoME

Dr Jeremy Rogers
Medical Informatics Group
University of Manchester

United Kingdom
jeremy@opengalen.org

Introduction
OpenKnoME [1] is a client software environment for :

• primary authoring of GRAIL ontologies in a collaborative, distributed multi-
author setting

• linking GRAIL ontologies to external data sources
• rapid prototyping of subdomain and task specific ontological schemas

(intermediate representations) that are systematic simplifications of a more
complex, shared, common ontology [2]

OpenKnoME, written in Visualworks Smalltalk, uses GRAIL formalism reasoners,
which are instantiated as separate server applications. The direct descendent of the
original GRAIL development and prototyping environment, OpenKnoME is the
product of more than a decade’s research into large scale collaborative ontology
building, maintenance and delivery, centred on what is now the OpenGALEN
Common Reference Model of medicine (CRM). OpenKnoME is available under open
source license for non-commercial use only from www.topthing.com.

GRAIL is a relatively old formalism , related to more modern and mainstream
description logics. It includes many common DL constructors including existential
role restriction, role hierarchies and role transitivity. The language is declarative, and
compilation is statement order dependent. The compiled model, however, contains
relationships between concepts that were not explicitly stated in the sources but were
inferred during compilation.

GRAIL does not support true negation or disjunction, has no notion of instances, no
mechanism to declare siblings as either truly disjoint or as covering the domain, and
only a very limited implementation of cardinality. GRAIL does not provide native
support for specific data types (such as dates, or numerical ranges).

Additionally, however, GRAIL does include a role inheritance constructor - also
known as refinement or specialisation – that is not supported by any current
description logic.

GRAIL models, like any compositional ontology, are inherently dynamic: they are
typically constructed as a collection of separate mini-ontologies that can be combined,
subject to permissions and constraints also in the model, to build detailed concepts
that form the target ontology. However, the terms in the target ontology can not be
exhaustively defined explicitly, but instead are an implied conceptual space. It is
neither sensible nor possible to pre-enumerate all possible members of the implied
ontological space because the number of possible constructs in that space rapidly rises
to many billions. For this reason a static dump of a ‘fully populated’ travel model is
not provided as part of this experiment.

99

Building the Model

Generic Model
The OpenGALEN generic model (an upper ontology) [3] was used as the starting
point. This ontology provides an off-the-shelf re-usable, relatively domain
independent, upper ontology comprising structures, process and substance together
with a rich library of semantic links and associated coherent transit and GRAIL role
inheritance rules. This upper ontology was developed as a component of the
OpenGALEN CRM ontology. For this evaluation the upper ontology was pruned
slightly to remove a small surviving residual of more clinically oriented content.

A new source file project manager was created within the OpenKnoME, and a copy of
the OpenGALEN generic model sources was imported.

New Category Space
Primary knowledge acquisition involved reading the textual scenario description to
extract candidates for new elementary classes and semantic link types.

Modes of transport
An ontology of vehicles was constructed, primary classification being by whether the
vehicle travels on land, water or through the air. I noted that the scenario description
stated that no other forms of transport existed other than planes, trains, cars, ferries,
motorbikes and ships. However, the same scenario description later mentions buses
and underground transportation. A more detailed and general ontology of vehicles
was therefore sketched. Additional and atypical forms of vehicle were considered,
such as amphibious vehicles, seaplanes, flying cars, gliders, hot air balloons, water
taxis, helicopters, trams, bicycles and rickshaws. These implied further classification
of vehicles by mode of propulsion.

The next step was to attempt to construct a common parent of all modes of transport.
For this, other non-vehicular forms of transportation were also considered, such as
horses and camels. From this it became clear that the concept ‘mode of transport’
would necessarily be a fairly abstract notion, subsuming some built structures
(vehicles) as well as some organisms.

The concept of the process of transporting was modelled. It may be further described
by the physical mode of transport used, by subprocesses of arriving and departing
(each of which may be further described by a time and a location), and by a goal (for
example, visiting a specific attraction or a city). The more abstract idea of a travel
itinerary, comprising any number of transports and hirings of rooms was next
modelled. No attempt was made to model any temporal ordering of the various
journeys and hotel bookings, as temporal reasoning is not directly supported within
GRAIL.

A list of companies was declared, and the processes of hiring or manufacturing
created. Airliners were permitted to be characterised by who made them, and
independently to take any model type designation. Constraints were entered to say
that any airliner with an specific model type designation must have been
manufactured by the appropriate manufacturer, and that any airliner made by a
specific manufacturer can only have a model type appropriate to that manufacturer.

100

Trade and Commerce
A small model of trade and commerce was built, in which relationship are declared
between [Hiring] as an act, [Price] and [Currency].

Accomodation
Hotels were modelled to have rooms as discrete components. Rooms have a number
of further properties (whether they contain a TV, minibar etc), and can be hired from a
specified set of companies. Hotels themselves have a set of characteristics that would
normally be populated by free text or numerical data. These are included in this model
by way of illustration only. A more appropriate mechanism to store instance
information (physical address, URL etc) would be in an external database. The role of
ontologies in indexing actual products has previously been explored using this toolset
in the UK Drug Product Ontology project.

Geography
A list of cities, continents, countries and locations (museums, airport, beaches) was
declared as primitives. The inclusion of apparent instances such as ‘Paris’ and
‘Tacoma Airport’ within a framework that does not support instances is explained by
the fact that, within this model, the identifier ‘Paris’ represents that class of all
possible Paris’s, of which subclasses might include ‘Paris on Bastille Day’, ‘Paris in
the Spring’.

The partitive relationships between these geographic loci were modelled using
standard Winston-Odell partonomic relationships, which are provided in the upper
ontology.

Pragmatics of travel
The scenario asked that we attempt to model some real world constraints, such as that
it is not possible to cross the Atlantic by car, or that while it might be possible to
travel from Vladivostok to Johanesburg by car, nobody would want to. A very small
subset of all the constraints that might be required to constrain the model to allow
only physically plausible modes of travel between specified locations were expressed
for illustrative purposes only. The constraints are in the form of ‘a journey between
locations of a particular type can only be made using specified modes of transport’,
and one result is that an attempt to form the concept of a journey from New York to
Cairo by bus will fail.

Examples:

The class of trips, of which John’s would be an instance, is expressed as a single
expression:

TravelItinerary which <
 hasStructuralComponent (Flying which <
 hasSpecificSubprocess (Arriving which <
 hasSpecificLocation JFK
 occursDuring April05>)
 hasSpecificSubprocess (Departing which <
 hasSpecificLocation Madrid
 occursDuring April05>)
 hasGoal (Visiting which actsOn StatueOfLiberty)>)
 hasStructuralComponent (Flying which <
 hasSpecificSubprocess (Arriving which <

101

 hasSpecificLocation DullesAirport
 occursDuring April11>)
 hasSpecificSubprocess (Departing which <
 hasSpecificLocation Madrid
 occursDuring April11>)>)
 hasStructuralComponent (Flying which <
 hasSpecificSubprocess (Arriving which <
 hasSpecificLocation Madrid
 occursDuring April15>)
 hasSpecificSubprocess (Departing which <
 hasSpecificLocation DullesAirport
 occursDuring April15>)>)
 hasStructuralComponent (Hiring which <
 hasSpecificPersonPerforming HolidayInn
 actsSpecificallyOn (Room which isStructuralComponentOf
 (Hotel which hasSpecificLocation JFK))>)
 hasStructuralComponent (Hiring which <
 hasSpecificPersonPerforming HolidayInn
 actsSpecificallyOn (Room which isStructuralComponentOf
 (Hotel which hasSpecificLocation DullesAirport))>)>

..and this is classified automatically under TransatlanticTrip and
‘TripToVisitNewYork’, even though the USA locations are only identified as airports
or monuments.

The complex graph description (above) can be entered as a single expression, within a
normal ASCII text editor. It is not a requirement that it be assembled from smaller
subgraphs that are declared, evaluated and named separately a priori before the larger
composition can be expressed.

User Interface
The OpenKnoME includes prototype tools to dynamically construct structured data
entry interfaces based on the ontology. A screen shot demonstrates a form generated
on the topic of a trip, or transport event, partially completed and showing the sub-
form produced in response by the user to describe the departure in more detail.

References
1. Rogers J.E., Roberts A., Solomon W.D., van der Haring E, Wroe C.J., Zanstra

P.E., Rector, A.L. (2001) GALEN Ten Years On: Tasks and Supporting tools
Proceedings of MEDINFO2001, V. Patel et al. (Eds) IOS Press;: 256-260

2. Solomon W.D., Wroe C.J., Rector, A.L., Rogers J.E., Fistein J.L., Johnson P.
(1999) A Reference Terminology for Drugs Annual Fall Symposium of
American Medical Informatics Association, Washington DC. Hanley & Belfus
Inc. Philadelphia PA;:152-155

3. www.opengalen.org/open/crm

102

The OntoWeb Evaluation Experiment for Ontology Editors:
Using Protégé-2000 to Represent the Travel Domain

Natalya F. Noy
Stanford Medical Informatics, Stanford University

noy@smi.stanford.edu

1 Design decisions
Our goal was to represent the domain as close to its natural-language description as
possible. We tried to introduce only the concepts and relations that were necessary and
sufficient to represent the facts in the description. We did not add any other common-
sense facts about the domain.

1.1 Assumption that we have made in interpreting the domain description
Several facts in the description allowed more than one interpretation. Here is a list of
assumptions that we have made:

• Prices for flights (business and economy class) are constant for a particular flight
and do not change from day to day. In other words, it always costs the same to fly
from Madrid to New York on the flight number UA345

• Other trips (not just flights) also have arrival and departure city, arrival and
departure time, port (airport, station) of arrival/departure, etc.

• The description said: “We know that each model of transport belongs only to one
kind of transportation (e.g., it’s either a plane, or a bus, or a car, etc.).” We
interpreted this sentence to mean that each maker of transportation manufactures
only one type of transportation. For example, if Boeing makes planes, it cannot
make trains.

We believe that other statements in the description were unambiguous and there was only
one possible interpretation.

1.2 Classes and slots
Figure 1 shows elements of the class structure and some relations among classes.

103

Figure 1. Elements of the class structure and relations. Boxes represent classes and
arrows represent relations.

We start defining a customer’s trip as an instance of the class Customer trip. Each
instance of this class contains the customer’s name and points to one or more legs of the
trip. Each trip leg is an instance of the class Trip leg describing departure
and arrival time and departure and arrival cities. It points to more
specific trip information: the specific flight the customer is taking on that trip, or
specific train, or the car he is renting. There is a constraint indicating that the arrival and
departure cities for the trip leg must be the same as the arrival and departure cities in the
corresponding Trip information instance.
An instance of Trip information represents information about particular flights,
train rides, etc. That is, an instance of this class could be flight UA455 that leaves Paris at
9am and arrives to NY at 1pm every day. The Flight subclass of Trip
information will include prices for economy and business class, and a flight number.
We assume that this information does not change from day to day.
Arrival and departure cities on the trips are instances of the Destination class. In
addition to the city name, its country and continent (we need the latter for one of
the constraints), instance of the Destination class describes local transport
in the city, points of interest, and a list of available lodging options. The
options for the local transport are the default values for the local transport slot at
the destination. The list of available lodging options contains instances of the class
Lodging. In addition, each destination has a Boolean slot indicating whether it has an
airport.
The Lodging class has two subclasses—Hotel and Bed&Breakfast. Each instance
of Lodging points back to the Destination (the slot location is inverse of the
slot lodging at the Destination class). Each Hotel instance has a required slot
indicating its star rating. Each Lodging instance points to an instance of the
Room facilities class describing individual rooms.

104

A class Means of transport represents different transport options for customer’s
travels. Specific means of transport are subclasses of this class. Each instance has a make
and model. Hence, we can represent makes and models of particular planes,
automobiles, etc. The Means of transport class is abstract to indicate that every
instance of this class must be an instance of one of its subclasses. We attached a PAL
axiom to this class expressing the constraint on makes and models: each maker produces
only one type of transportation (see the Assumption above). Specific makes and models
of planes, cars, etc. are instances of this class.
Instances of Trip information point to instances of the Means of transport
class indicating which model of a plane, ship, train, is used for a particular flight, voyage,
train ride, respectively.
There is a class Distance table which contains pairs of distances between destinations.

1.3 Constraints
The three constraints describing when customers would prefer to travel by train or car are
PAL constraints.
The first constraint is “we know that it is not possible to go from America to Europe by
train, car, bike nor motorbike.” To express this fact, we attach the following PAL axiom
to the Trip information class:
(forall ?trip

(=> (and (name (continent ('arrival city' ?trip)) "Europe")
(name (continent ('departure city' ?trip)) "North America"))
(instance-of ('means of transport' ?trip) Plane)))

A similar axiom expresses the constraint for the opposite direction (from Europe to North
America).
The second constrain is “If distance between two cities is between 400 and 800 miles,
and there is no airport close to one of them, the customer will prefer going by car or by
train.” We attach the following PAL axiom to the Trip Leg class:
(forall ?tripleg

(=> (exists ?distance
(and (to ?distance ('arrival city' ?tripleg))
(from ?distance ('departure city' ?tripleg))
(> ('distance in miles' ?distance) 400)
(< ('distance in miles' ?distance) 800)
('has airport' ('arrival city' ?tripleg) FALSE)
('has airport' ('departure city' ?tripleg) FALSE)))
(or (instance-of ('means of transport'

('trip information' ?tripleg))
Automobile)

(instance-of ('means of transport' ('trip information' ?tripleg))
Train))))

To express the last constraint “The customer also prefer to go by car or train if he hates
travel by plane.”, we attach an axiom to the Customer trip class:
(forall ?customer

(=> ('hates planes' ?customer true)
(forall ?tripleg
(=> ('trip legs' ?customer ?tripleg)

(or (instance-of ('means of transport'
('trip information' ?tripleg))

Automobile)

105

(instance-of ('means of transport'
('trip information' ?tripleg))

Train))))))

1.4 Instances
To represent a specific trip, we create an instance of Customer trip (Figure 2). It has
pointers to three trip legs. Each leg points to a Trip information instance describing
specific flights for the trips to and from Madrid. We do not specify means of
transportation for the New York-Washington leg.

Figure 2. The customer traveling from Madrid to the US

2 Discussion
We were able to represent most of the facts from the description. We found that we had
to revise the class structure significantly twice: First, when we got to the instance
definition, we learned that a trip can have several legs and therefore had to add an
intermediate Trip leg concept. Then, in order to express some of the additional
constraints, we needed to add a number of new attributes to many of the classes and
introduce the Continent class.
The class structure ended up being somewhat complicated. We believe that this
complexity resulted from some of the requirements in the description: that customers can
have several legs in one trip, using different means of transportation for each of them,
that we define ticket prices for each flight, etc. However, these complexities exist in the
real life and a real-life ontology would probably have been even more complicated.
We used many of the available knowledge-modeling primitives:

• inverse slots to link lodging and location

106

• default values to indicate default list of options for local transport at the
destination. Designers can change this list for a specific destination since not all
the towns have metro, for example; and some may have trams.

• slots as first class objects to attach the same slots to different classes. The slots
arrival city and departure city are attached both to the Trip leg
and Trip information classes. The slot name is attached to several classes
as well.

• abstract classes to indicate that the subclasses of the Means of transport
class enumerate all the possible means of transport

We used the Ontoviz plug-in to visualize relationships between classes and instances
graphically (and to generate figures in this report). Being able to see the resulting
structure in a graph, helped a lot in analyzing the emerging ontology.
We also used the Protégé Axiom Language to express domain constraints that could not
be expressed in the frame formalism directly. In addition to the three constraints in the
domain description, we specified a PAL axiom linking arrival and departure cities in the
instances of Trip information and Trip leg. We also used a PAL axiom to
express the fact that lodging at destination must be located in the same city as the
destination.
There were several facts in the domain description that we did not represent. First, we did
not represent the following fact: “From all of them, the travel agency is specially
interested in flights, as it is the means of transport mostly used by its customers” In our
representation, when we fill in the value for the means of transport slot (in the Trip
information class), we put in instances of specific planes, trains, etc. thus, we cannot seta
preferred class of transport.
 “The most common destinations are ….”. If there was only one most common
destination, we could have put it as default value for destination. However, selecting
some of the destinations as more common and some others as less common (given that
we then set the corresponding slot value to only one of those destinations) was not
possible.
We used the Protégé RDFS backend to generate RDF. Since the backend is designed to
store all the information that is necessary to restore a complete project, we did not need
any other format.

3 Conclusions
We were able to represent most of the information in the domain description. To do that,
we used many of the knowledge-modeling features available in Protégé, such as inverse
slots, default values, slots as first-class objects, abstract classes. Features that we lacked
included more flexible default (or some other mechanism) to support preferences and
prototypical instances.

107

Evaluation Experiment for Ontology Editors: SemTalk

The idea of the evaluation experiment for ontology editors is to model a given text with
several semantic web related modelling tools. The experiment is part of OntoWeb-SIG3
EON2002 Workshop at the 13th International Conference on Knowledge Engineering and
Knowledge Management EKAW 2002.

The sample text to be modelled is a natural language description of a travelling domain and
the task is to model a given flight problem. This text is not a real world document from a
travel agency but a textual definition of a problem space. The information given in that
document can be regarded as instructions for knowledge engineers how to model this specific
domain. This has a major impact on the resulting model:

• Concepts like ‘Car’, ‘Plane’ etc. usually have not to be explained to a user
• They need to be defined to do machine based reasoning in this domain
• There are a couple of ontologies out there which already describe this domain

The product idea of SemTalk is to visualize complex scenarios, often described in documents,
with symbols understood by non-technical users. SemTalk is not a tool intended to be used by
an high-end knowledge engineers using all features of DAML or OIL. In the demo model we
have tried to demonstrate the value which SemTalk adds to a complex solution. A solution
framework for reasoning should include compatible high-end editors such as OntoEdit or
Protégé beneath SemTalk to express more complex logic. The focus of SemTalk is to enable
domain experts to express knowledge in a way that their customers can understand it as easy
and fast as possible. SemTalk is competing in the discipline of usability and not in the
discipline of most sophisticated ontology modelling.

On Finding Ontologies on the Web for Referencing

In a SemTalk typical scenario we would emphasise on the statements made in one document
and relate them to an external ontology. One of the most important aspects of semantic web is
to make sure that people are talking about the same topic and avoid to have different
representations of it. The way to do it on the semantic web is to store agreed ontologies on a
common accessible place like http://www.daml.org/ontologies and create references to
objects included in the ontologies via URN / URL. SemTalk is using the namespace of the
objects for making references into RDFS / DAML. Using the namespace as the locator of an
object enables us to replicate and expand objects later on.

The first step in order to create the demo model was a search on the internet for existing
ontologies.
Since there is still no specific ontology search engine out there this has to be done using
Google and some background knowledge. Via http://www.daml.org/ontologies searching for
travel you will find:

http://ontobroker.semanticweb.org/ontos/com
pontos/tourism_I1.daml

A couple of ontologies for travel posted by
University of Karlsruhe, which are in
German and can not be used for the
experiment

108

www.daml.org/2001/06/itinerary/itinerary-ont The interesting aspect about this one is, that
the authors have been modelling “B777” and
“First Class” as instances. One other reason
not to use this ontology is that the current
SemTalk did not understand daml:one-of and
the missing ‘Restriction’ tag properly.

http://opencyc.sourceforge.net/daml/cyc-
transportation.daml and
http://opencyc.sourceforge.net/daml/cyc.daml

The problem with cyc-transportation
ontology was, that the namespace for the
objects did not match the location of the file.

http://xmlns.com/wordnet/1.6/ WordNet may be used as an RDFS
Webservice in order to lookup common
words and return their definition and
taxonomy as RDFS.

The result of the experiment was, that we learned a lot about the syntactic variants of how
DAML / RDFS has been used in existing ontologies. The SemTalk DAML import definitely
has been improved. But we finally ended up using WordNet and the WordNet namespace
http://xmlns.com/wordnet/1.6 for the classes and definitions, because it had textual
definitions for those very general concepts like “Vehicle”, “Car” and “Passenger”.

Design issues for the SemTalk Model

SemTalk offers an explorer / browser to navigate the inheritance structure of the ontology.
But the way SemTalk presents information to the end user is graphically.

The structure of the resulting SemTalk model in this experiment basically follows the
structure of the text. We have tried to capture the contents paragraph by paragraph. For each
paragraph a diagram (or “scenario”) has been built. The thumb rule for the contents of a
diagram is to make not more than 7 “statements” in one drawing. The diagrams actually
contain now less than 20 objects each.
Ontologies are basically are boring thing. This does not really matter as long as they are used
by machines, but it is an important issue if we are using them to transfer knowledge between
humans.
One way to draw attention of people to models is to use pictures and symbols. SemTalk is
based on Visio with the intension to make use of the existing Visio shapes. Visio shapes can
be selected from a vector graphics based library shipped with Visio, from Office Cliparts or
just by using arbitrary images. For this example we found it to be the fasted and most
convenient way to use images taken from Google’s image search. Using a couple of images in
the graphical drawing of the ontology does not really add new information but it makes it
more fun to read. Using an existing image is done by copying the jpg to the hard disk. Then
drop it in the document stencil and rename it to the class name you need.

109

Vehicle

a conveyance
that transports

people or objects

4-wheeled motor vehicle;
usually propelled by an

internal combustion engine;
"he needs a car to get to

work"

a vessel that
carries

passengers or
freight

a boat that
transports people

or vehicles
across a body of

water and
operates on a

regular schedule

Aircraft

Wheeled_vehicle

Motorcycle a small
motorcycle with a

low frame and
small wheels and

elevated
handlebars

Motor_vehicle

Ferry

Ship

Train

Car

a line of railway cars
coupled together and

drawn by a locomotive;
"express trains don't stop

at Princeton Junction"

Motorbike

Plane

an aircraft that has
fixed a wing and is

powered by propellers
or jets; "the flight was
delayed due to trouble

with the airplane"

travels in

Fig.1: The Vehicle Ontology

We have attached the definition found in WordNet using a “Post-It”-style comment object.
This often helps to understand the ontology even if the contents of that definition is actually
ignored by any interpreter.

By assigning a Visio Symbol to a class in the ontology a kind of domain specific modelling
tool for instances of the classes is created, where user can build the RDF instance model for is
concrete statements using drag & drop from the ontology.

The diagrams in detail are showing:

Vehicle A taxonomy of vehicle classes mentioned in the text
Agency Displaying the fact stated in the text, that the agency is interested

in subclasses of planes. This diagram demonstrated how to use
object properties in order to express associations between objects.
Since this a different statement than the vehicle taxonomy it should
be visualized in a new picture instead of making the diagram to
complex.

Flight This diagram corresponds to the paragraph the text introducing
attributes. The appropriate style to do this in SemTalk is to use
UML-style shapes to visualize attributes. The focus of this diagram

110

is to talk about the complex relations between Trip, Flight,
Transportation and Topic. It also gives examples who SemTalk’s
inference supports property overloading (arrival, departure and
used vehicle) .

Accommodation This diagram does not add new constructs. It is basically there
because it implements a lot of text about the subclasses of hotels
and gives us a chance to add a picture of the tower of Chia.

Recommended Vehicle One of the import aspects of the given text seemed to be the
modelling of the relation between vehicles, transportation types
and locations. This diagram shows how to do that in SemTalk
again with property overloading. You may find the information
that a train journey starts and end at a railway station and not at a
seaport. For a train journey a train is used as a vehicle.

Destinations This is our first instance diagram. It models the concrete
destinations and continents as instances. Since we have not
assigned symbols for city and continent we have used default
shapes here. What we experienced as a missing feature in SemTalk
was the possibility to assign individual pictures to single instances.
This is currently only supported for classes.

Rules SemTalk’s native ontology modelling does not support a rule
language or rule engine. Solutions like Integral, a graphical rule
editor for SAP’s Internet Pricing Configurator have been built on
top of SemTalk.

TheTrip This instance diagram shows simply the instances needed for
John’s trip.

The resulting model can be published as HTML. In the HTML document we have added
source text with some hyperlinks to classes in the ontology.

We also can export RDFS or DAML from this SemTalk model. Classes only, instances only
or both combined in one file.

The DAML files can be

• included as markup in the original documents or
• stored as markup besides the original documents or
• published on a server as a reference ontologie or
• used as an ontology spell checker within Office XP or
• ….

111

Modelling the travelling domain from a NLP description
with TERMINAE

Nathalie Aussenac-Gilles (*), Brigitte Biébow (**) et Sylvie Szulman (**)

(*) IRIT, Université Toulouse 3, 118, route de Narbonne,
31062 TOULOUSE Cedex 4,

http://www.irit.fr, Nathalie.Aussenac-Gilles@irit.fr
(**) LIPN, Université Paris 13, Av. J.B Clément, 93430 VILLETANEUSE, http://www.lipn.univ-

paris13.fr,
{Brigitte.Biebow, Sylvie.Szulman}@lipn.univ-paris13.fr

1. General TERMINAE method

First of all, TERMINAE proposes together a method and the tool supporting the method to build ontology from
texts. The method relies on a linguistic analysis of the texts with the help of several natural language processing
tools. We generally use two tools, one for term and relation identification, called SYNTEX [Bourigault,02], and
another one for relation or role identification, called Caméléon [Ségéula, 99]. Both of these tools rely on the
same linguistic hypothesis : the meaning of words and phrases is specific to a domain and can be inferred by
observing the regularities of their use (in documents for instance).

The text here is too short (one page) to use these linguistic tools because they exploit repetition in the use of
words or phrases. Nevertheless, we have used a term extractor (Syntex) that provides the list of all possible
words and phrases available in the text, some relations between them (syntactical and grammatical
dependencies), a direct access to all their occurrences as well as statistics such as their frequencies. Exploring the
results of this tool is a complementary means to find out relevant concepts and knowledge.

A part of these results can be directly imported as an input in Terminae. These data are the input of the modeling
process together with reading the original text. So identifying knowledge relies on two different main tasks that
are carried out alternatively :

1) browsing the Syntex results to identify “important” knowledge or to decide how to represent some
information according to the use of the words in the text ;

2) linear reading of the text to systematically extract as much knowledge as possible ;

Each piece of knowledge considered to be worth being integrated in the model is then represented. Terminae
knowledge representation language relies on the following primitives : terminological file (for terms), generic
concept (for classes), primitive concept (for instances) and role (for relations). The tool guides the various steps
followed to define one of these item in the ontology.

The next stage in knowledge representation is normalization. The aim is to get to a well structured ontology,
where each concept definition is justified through its relations with other concepts and comments. We suggest
here to apply differentiation criteria that lead to make explicit the common and different properties of a concept
with its father concept and brother concepts thanks to its roles.

The final stage is formalization in Terminae formal language, which is a kind of description logic. A
classification function available in Terminae makes it possible to check the correctness of generic concept
definitions. Concepts should be defined only once and have differentiating roles.

In the following, we describe how we proceed the two knowledge identification tasks, how we organize
knowledge in the ontology and we illustrate the kind of consequences when applying the normalization rules.
Then, we will list various modeling decisions that we took, whatever the way we identified the knowledge. TO
end with, we will report some of the missing knowledge noticed by the classification function.

112

2. Knowledge identification tasks

2.1. Linear reading

Building concepts just from reading the texts assumes various facts :

1) The ontology builder knows enough domain knowledge to be able to decide which words (nouns,
phrases, verbs or adjectives) are domain terms and possible concept or relation labels. In the particular
case of this experiment, the domain is familiar to any one and common sense knowledge is almost
enough to understand the text. In fact, we can suppose that it was one of the objectives of the writer,
that every designer has enough expertise on the domain to model it.

2) Concerning the output, a similar implicit assumption is that the ontology builder knows well the way
the ontology will be used, the task of the travel agent and how it could assisted with the help an
ontology based system. This is much less obvious : in fact, we have tried to represented as much
knowledge from the text as possible, without precise information about its relevance and use.

When we read the text linearly, we proceed in one the following ways :

1) systematic inventory : from reading a sentence, we identify some concept names or role labels. It is
frequent in this text because the writer prepares the ontology descriptions. For instance, in paragraph 2
we are suggested to define the “means of transport” concept as a class, and plane, car, ferries, trains, …
as sub-classes of this concept. This leads to the definition of various concepts and IS-A relations in the
ontology.

2) Structuring : some times, we use our domain knowledge to structure some information. We use it to
make explicit with more abstract concepts some implicit knowledge in the texts. For instance, in the 5th
paragraph about destinations, we are given a lot of examples (instances) and we are free to organize
them into classes according to our mind. The same happens when deciding how to represent persons
(we have two kinds of persons only : costumers (or clients) and the travel agent).

In both previous cases, the next step is knowledge representation in the ontology, with the definition of a concept
(either generic or individual) or a role. See “Knowledge representation steps” below.

2.2. Browsing extracted candidate terms

113

Browsing Syntex results is generally much more efficient than reading when the domain is huge and the
documents are numerous. For instance, if one or several books form the knowledge sources, Syntex criteria for
identifying domain terms rapidly leads to find the main domain concepts and relations.

In the case of this project, the linguistic material is not prone to automatic processing. From Syntex we have
obtained 372 terms (single words and phrases combing some of these words). Only 74 of them appear more than
once, among 50 are relevant domain terms and some 5 or 6 refer to the domain of building ontologies. We can
get read of irrelevant terms in a validation frame (see the screen dump below). For a given term, its occurrences
are displayed to help decide whether to keep it or not. This work is a fastidious one, but rather fast in this case. It
helps reduce the list of possible terms that will be browsed later on in the modeling process. We reduced the list
down to 270 terms but many other terms could still be eliminated.

Although not completely adapted here, going from the list of possible (candidate) terms to the ontology is a good
means :

1) to check the various use of a term
2) to identify synonyms (transport and transport means)
3) to automatically get comments that enrich the model and explain why some knowledge is represented in

a certain way.

We can browse the list of possible terms according to their frequency, to the alphabetical order or (in the Syntex
interface) to the grammatical category (verbs, nouns, noun phrases, verb phrases, adjectives or adverbs) and to
the compositional relations (from phrases to their components, or from single words to the phrases there are used
in). In this project, we did not use the Syntex interface. We carried out the following explorations :

1) looking for productive terms (that are part of many compound terms)
2) looking for the most frequent single terms: this often leads to major high level domain classes
3) looking for the most frequent noun and verb phrases : this leads to other main domain concepts and

some domain relations
4) alphabetical exploration around the first identified terms.

114

1) Exploration of head and expanding of phrases

Exploring terms and their constitutive parts (head and expanding) helps to figure out their productivity. Key
domain concepts are more likely to be labeled by terms that belong to various domain phrases, that is to say to
productive terms. For instance, the visualization of the expanding of the “trip” term helps to define its roles as
presented below.

2) Exploration of the most frequent single terms

115

The screen below is the interface to be used to define a term and then a concept or role in the model.

3) Exploration of the most frequent phrases

Defining a new term

When a terms in the list is considered a concept label, the ontology builder press on the “to terminological form”
arrow, defines the corresponding term and then the corresponding concept. Here are the screens used for the
definition a “means of transport” as a concept label.

The first screen is the terminological form where synonyms and new occurrences can be added, some linguistic
information may be given. Here for instance, synonyms are “kind of transport” and even “transport”. SO the
occurrences of these words have been added to those of the phrase “means of transport”.

116

From this screen, a concept can be defined in the model thanks to the option “define a concept” in the pop-up
menu “Traceability”. At this time of the process, the ontology builder only knows that these words are important
as domain knowledge labels, but he does not know yet how the corresponding knowledge should be represented
in the ontology.

The next steps are described in the “representations steps” paragraph.

3. Knowledge representation steps

A concept may be created either from a terminological form or from the ontology editor (“create” option in the
“concept” pop-up menu).

Each time a concept is created, a concept editor opens (screen bellow). The user must specify several properties :

1) The concept super class (father concept with the link isKindOf) in the hierarchy. The list of existing
concepts is proposed. If the father concept has not been defined yet, the user can either enter its name
and then define it or select TopConcept (the root of the hierarchy). For instance here, meansOfTransport
is a class under travellingDomain. Terminae representation language allows multiple super classes and
multiple inheritance of the roles. So several concepts can be selected as father in the proposed list.

2) whether the concept is terminological or not according whether it comes from the text or not. For
instance, structuring concepts added from the builder own domain knowledge (e.g. country,
urbanMeansOfTransport) are not terminological. This is a purely informative property that no impact on
knowledge representation and formalization.

3) If the concept is built up from a terminological file, part of the occurrences may be cut and pasted to
comment the concept. This help to easily store some design justification. Any other comment can be
added too.

4) Whether the concept is primitive or defined. This refer to the formal representation with a description
logic that is behind the Terminae interface. As long as formalization is no longer possible in Terminae,
we did not check this property.

117

5) Whether the concept has been design following a bottom-up (ascendant) or top-down (descendant)
process, or for structuring or gathering reasons. This property is also just for information. It keep tracks
of one of the reasons that led to the concept definition : looking for a more generic class of various
existing concept (bottom-up or gathering) or trying to list of the possible sub-classes of a given concept
(top-down). For instance, the concept urbanMeansOfTransport has been characterized as a bottom-up
one because it is the super class for a list of concepts (cityBus, taxi, etc.). NaturalSite is characterized as
“top-down” because it is a way to list the sub classes of pointOfInterest.

6) When this first part of the definition is completed, the user can check the “OK” button. He will know
later that this concept does not need to be checked again.

The concept is then inserted in the ontology and available from the ontology editor. The concept creation opens
the ontology browser. The concept “meansOfTransport” is listed in the generic concept list of the ontology (left
part of the screen bellow). Roles can be added later on.

118

Creating an individual concept (an instance) is done through a similar editor but it requires less information
shown below. On the left side of the ontology editor here above, the two kinds of concepts are show in two
different alphabetical lists : generic concepts are in the upper part whereas individual ones are in the bottom list.

At any time, roles can be added that set relationships between concepts. The ontology builder may decide to add
a role after having read the text (linear reading) or a term occurrence (when browsing terms). For instance,

119

reading the 6th paragraph leads to define the concept hotelFacilities and to a role that connects the concept hotel
with hotelFacilities. A role can be either generic or individual. Generic roles are associated to a concept and
inherited by its sub-concepts; their value concept (destination) is a generic concept. Individual roles are specific
to a concept, they are no inherited and can be associated individual concepts; their value concept can be either
generic or individual.

We show above the role editor. The editor proposes the list of existing concepts to select the concept value
(value concept). A new concept can be defined from there if required. A role can restrict an inherited role of a
more generic concept in the hierarchy. It means that the new role associated to the specific concept will have a
more restricted concept as the value concept. The option « restricts role » proposes to select one of the inherited
roles of the current concept. Then the value concept must be a subclass or an instance of the value concept of this
inherited role.

Some of the information associated to roles (symmetry, transitivity, functional, inverse role) is not interpreted
formally. The only relation between roles is the “Inverse role” relation. Cardinality indicates the minimal and
maximum number of associated roles of this type that a concept may have. Cardinality is used to check that an
individual concept of this class as at least zero or one or no more than one or many roles of this types towards
other individual concepts.

After a concept has been assigned roles, its selection in the ontology editor makes it possible to see all of its roles
and the related concepts, its comments and sub-concepts.

4. Limitations of Terminae representation language

Terminae representation language suffers from some limitations, mainly because constraints and relations
between roles are not some of the primitives. Here are some of the other missing primitives :

1) operators such as OR, NOT to represent relations between concepts

120

2) existence operators like ONE-OF to represent a set of individuals as possible role values ; another
solution would to enrich the possible types of role values : at the moment, it must be a concept, whereas
in Protégé2000 for instance, it can be an instance, a value picked in a selected set or a generic type like
String, Boolean, etc.

3) concrete types, as integer, string, …
4) more generally, axioms or relational expressions out of the language

For these reasons, we were not able to easily represent the kind of constraints defined in the 6th paragraph, about
the way to go from America to Europe and so on. They could have been stored at least as comments.

Another limitation is that recent changes in the knowledge representation (like having individual concepts as role
value even for generic concepts) make it now impossible to have a formal translation of an ontology in Terminae
description logic.

5. Design decisions

In this section, we report our design decision according to the influence of the knowledge representation. Given
the Terminae primitives, we still have the choice to represent an information in various ways. We motivate here
some of our decisions. Some other decisions come from the application of differentiation rules. We will illustrate
this normalization process in section 6.

5.1. Preliminary remarks
The text given to build the ontology intends clearly a target application which is not detailed. Although implicit,
the objectives of the application lead to set some relations that would not be actually correct in a general
ontology. They are acceptable because operational for the objectives. We clearly build a task ontology, not a
generic one.
When representing a car as a means of transport, it is explicitly intended that it is a point of view no more
detailed; if another point of view has to be taken into account, as the one of an automobile constructor, the
modeling must be reconsidered.
Another illustration concerns rentalCar. It is a sub-concept of urbanMeansOfTransport and not a sub-class of car
as it would be in a generic ontology. We could have used the multiple inheritance but this would have led to an
inconcistency : a rentalCar would have been also an internationalMeansOfTransport. This is not false but not
explicitly proposed in the text.

5.2. Choice between generic or individual concept
We report here two examples that led to two different decisions. In both cases, the starting knowledge is an
enumeration of nouns. No significant syntactical (or linguistic) indication can be exploited. The choice comes
from semantic and even pragmatic reasons.

1. Paragraph 3 “… the means of transport that are …. We will have in our ontology the following ones :

planes, trains, cars, ferries, motorbikes and ships”.
We know that we have to represent in the ontology that ”planes, ferries, …” are some means of transport
(linguistic indicator : “the … that are available … are the following”). We have the choice between defining
individual concepts or generic concepts related to the concept meansOfTransport. If we read the following
of the page, we notice that we need to refer to several specific and real planes used for specific flights. So
these real planes will be instances, whereas the notion of plane is considered here as a class, and requires to
be a generic concept.

2. Paragraph 4 “For each flight, the agency knows : the arrival date, the departure date, the arrival city …”

We have here another enumeration. From reading, we know that all the terms in this enumeration refer to
some properties of a flight. In Terminae, properties are represented with roles, that connect the concept with
another concept called the value concept. So we have to define as many roles and related concepts as there
are properties in this list. Decisions must be made when defining the value concepts, that can be either
generic or individuals.
In this case, we decided to define the following roles and only generic concepts :

121

- the roles priceBC (price in Business Class), priceFC (price in first class) and priceEC (price in
economy class) have the same value concept, price, which is a generic concept, and can be
instanciated with specific price values;

- The roles departureTime and arrivalTime have the same value concept absoluteTime for similar
reasons;

- The roles departureDate and arrivalDate also have the same concept value date;
- On the opposite, departureAirport and arrivalAirport have the same value concept airport;

In all those cases, we did not feel the need to differentiate the two kinds of airports, times, dates as classes
because it has no meaning. These properties define roles. The same concrete object can play the two roles at
different times. The decision is sometimes much more complex and hard to make, as described in the next
section.

1) In the last paragraph, we had a similar problem with the various hotel classes. We define a role

numberOfStar on hotel with value in starNumber. starNumber individuals are 1*, …5*. If we define each
hotel class as an instance (individual concept), we can express that the Holiday Inn hotel in New York is a 4
star hotel thanks to the role numberOfStar. But then these individual concepts will never be used in the
ontology as role value. Another solution is to define the various hotel classes as as many generic concepts
(oneStarHotel, twoStarHotel, …) that are sub-concepts of hotel. Then The Holiday Inn hotel may be an
instance of 4StarHotel. It is important to do so if we need to explicitly specify some of the facilities available
in a 3 star hotel that make them different from a 4 star hotel for example. If the system does not need to do
so because hotel classes and corresponding services are well known by the customers, it is no use defining
concepts and the role numberOfStar of hotel is enough. We decided to define generic sub-concepts
oneStarHotel, …, fiveStarHotel of hotel, with corresponding numberOfStar value.

5.3. Concepts or roles ?
Some knowledge may be represented either by concepts or roles. The choice may be difficult to make.

First example
2) For instance, if it is important for the customer to know the model of plane of the flight, it must be one of

the characteristics of a flight, or accessible from a flight (by the plane); this is expressed by the role
meansOfTransport with value plane, which is inherited from the concept transport. So meansOfTransport is
both the label of a generic concept and a role of the concept flight.

Second example (paragraph 5)
3) Destination are complex, including cities as points of interest located near a city with airport or even a

continent. We first decided to call them all destination, to link this concept to trip. A destination may be a
specific pointOfInterest as StatueOfLiberty, a city (and that implies a city to be a destination, that is not very
correct), or otherDestination as Europe; each destination is linked to a correspondingCity. The problem is
that otherDestination is a very general concept with many possible interpretations. It has to be made more
precise.

1) In fact, all destinations are locations and destination is rather the label of a role of the trip concept. So we
ended by defining the location concept, with sub-concept such as city, country, continent,
pointOfInterest. Such concepts have connecting roles to mean that a city belongs to a country, and that this
country is part of a continent. This helps refine with a customer the destination associated to his trip: if he
wants to go to Europe, the travel agent can suggest him various European countries or cities or points of
interest located in Europe.

5.4. Instance definition leads to modification in generic concept definitions
4) For defining Paris as being a destination including the city and Disneyland, we define DisneyLand as an

individual concept of pointOfInterest. In fact, more generally, we decide that any location can have various
points of interest, and we feel the need to classify them into classes so that the customer whishes may be
refined.

5) It appears also that a trip may be compound of several trips : a trip to Europe includes trips to London, to
Paris (city or DisneyLand) and to Madrid. We need to express a recursive definition: a trip may be
compound of trips.

122

5.5. One or several concepts ?
We illustrate this with paragraph 3 “customers are usually interested in the kind of plane they will fly on …”.

1. A first choice can be to identify mark and model as two different properties of the concept plane
(planeModel and planeMark). As long as we cannot give “string” as the class value of these roles, we
have to define 2 concepts : planeMark and planeModel.

2. Another solution would be not to differentiate mark and model (for instance, AirbusA320 would give
the two information with a single individual concept). The notion of planeModel would include both
the mark and the type of plane. We would have a single role and a single concept.

3. A third solution would be to consider that the mark is an information associated to a model, not to a
plane, the model being the only information associated to a plane. Then the plane concept would have
planeModel as a role, and planeModel would have planeMark as a role.

4. The reserve solution is also possible : consider the mark as the information associated to a plane, and
the model as a role of a mark. Although selected in a first time, this solution is not very relevant: an
invividual mark would have as roles all the possible plane models of this mark. So it is not easy to
represent that a given plane (an individual concept) that has a given mark (individual role) is then
related to a specific model.

So we choose the third solution because it seems to be more general and adequate. It allows to know the model
of a plane in a first time, and to precise the mark if required. The relations between plane, markOfPlane, and
modelOfPlane are delicate to establish. The difficulty is that the need of modeling mark and model of a plane
appears when defining means of transport although this notion concerns a specific trip in plane, not plane as
means of transport.

The same difficulty appears with other means of transport. For this reason, we decided to generalize the mark
and model roles to any means of transport. This means that the roles were associated to the concept

123

meansOfTransport and modelOfTransport rather than plane and modelOfPlane. As a sub-concept, plane inherits
of the modelOfTransport role. So we restricted it with the value modelOfPlane, which is a sub-concept of
modelOftransport. The same happens for MarkOfTransport and markOfPlane.

5.6. Define structuring concepts or not ?

When defining a flight, it seems time to define some structuring concepts : an agency sells a trip which is
compound of products, that are either transport or accommodation. Transport by means of plane is a flight. We
added another concept to illustrate what other transports could be roadJourney.
Because the concepts that refer to means of transport are different to go from a location to a destination location
and to move inside this destination location, we differentiate two classes of means of transports:
internationalMeansOfTransport and urbanMeansOfTransport. This information is not explicitely in the text. So
the labels of these structuring concepts may not be the best one as long as rental cars are not specifically urban.
We present here bellow the correspond part of the concept hierarchy.

5.7. Checking the model : what’s in the concepts ? what does the ontology look like ?

Terminae offers several means to have a more concise view on the ontology. The default of the concept and role
editors is to give a split view.

- the ontology editor provides a rather concise view of each generic or individual concept : we can see its
specific roles, its inherited roles, its sub-concept and its father in the hierarchy ; for each role, we can
know its value ;

- several options available from the KN management pop-up menu of the ontology list manager help see
the whole ontology (see screen copy bellow)

- the whole hierarchy can be seen and printed thanks to “printing the concept hierarchy”

124

- a Latex file can be printed : it proposes a frame like presentation of all the generic and
individual concepts with their associated roles and values. We present here bellow an extract
of this file.

:topConcept :travellingDomain :trip
Concept primitif
T
TDS
*****rôles *******
isCompoundOfTrip trip
isCompoundOfProduct product
hasReturnDate absoluteDate
hasDestinationLocation location
hasDepartureLocation location
hasDepartureDate absoluteDate
**
:topConcept :travellingDomain :trip :JohnsTrip3
NT
**
:topConcept :travellingDomain :trip :JohnsTrip2
NT
****** rôles individuels*******
isCompoundOfProductJT22 JohnAcco2
isCompoundOfProductJT21 JohnFlight2
hasDestinationJT2 Washington
departure NewYork
**
:topConcept :travellingDomain :trip :JohnsTrip1
NT
****** rôles individuels*******
returnDateJT1 April112002
isCompoundOfProductJT12 JohnAcco1
isCompoundOfProductJT1 JohnFlight1
destinationLocationJT1 NewYork
departureLocationJT1 Madrid
departureDateJT1 April52002
**
:topConcept :travellingDomain :trip :JohnsTrip
NT
****** rôles individuels*******
returneDateJT April152002
isCompoundOfTrip3 JohnsTrip3
isCompoundOfTrip2 JohnsTrip2
isCompoundOfTrip1 JohnsTrip1
destinationLocationJT U.S.A.
departureDateJT April52002
departureCityJohnsTrip Madrid

125

6. Normalization

Once most of the concepts found in the knowledge sources and required by the application needs have been
added to the ontology, Terminae suggests to check the model according to differentiation rules. These rules lead
to make explicit the modeling decisions. The knowledge engineer may require to look for additional knowledge
back in the documents or from the expert. The differentiation rules require that for any given concept, the
following information should be made explicit in the model (thanks to roles with Terminae representation
language) :

- the concept must have at least one common role with its father concept (generally an inherited role);
- the concept must have at least one specific role that make it different from its father concept;
- the concept must have at least one share property (role) with its brother concepts (this role may be an

inherited one);
- the concept have at least one specific property that make it different from its brother concept (this may

be a specific role or value of an inherited role).

The application of these rules leads either to enrich the model or to eliminate some useless concepts or to
reorganize the hierarchy with some intermediary concepts.

Example of not normalized concepts

The concept travelingDomain has no specific role yet, that would make it different from the root topConcept. In
fact, this concept is an artificial means to inform the reader that, from this concept and below, all the information
is structured according to the point of view induced by the travel agency application.

Example of differentiated concepts of the hierarchy
In the example bellow, the role hasPrice has been added to the concept product in order to stress the
commonalities between a product, an accommodation and a transport. This role also contributes to differentiate
this concept from other children of the travelingDomain concept. The children concepts transport and

126

accommodation are different because they have their own roles (byMeansof -> meansOfTransport and
hasDuration are specific roles to transport; firstNight and lastNight are specific roles of accommodation).

7. Concept classification
The validation option of the KB editor proposes a classification program. A report is then displayed to the user
that can notice all the errors left in the model. The classifier expects each concept to be different from all the
other, whether because it has a specific role or a specific value concept of a common role. Implicitly, the
algorithm assumes that a concept is not worth being defined if it is not syntactically different from the other
ones. Its label is not enough as a difference.

The screen copy bellow shows a report obtained before a systematic differentiation of our ontology. Most of the
errors come from missing differentiation roles.

127

This control is optional and an ontology may be left with some errors according to these criteria. For instance,
from the available document in our experiment, many knowledge is missing that would help to differentiate a
hotel from a bed and breakfast, or to differentiate formally all the hotel facilities. May be these facilities should
better be represented has individual concepts of the hotelFacility concept.

8. Output of TERMINAE

TERMINAE proposes various format for the output ontology and the terminological forms.
The ontology is stored by default in XML, and can also be exported in OIL or OIL-RDFs. It can printed as a
LaTex file.
Each terminological form is stored in XML format .

9. Conclusions

TERMINAE is not very powerful as a representation language but rather as a guiding tool. Its main interest is
the link between the ontology and the texts. For instance, the terminological form meansOnTransport gives the
different occurrences of the term in the text, and it says that other terms in the text, kind of transport and kinds of
transportation, are used as synonyms. A natural language definition can be given, which completes the
conceptual definition. That helps the user to understand the underlying modeling of the ontology, and the
modeling point of view.

We have shown the process from lists of terms to terminological forms and then to the ontology as an illustration
of the guidance provided by the system. It would have been more powerful with a larger input set of texts. We
are well aware of the need to have a formal model checking at the end.

10. References

AUSSENAC-GILLES N., BIEBOW B. & SZULMAN S., (2002), Modélisation du domaine par une méthode fondée sur l'analyse de

CORPUS. In Ingénierie des connaissances. Paris : Eyrolles, à paraître.
BIÉBOW B. & SZULMAN S. (1999). TERMINAE: A linguistic-based tool for the building of a domain ontology, Proc. of the

11th European Workshop, Knowledge Acquisition, Modelling and Management (EKAW 99), Dagstuhl Castle (G),
Springer Verlag, 49-66.

BIEBOW B. & SZULMAN S. (2000), Terminae : une approche terminologique pour la construction d’ontologies du domaine à
partir de textes. Actes de RFIA2000, Reconnaissances des Formes et Intelligence Artificielle, Paris (F).

S. Le MOIGNO, J. CHARLET, D. BOURIGAULT, P. DEGOULET, M.-C. JAULENT (2002), Terminology Extraction from Text to
Build an Ontology in Surgical Intensive Care. In Proceedings of the ECAI2002 workshop on NLP and ML for Ontology
Engineering. Lyon (F). July 22-23, 2002.

SZULMAN S., BIEBOW B. & AUSSENAC-GILLES N. (2002), Structuration de Terminologies à l’aide d’outils d’analyse de textes
avec TERMINAE, TAL, Paris : Hermès. Vol43,N°1. 2002.

128

Evaluation experiment for the editor of the WebODE
ontology workbench

Óscar Corcho, Mariano Fernández-López, Asunción Gómez-Pérez

Facultad de Informática . Universidad Politécnica de Madrid

Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain

{ocorcho, mfernandez, asun}@fi.upm.es

Abstract. We summarize our design decisions on the conceptualization of a

travelling ontology, when building it with the ontology editor of the WebODE

ontology engineering workbench. This ontology editor is composed of a set of

HTML forms, a graphical taxonomy editor called OntoDesigner and an axiom

editor called WAB (WebODE Axiom Builder).

1 Introduction

This paper presents the results of using the ontology editor of the WebODE ontology

engineering workbench to conceptualize an ontology in the domain of travelling and

lodging. This is the first experiment for the evaluation of ontology tools’ editors,

performed in the context of the Special Interest Group (SIG) on Enterprise-Standard

Ontology Tools of the European IST OntoWeb thematic network (IST 2000-29243).

This experiment is described in section 2.5 of the OntoWeb Deliverable 1.3 [6].

In section 2 we will briefly describe the WebODE ontology environment, its

ontology editor and its knowledge model. Section 3 will present the design decisions

that we have made to model this ontology in WebODE, focusing on those pieces of

knowledge that we have been able to model and on those pieces of knowledge that we

have not been able to model with it. Section 4 briefly comments on the formats used to

deliver the ontology: the XML representation of WebODE and RDF(S). Finally,

section 5 will present some conclusions that can be derived from this experiment.

2 The WebODE ontology engineering workbench

WebODE [4] is an ontology engineering workbench developed by the Ontology

Group at the Technical University of Madrid (UPM). It is the successor of the

ontology design environment ODE [2].

WebODE is easily extensible and scalable, supported by an application server. The

core of WebODE is its ontology editor. Ontologies are browsed and edited either with

HTML forms (which allow editing ontology components and which provide

“copy&paste” functionalities) or with a graphical user interface, OntoDesigner (which

129

allows managing different views, where we can edit concept taxonomies with subclass-

of relationships, disjoint and exhaustive subclass partitions and part-of relationships,

and ad-hoc binary relations, and where we can either show or hide the different kinds

of relationships in the ontology to highlight parts of it). The ontology editor also

provides constraint checking capabilities, axiom and rule creation and parsing (with

the WAB editor [4]), documentation in HTML, ontology merge, and ontology

exportation and importation in different formats (XML, RDF(S), OIL, DAML+OIL,

CARIN, Flogic, Java and Jess). Finally, its built-in inference service uses Prolog and a

subset of the OKBC protocol [3].

2.1 WebODE’s knowledge model

The WebODE’s knowledge model [1] is based on the intermediate representations

proposed in Methontology [6]. It allows modelling concepts and their attributes (both

class and instance attributes), concept taxonomies, disjoint and exhaustive class

partitions, ad-hoc binary relations between concepts, properties of relations,

constants, axioms and instances of concepts and relations.

Bibliographic references can be attached to any of the aforementioned ontology

components. Besides, it is possible to import terms from other ontologies. Imported
terms are referred to by means of URLs.

Finally, the WebODE's knowledge model supports views and instance sets . Views

highlight specific parts of the ontology in OntoDesigner. Instance sets make possible

to populate a conceptual model for different applications or scenarios, maintaining

different, independent instantiations of the same conceptual model in WebODE.

3 Conceptualization of the travelling ontology in WebODE

The ontology that we present has been conceptualized using Methontology.

Methontology proposes to conceptualize the ontology using a set of tabular and

graphical intermediate representations (IRs), and recommends the following order to

assure the consistency and completeness of the knowledge already represented. First,

we must identify the main concepts in the ontology and build the concept

classification tree. Second, we create the ad-hoc binary relations between concepts in

the same taxonomy or in different taxonomies. Then, we add the class attributes and

instance attributes to the concepts, and finally we create axioms and rules. This is just

a recommendation: this process is not necessarily sequential.

Therefore, our first task consisted of extracting concept taxonomies and their ad-

hoc relations from the ontology description. We created five different views :

?? Trip view. A customer makes one or more trips, which use some kind of

transport and accommodation. Here we understand by trip a combination

of one or several transports and (possibly) an accommodation. That is, in the

example, John will make three different trips: the one from Madrid to NY, the one

from NY to Washington DC, and the one from Washington DC to Madrid.

130

?? Means of transport view, which contains all the concepts relevant to

means of transport, classified by air, ground and sea transportation.

?? Plane view, which presents the concept taxonomy under the concept plane,

which is contained in the previous view. This is done since the concept plane is

the only one being more specialized in the ontology.

?? Location view, which contains the concepts city, airport and

importantPlace, and their ad-hoc relations: a city may have several

nearest airports, and several important places worth to visit.

?? Accommodation view, which contains the concepts related to accommodation.

The most general concept is accomodation, which specializes in hotels and

bed and breakfasts, as proposed in the NL description of the example.

In these views we modelled, if possible, disjoint and exhaustive partitions instead of

simple subclass-of concept taxonomies. For instance, in the accommodation view we

created an exhaustive partition of the concept hotel in the different hotel categories

(from 1 star to 5 stars). And in the same view, we created a disjoint partition of the

concept accommodation in hotel and bed and breakfast, since there are

other types of accommodation that have not been included in the ontology.

Another important design decision related to the concept taxonomies was that of

transport. We defined two different concept taxonomies for transports, considered as

services (flight, city bus, taxi, rental car, etc.) and means of transport

(plane, car, bus, underground, etc.). Both taxonomies are connected with the

ad-hoc relation usesTransportMean, which is defined between the most general

concepts in both taxonomies (from the concept transport to the concept

transportMean) and specialized in some of the more specific concepts. For

instance, between the concepts taxi and car, between flight and plane, etc.

Besides, another important issue is how to define flights from one city to another.

We classified flights according to the air company in charge of them (this does not

prevent a specific flight being subclass of several air companies’ flights, in case of

joint flights), and created a class for each flight code, that is, aa0415, us1453, etc.

Instances of these concepts will be the specific flights in a specific date.

Once that we defined concept taxonomies and ad-hoc relations between concepts,

we deepened in the description of concepts by defining concept attributes. We have

selected the attributes that we considered most relevant for each concept, according

to the description provided in the example. For each attribute, we provided its NL

description, its value type, its minimum and maximum cardinalities, and its

measurement unit, precision, minimum and maximum values for numerical attributes.

Class attributes define properties that describe the concept. For instance, the

number of stars of each kind of hotel, the economy, first and business
class standard prices of each kind of flight, the air companies of a

flight or the typical cruise speed of a kind of airplane. These attributes have

also their corresponding values.

131

Instance attributes define properties that will take their values in instances of the

concept. For instance, in the concept accommodation we defined as attributes the

address, URL, phone number, number of rooms, number of
available rooms, dogs allowed, distance to the beach and

distance to a ski resort. In the concept flight, we defined the air
company, and the departure and arrival dates. In the concept place, we

defined longitude and latitude, which can be used later to compute distances.

Later, we moved to the logical axioms , which are defined in first order logic,

according to the WAB syntax. We created the following seven axioms:

?? Two axioms stating that the business class standard price of a flight is always

more expensive than the first class standard price of the same flight, and for

stating that the first class standard price of a flight is always more expensive

than the economy class standard price of the same flight.

?? One axiom to obtain a flight’s arrival city from the flight’s arrival airport

?? Two axioms to establish that the only kind of transport that can be used for

going from America to Europe, and vice versa, is a flight.

?? One axiom to state that in every kind of city transport the arrival city and

departure city are the same.

?? One axiom to obtain the preferences of a customer for a trip, depending on the

distance between two cities, as presented in the NL description of the example.

Many other constraints could have been inferred from the NL description of the

problem. However, we have tried to restrict to the most relevant ones and those

defined explicitly in the text.

A bibliographic reference was used to obtain many of the NL descriptions of

concepts, attributes and relations: the Merriam-Webster on-line.

Finally, we created two instance sets : one for an agency in New York and another

one for an agency in Madrid. We have created all the instances in the first one: an

instance for John, three instances for John’s trips, instances for the two hotels to be

used, for the cities that he will visit, for the Statue of Liberty and for John’s

flights. We also created the instances of relations between these instances.

As a summary, we created in this ontology 58 concepts (organized in concept

taxonomies with 23 subclass-of relations, 6 disjoint and 3 exhaustive partitions), 19

class attributes, 28 instance attributes, 21 relations, 0 constants, 1 reference and 7

axioms. We created 23 instances in the New York Agency instance set.

We found the following difficulties when modelling our ontology in WebODE:

Enumerated types cannot be represented in WebODE, in the sense of allowed

values for an attribute in a class. For instance, they would be useful for representing

the allowed values of the attribute hotel chain in the concept hotel, or for the

continents in the attribute continent of the concept city.

We cannot represent attributes attached to ad-hoc relations. For instance, the

number of rooms of each room type in a hotel. To represent this, we should create an

132

intermediate concept that represents the relation, and define the corresponding

instance attributes in it. However, we lose clarity and legibility in the representation.

WebODE cannot compute distances between places. This calculation must be done

by external systems (such as inference engines or traditional software systems), which

would be in charge of creating the corresponding instances of the concept

distance.

4 Formats in which the ontology has been delivered

We have this ontology in two formats, automatically generated from the WebODE

ontology editor: (1) WebODE’s XML (in which we have all the components of the

ontology that we have presented in the previous section), and (2) RDF(S). In the

transformation to RDF(S), we lose much of the knowledge of the WebODE ontology,

since the RDF(S) knowledge model is less expressive than WebODE’s. Hence, in

RDF(S) we do not represent partitions, some attribute’s information (cardinalities,

measurement units, precision, minimu m and maximum values), axioms and views.

5 Conclusions

In this experiment we have developed an ontology from a short NL description of the

problem to be solved. It is clear that the ontologies that will be presented in this

workshop will be very different from each other, since the problem description left

open many modelling issues, so as to allow exploiting each ontology tool features.

This experiment is the starting point of a set of experiments that can be conducted

by the ontology community. The domain of the experiment can be enriched, and also

this experiment can be used for multiple purposes. For instance, it can be used: (1) to

evaluate the tools’ knowledge models, so that we can determine which components

can be represented in each tool and which components cannot be represented, (2) to

evaluate the possibilities of integrating the output generated by these tools with other

ontology techonology (parsers, inference engines, etc.); (3) to analyze the possibilities

of interoperability among tools; (4) to evaluate the usability of each tool; etc.

Acknowledgements

This work has been partially funded by the OntoWeb thematic network (IST-2000-

29243) and by a FPI (Formación de Personal Investigador) grant from UPM.

References

1. Arpírez JC, Corcho O, Fernández-López M, Gómez-Pérez A (2001) WebODE: a scalable
ontological engineering workbench. First International Conference on Knowledge Capture

(K-CAP 2001). Victoria, Canada.

133

2. Blázquez M, Fernández-López M, García-Pinar JM, Gómez-Pérez A (1998). Building
Ontologies at the Knowledge Level using the Ontology Design Environment, Proceedings of

the Eleventh Knowledge Acquisition Workshop, KAW98, Banff, 1998.

3. Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP (1997) The Generic Frame Protocol
2.0. Technical Report, Stanford University.

4. Corcho O, Fernández-López M, Gómez-Pérez A, Vicente O (2002) WebODE: an
integrated workbench for ontology representation, reasoning and exchange. 13

th

International Conference on Knowledge Acquisition and Knowledge Management

(EKAW’02). Sigüenza. Spain.

5. Fernández-López M, Gómez-Pérez A, Pazos J, Pazos A (1999) Building a Chemical
Ontology using methontology and the Ontology Design Environment. IEEE Intelligent

Systems and their applications 4(1):37-45.

6. Gómez-Pérez A (editor) (2002) Deliverable 1.3: A survey on ontology tools . OntoWeb

deliverable.

134

